Добірка наукової літератури з теми "Structures de Weyl"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Structures de Weyl".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Structures de Weyl"
HiricĂ, Iulia Elena, and Liviu Nicolescu. "On Weyl structures." Rendiconti del Circolo Matematico di Palermo 53, no. 3 (October 2004): 390–400. http://dx.doi.org/10.1007/bf02875731.
Повний текст джерелаOhkubo, Takaaki, and Kunio Sakamoto. "CR Einstein-Weyl structures." Tsukuba Journal of Mathematics 29, no. 2 (December 2005): 309–61. http://dx.doi.org/10.21099/tkbjm/1496164961.
Повний текст джерелаKim, Jong-Su. "R-CRITICAL WEYL STRUCTURES." Journal of the Korean Mathematical Society 39, no. 2 (March 1, 2002): 193–203. http://dx.doi.org/10.4134/jkms.2002.39.2.193.
Повний текст джерелаČap, Andreas, and Jan Slovák. "Weyl structures for parabolic geometries." MATHEMATICA SCANDINAVICA 93, no. 1 (September 1, 2003): 53. http://dx.doi.org/10.7146/math.scand.a-14413.
Повний текст джерелаMatzeu, Paola. "Almost contact Einstein-Weyl structures." manuscripta mathematica 108, no. 3 (July 1, 2002): 275–88. http://dx.doi.org/10.1007/s002290200262.
Повний текст джерелаKATAGIRI, Minyo. "On Deformations of Einstein-Weyl Structures." Tokyo Journal of Mathematics 21, no. 2 (December 1998): 457–61. http://dx.doi.org/10.3836/tjm/1270041826.
Повний текст джерелаGilkey, Peter, and Stana Nikcevic. "4-dimensional (para)-Kähler-Weyl structures." Publications de l'Institut Math?matique (Belgrade) 94, no. 108 (2013): 91–98. http://dx.doi.org/10.2298/pim1308091g.
Повний текст джерелаAlexandrov, B., and S. Ivanov. "Weyl structures with positive Ricci tensor." Differential Geometry and its Applications 18, no. 3 (May 2003): 343–50. http://dx.doi.org/10.1016/s0926-2245(03)00010-x.
Повний текст джерелаTod, K. P. "Compact 3-Dimensional Einstein-Weyl Structures." Journal of the London Mathematical Society s2-45, no. 2 (April 1992): 341–51. http://dx.doi.org/10.1112/jlms/s2-45.2.341.
Повний текст джерелаBonneau, Guy. "Einstein-Weyl structures and Bianchi metrics." Classical and Quantum Gravity 15, no. 8 (August 1, 1998): 2415–25. http://dx.doi.org/10.1088/0264-9381/15/8/019.
Повний текст джерелаДисертації з теми "Structures de Weyl"
Beswick, Matthew. "WEYL filtration dimension and submodule structures for B2." Diss., Kansas State University, 2009. http://hdl.handle.net/2097/1303.
Повний текст джерелаDepartment of Mathematics
Zongzhu Lin
Let G be a connected and simply connected semisimple algebraic group over an algebraically closed field of positive prime characteristic. Let L([lambda]) and [upside-down triangle]([lambda]) be the simple and induced finite dimensional rational G-modules with p-singular dominant highest weight [lambda]. In this thesis, the concept of Weyl filtration dimension of a finite dimensional rational G-module is studied for some highest weight modules with p-singular highest weights inside the p2-alcove when G is of type B[subscript]2. In chapter 4, intertwining morphisms, a diagonal G-module morphism and tilting modules are used to compute the Weyl filtration dimension of L([lambda]) with [lambda] p-singular and inside the p[superscript]2-alcove. It is shown that the Weyl filtration dimension of L([lambda]) coincides with the Weyl filtration dimension of [upside-down triangle]([lambda]) for almost all (all but one of the 6 facet types) p-singular weights inside the p[superscript]2-alcove. In chapter 5 we study some submodule structures of Weyl (and there translations), Vogan, and tilting modules with both p-regular and p-singular highest weights. Most results are for the p[superscript]2 -alcove only although some concepts used are alcove independent.
Beswick, Matthew. "WEYL filtration dimension and submodule structures for B₂." Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1303.
