Добірка наукової літератури з теми "Structures de Van der Waals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Structures de Van der Waals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Structures de Van der Waals"

1

Ren, Ya-Ning, Yu Zhang, Yi-Wen Liu, and Lin He. "Twistronics in graphene-based van der Waals structures." Chinese Physics B 29, no. 11 (October 2020): 117303. http://dx.doi.org/10.1088/1674-1056/abbbe2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fife, Paul C., and Xiao-Ping Wang. "Periodic structures in a van der Waals fluid." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, no. 2 (1998): 235–50. http://dx.doi.org/10.1017/s0308210500012762.

Повний текст джерела
Анотація:
A system of partial differential equations modelling a van der Waals fluid or an elastic medium with nonmonotone pressure-density relation is studied. As the system changes type, regularisations are considered. The existence of one-dimensional periodic travelling waves, with prescribed average density in a certain range, average velocity and wavelength, is proved. They exhibit layer structure when the regularisation parameter is small. Similarities with the Cahn–Hilliard equation are explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Yanli, and Yi Ding. "The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study." Physical Chemistry Chemical Physics 17, no. 41 (2015): 27769–76. http://dx.doi.org/10.1039/c5cp04815j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhou, Kun, Liya Wang, Ruijie Wang, Chengyuan Wang, and Chun Tang. "One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes." Materials 15, no. 22 (November 18, 2022): 8220. http://dx.doi.org/10.3390/ma15228220.

Повний текст джерела
Анотація:
Twisted van der Waals heterostructures were recently found to possess unique physical properties, such as superconductivity in magic angle bilayer graphene. Owing to the nonhomogeneous stacking, the energy of twisted van der Waals heterostructures are often higher than their AA or AB stacking counterpart, therefore, fabricating such structures remains a great challenge in experiments. On the other hand, one dimensional (1D) coaxial van der Waals structures has less freedom to undergo phase transition, thus offer opportunity for fabricating the 1D cousin of twisted bilayer graphene. In this work, we show by molecular dynamic simulations that graphene nanoribbons can self-assemble onto the surface of carbon nanotubes driven by van der Waals interactions. By modifying the size of the carbon nanotubes or graphene nanoribbons, the resultant configurations can be controlled. Of particular interest is the formation of twisted double walled carbon nanotubes whose chiral angle difference can be tuned, including the 1.1° magic angle. Upon the longitudinal unzipping of such structures, twisted bilayer graphene nanoribbons can be obtained. As the longitudinal unzipping of carbon nanotubes is a mature technique, we expect the strategy proposed in this study to stimulate experimental efforts and promote the fast growing research in twistronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

FINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO, and NATALIA S. BOGATYREVA. "MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS." Journal of Bioinformatics and Computational Biology 06, no. 04 (August 2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.

Повний текст джерела
Анотація:
Strict physical theory and numerical calculations show that a specific coupling of many-atom van der Waals interactions with covalent bonding can significantly (half as much) increase the strength of attractive dispersion interactions when the direction of interaction coincides with the direction of the covalent bond, and decrease this strength when the direction of interaction is perpendicular to the direction of the covalent bond. The energy effect is comparable to that caused by the replacement of atoms (e.g. N by C or O ) in conventional pairwise van der Waals interactions. Analysis of protein structures shows that they bear an imprint of this effect. This means that many-atom van der Waals interactions cannot be ignored in refinement of protein structures, in simulations of their folding, and in prediction of their binding affinities.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Annamalai, Meenakshi, Kalon Gopinadhan, Sang A. Han, Surajit Saha, Hye Jeong Park, Eun Bi Cho, Brijesh Kumar, Abhijeet Patra, Sang-Woo Kim, and T. Venkatesan. "Surface energy and wettability of van der Waals structures." Nanoscale 8, no. 10 (2016): 5764–70. http://dx.doi.org/10.1039/c5nr06705g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Forest, Susan E., and Robert L. Kuczkowski. "The Structures of Cyclopropane−Amine van der Waals Complexes." Journal of the American Chemical Society 118, no. 1 (January 1996): 217–24. http://dx.doi.org/10.1021/ja952849z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Deilmann, Thorsten, Michael Rohlfing, and Ursula Wurstbauer. "Light–matter interaction in van der Waals hetero-structures." Journal of Physics: Condensed Matter 32, no. 33 (May 19, 2020): 333002. http://dx.doi.org/10.1088/1361-648x/ab8661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Quan, Silong, Linghui He, and Yong Ni. "Tunable mosaic structures in van der Waals layered materials." Physical Chemistry Chemical Physics 20, no. 39 (2018): 25428–36. http://dx.doi.org/10.1039/c8cp04360d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

King, Benjamin T., Bruce C. Noll та Josef Michl. "Cation-π Interactions in the Solid State: Crystal Structures of M+(benzene)2CB11Me12- (M = Tl, Cs, Rb, K, Na) and Li+(toluene)CB11Me12-". Collection of Czechoslovak Chemical Communications 64, № 6 (1999): 1001–12. http://dx.doi.org/10.1135/cccc19991001.

Повний текст джерела
Анотація:
In these crystal structures, the relatively weak electrostatic interactions between the bulky CB11Me12- anion and the title cations permit cation-π interactions in the solid state. In all cases, single-crystal X-ray diffraction analysis reveals η6-arene-cation interactions within 10% of the expected van der Waals distance. The Tl+, Cs+, Rb+, and K+ structures are isomorphous, with the benzene molecules sandwiching the cation and four anions equatorially disposed in a nearly square arrangement. Both the cation and the near-square of closest anions are positioned to interact favorably with the local dipoles of benzene. The smaller Na+ crystallizes in polymeric chains with a nearly tetrahedrally coordinated cation in van der Waals contact with two anions and two benzene molecules in a tilted-sandwich arrangement. The Li+ structure possesses two motifs, a simple van der Waals sandwich of a toluene molecule and an anion, and chains of half-occupied toluene-Li complexes on inversion centers between anions. The simple van der Waals model is reasonably accurate for the cation-arene distances, only slightly underestimating the separation (2-10% deviation), with worse agreement for the smaller cations.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Structures de Van der Waals"