Повний текст джерелаGoudjil, Amar. "Data structures, binary search trees : a study of random Weyl trees." Thesis, McGill University, 1998. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21559.
Повний текст джерелаGoudjil, Amar. "Data structures, binary search trees, a study of random Weyl trees." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0026/MQ50778.pdf.
Повний текст джерелаGay, Joël. "Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS209/document.
Повний текст джерелаAlgebraic combinatorics is the research field that uses combinatorial methods and algorithms to study algebraic computation, and applies algebraic tools to combinatorial problems. One of the central topics of algebraic combinatorics is the study of permutations, interpreted in many different ways (as bijections, permutation matrices, words over integers, total orders on integers, vertices of the permutahedron…). This rich diversity of perspectives leads to the following generalizations of the symmetric group. On the geometric side, the symmetric group generated by simple transpositions is the canonical example of finite reflection groups, also called Coxeter groups. On the monoidal side, the simple transpositions become bubble sort operators that generate the 0-Hecke monoid, whose algebra is the specialization at q=0 of Iwahori’s q-deformation of the symmetric group. This thesis deals with two further generalizations of permutations. In the first part of this thesis, we first focus on partial permutations matrices, that is placements of pairwise non attacking rooks on a n by n chessboard, simply called rooks. Rooks generate the rook monoid, a generalization of the symmetric group. In this thesis we introduce and study the 0-Rook monoid, a generalization of the 0-Hecke monoid. Its algebra is a proper degeneracy at q = 0 of the q-deformed rook monoid of Solomon. We study fundamental monoidal properties of the 0-rook monoid (Green orders, lattice property of the R-order, J-triviality) which allow us to describe its representation theory (simple and projective modules, projectivity on the 0-Hecke monoid, restriction and induction along an inclusion map).Rook monoids are actually type A instances of the family of Renner monoids, which are completions of the Weyl groups (crystallographic Coxeter groups) for Zariski’s topology. In the second part of this thesis we extend our type A results to define and give a presentation of 0-Renner monoids in type B and D. This also leads to a presentation of the Renner monoids of type B and D, correcting a misleading presentation that appeared earlier in the litterature. As in type A we study the monoidal properties of the 0-Renner monoids of type B and D : they are still J-trivial but their R-order are not lattices anymore. We study nonetheless their representation theory and the restriction of projective modules over the corresponding 0-Hecke monoids. The third part of this thesis deals with different generalizations of permutations. In a recent series of papers, Châtel, Pilaud and Pons revisit the algebraic combinatorics of permutations (weak order, Malvenuto-Reutenauer Hopf algebra) in terms of the combinatorics of integer posets. This perspective encompasses as well the combinatorics of quotients of the weak order such as binary trees, binary sequences, and more generally the recent permutrees of Pilaud and Pons. We generalize the weak order on the elements of the Weyl groups. This enables us to describe the order on vertices of the permutahedra, generalized associahedra and cubes in the same unified context. These results are based on subtle properties of sums of roots in Weyl groups, and actually fail for non-crystallographic Coxeter groups
Borowka, Aleksandra. "Twistor constructions of quaternionic manifolds and asymptotically hyperbolic Einstein-Weyl spaces." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616872.
Повний текст джерелаHadfield, Charles. "Structures de Clifford paires et résonances quantiques." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE010/document.
Повний текст джерелаWe study independently even Clfford structures on Riemannian manifolds and quantum resonances on asymptotically hyperbolic manifolds. In the first part of this thesis, we study even Clifford structures.First, we introduce the twistor space of a Riemannian manifold with an even Clifford structure. This notion generalises the twistor space of quaternion-Hermitian manifolds. We construct almost complex structures on the twistor space and check their integrability when the even Clifford structure is parallel. In some cases we give Kähler and nearly-Kähler metrics to these spaces. Second, we introduce the concept of a Clifford-Weyl structure on a conformal manifold. This consists of an even Clifford structure parallel with respect to the tensor product of a metric connection on the Clifford bundle and a Weyl structure on the manifold. We show that the Weyl structure is necessarily closed except for some “generic” low-dimensional instances,where explicit examples of non-closed Clifford-Weyl structures are constructed. In the second part of this thesis, we study quantum resonances. First, we consider the Lichnerowicz Laplacian acting on symmetric 2-tensors on manifolds with an even Riemannian conformally compact Einstein metric. The resolvent of the Laplacian,upon restriction to trace-free, divergence-free tensors, is shown to have a meromorphic continuation to the complex plane. This defines quantum resonances for this Laplacian. For higher rank symmetric tensors, a similar result is proved for convex cocompact quotients of hyperbolic space. Second, we apply this result to establish a direct classical-quantum correspondence on convex cocompact hyperbolic manifolds. The correspondence identifies the spectrum of the geodesic flow with the spectrum of the Laplacian acting on trace-free, divergence-free symmetric tensors. This extends the correspondence previously obtained for cocompact quotients
Guggenheim, Charles Moses [Verfasser], Martin [Gutachter] Zirnbauer, and Alexander [Gutachter] Altland. "Weyl semimetals: Euler structures and disorder / Charles Moses Guggenheim ; Gutachter: Martin Zirnbauer, Alexander Altland." Köln : Universitäts- und Stadtbibliothek Köln, 2020. http://d-nb.info/1219652415/34.
Повний текст джерелаFlamencourt, Brice. "On some problems in spectral analysis, spin geometry and conformal geometry." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASM014.
Повний текст джерелаThis thesis is divided into two main parts. In the first one, we focus on two problems of spectral analysis concerning the convergence of eigenvalues of operators with parameters. On the one hand, we consider the Schrödinger operator in the plane, with a singular potential supported by a closed curve Γ admitting a cusp. This potential is formally written −αδ(x−Γ), and we describe the behaviour of the spectrum of the operator as α→∞. On the other hand, we study the Dirac operator which appears in the MIT Bag model, by generalizing it from Euclidean spaces to spin manifolds. We observe a convergence of the eigenvalues of this operator when the mass parameter tends to infinity. In the second part, we discuss two different geometric problems. First, we prove structure and classification results in dimension 3 for a particular class of spinors, called Cauchy spinors, arising as restrictions of parallel spinors to oriented hypersurfaces of spin manifolds. Finally, we focus on Weyl connections on conformal manifolds. We define a locally conformally product (LCP) structure as a closed, non-exact, non-flat Weyl structure with reducible holonomy on a compact conformal manifold. We analyse the LCP manifolds in order to initiate a classification
Mahajumi, Abu Syed. "InAs/GaSb quantum well structures of Infrared Detector applications. : Quantum well structure." Thesis, IDE, Microelectronics and Photonics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-3848.
Повний текст джерелаThe detection of MWIR (mid wavelength infrared radiation) is the important for industrial, biomedical and military applications.desirable for the radiation detector to operate in the middle wavelength IR (MWIR) band corresponding to a wavelength band ranging from about 3 microns to about 5 microns.Such MWIR detectors allow forobjects having a similar thermal signature. In addition, MWIR detectors may be used in low power applications such as in night vision for surveillance of personnel.
Now a day commercially available uncooled IR sensors operating in MWIR region (2 – 5 μm) use microbolometric detectors which are inherently slow. The novel detector of InAs/GaSb quantum well structures overcomes this limitation. However, third-generation high-performance IR FPAs are already an attractive proposition to the IR system designer. They covered such as multicolour (at least two, and maybe more different spectral bands) with the possibility of simultaneous detection in both space and time, and ever larger sizes of, say, 2000 × 2000, and operating at higher temperatures, even to room temperature, for all cut-off wavelengths.These hetero structures have a type-II band alignment such that the conduction band of InAs layer is lower than the valence band of GaSb layer. The effective bandgap of thesestructures can be adjusted from 0.4 eV to values below 0.1 eV by varying the thickness of constituent layers leading to an enormous range of detector cutoff wavelengths (3-20 This work is focused on the various key characteristics the optical (responsivity and detectivity) and electrical (surface leakage & dark current) of infrared detector and proof of concept is demonstrated on infrared P-I-N photodiodes based on InAs/GaSb superlattices with ~8.5 μm cutoff wavelength and bandgap energy ~150 meV operating at 78 K where supression of surface leakage currents is observed. In certain military applications, it isthermal imaging of airplanes, artillery tanks and otherμm).
Nice research work at Halmstad University
Книги з теми "Structures de Weyl"
Seminar on Hidden Symmetry of Physical Structures, Recipe of Weyl (2nd 1996 Rzeszów, Poland). Proceedings of the Second Seminar on Hidden Symmetry of Physical Structures, Recipe of Weyl, Rzeszów, November 1996. Edited by Wal A and Kuźma M. Rzeszów: Wydawn. Wyższej Szkoły Pedagogicznej, 1997.
Знайти повний текст джерелаWell-structured mathematical logic. Durham, North Carolina: Carolina Academic Press, 2013.
Знайти повний текст джерелаMolin, Bernard. Hydrodynamique des structures offshore. Paris: Editions Technip, 2002.
Знайти повний текст джерелаShi, Wei. Quantum well structures for infrared photodetection. Hauppauge, N.Y: Nova Science Publishers, 2009.
Знайти повний текст джерелаShi, Wei. Quantum well structures for infrared photodetection. Hauppauge, N.Y: Nova Science Publishers, 2009.
Знайти повний текст джерелаBakhoum, Mourad M., and Juan A. Sobrino, eds. Case Studies of Rehabilitation, Repair, Retrofitting, and Strengthening of Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2010. http://dx.doi.org/10.2749/sed012.
Повний текст джерелаChoudhry, M. A. Optical studies of double well structure. Manchester: UMIST, 1994.
Знайти повний текст джерелаTuhfatullin, Boris. Nonlinear problems of structural mechanics. Methods of optimal design of structures. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1201340.
Повний текст джерелаPelke, Eberhard, and Eugen Brühwiler, eds. Engineering History and Heritage Structures – Viewpoints and Approaches. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2017. http://dx.doi.org/10.2749/sed015.
Повний текст джерелаAnderson, John E., Christian Bucher, Bruno Briseghella, Xin Ruan, and Tobia Zordan, eds. Sustainable Structural Engineering. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2015. http://dx.doi.org/10.2749/sed014.
Повний текст джерелаЧастини книг з теми "Structures de Weyl"
Gilkey, P., and S. Nikčević. "(para)-Kähler Weyl Structures." In Recent Trends in Lorentzian Geometry, 335–53. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4897-6_15.
Повний текст джерелаBorchers, Hans-Jürgen, and Rathindra Nath Sen. "Geometrical Structures on Space-Time." In Mathematical Implications of Einstein-Weyl Causality, 7–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-37681-x_2.
Повний текст джерелаBorchers, Hans-Jürgen, and Rathindra Nath Sen. "Erratum to: Geometrical Structures on Space-Time." In Mathematical Implications of Einstein-Weyl Causality, 191. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-37681-x_a.
Повний текст джерелаMalinowski, Stanisław, Jakub Rembieliński, Wacław Tybor, and Loucas C. Papaloucas. "Operator Realisations of Quantum Heisenberg-Weyl and SU(2) q algebras." In Deformations of Mathematical Structures II, 155–60. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1896-5_6.
Повний текст джерелаMoonen, Ben. "Group Schemes with Additional Structures and Weyl Group Cosets." In Moduli of Abelian Varieties, 255–98. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8303-0_10.
Повний текст джерелаBroué, Michel, and Jean Michel. "Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne—Lusztig associées." In Finite Reductive Groups: Related Structures and Representations, 73–139. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-4124-9_4.
Повний текст джерелаFox, Daniel J. F. "Geometric Structures Modeled on Affine Hypersurfaces and Generalizations of the Einstein–Weyl and Affine Sphere Equations." In Trends in Mathematics, 15–19. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21284-5_3.
Повний текст джерелаFinkel, Alain, and Philippe Schnoebelen. "Fundamental structures in Well-Structured infinite Transition Systems." In LATIN'98: Theoretical Informatics, 102–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0054314.
Повний текст джерелаKoshiba, Masanori. "Quantum Well Structures." In Optical Waveguide Theory by the Finite Element Method, 247–65. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_10.
Повний текст джерелаYamada, Minoru. "Quantum Well Structure." In Springer Series in Optical Sciences, 199–217. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54889-8_11.
Повний текст джерелаТези доповідей конференцій з теми "Structures de Weyl"
De Baerdemacker, S., K. Heyde, V. Hellemans, Matko Milin, Tamara Niksic, Suzana Szilner, and Dario Vretenar. "Collective Structures Within the Cartan-Weyl Based Geometrical Model." In NUCLEAR STRUCTURE AND DYNAMICS ’09: Proceedings of the International Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3232082.
Повний текст джерелаGRIBACHEVA, DOBRINKA KOSTADINOVA. "ORTHOGONAL COMPOSITIONS IN A FOUR-DIMENSIONAL WEYL SPACE." In Proceedings of the 7th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701763_0009.
Повний текст джерелаRAPOPORT, DIEGO L. "RIEMANN-CARTAN-WEYL GEOMETRIES, QUANTUM MOTIONS AND RANDOM SYMPLECTIC STRUCTURES." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0123.
Повний текст джерелаDevyatov, Eduard. "JOSEPHSON CURRENT TRANSFER BY WEYL TOPOLOGICAL SEMIMETALS SURFACE STATES." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1583.silicon-2020/145-149.
Повний текст джерелаÖZDEĞER, ABDÜLKADIR. "A FUNCTION OF DIRECTION IN A WEYL SUBSPACE ASSOCIATED WITH A SET OF ORTHOGONAL VECTOR FIELDS." In Proceedings of the 6th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704191_0017.
Повний текст джерелаMessac, Achille, and Glynn Sundararaj. "Physical programming's ability to generate a well-distributed set of Pareto points." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1666.
Повний текст джерелаZarepoor, Masoud, and Onur Bilgen. "Constrained-Energy Cross-Well Actuation of the Duffing-Holmes Oscillator." In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-0201.
Повний текст джерелаGupta, Sushmita, Pallavi Jain, and Saket Saurabh. "Well-Structured Committees." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/27.
Повний текст джерелаHooyoung Song, Jin Soak Kim, Eun Kyu Kim, Sung-Ho Lee, Jae Bum Kim, Ji-Su Son, and Sung-Min Hwang. "Structural, electrical, and optical characterizations of a-plane InGaN/GaN quantum well structures." In 2009 International Semiconductor Device Research Symposium (ISDRS 2009). IEEE, 2009. http://dx.doi.org/10.1109/isdrs.2009.5378317.
Повний текст джерелаMizuno, T., Y. Suzuki, M. Yamanaka, Y. Nagamine, Y. Nakahara, Y. Nagata, T. Aoki, and T. Maeda. "Impact of Surface Oxide Layer on Band Structure Modulation in Si Quantum Well Structures." In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.ps-3-2.
Повний текст джерелаЗвіти організацій з теми "Structures de Weyl"
Ebeling, Robert, та Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), березень 2021. http://dx.doi.org/10.21079/11681/39881.
Повний текст джерелаBell, Gary, and Duncan Bryant. Red River Structure physical model study : bulkhead testing. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40970.
Повний текст джерелаShapiro, Noad Asaf. Radiative transitions in InGaN quantum-well structures. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/799651.
Повний текст джерелаWozniakowska, P., D. W. Eaton, C. Deblonde, A. Mort, and O. H. Ardakani. Identification of regional structural corridors in the Montney play using trend surface analysis combined with geophysical imaging, British Columbia and Alberta. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328850.
Повний текст джерелаHenderson, B. Laser Spectroscopy of Quantum Well and Superlattice Structures. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada193336.
Повний текст джерелаNolte, David D., and M. R. Melloch. Fabry-Perot Photorefractive Quantum Well Structures for Adaptive Processing. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada304136.
Повний текст джерелаLi, D., and S. D. Bader. Magnetic quantum well states in ultrathin film and wedge structures. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/226044.
Повний текст джерелаBeck, William A., Mark S. Mirotznik, and Thomas S. Faska. Antenna Structures for Optical Coupling in Quantum-Well Infrared Detectors. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada342154.
Повний текст джерелаPatel, Reena. Complex network analysis for early detection of failure mechanisms in resilient bio-structures. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41042.
Повний текст джерелаBavli, R., and H. Metiu. Laser Induced Localization of an Electron in a Double-Well Quantum Structure. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada252060.
Повний текст джерела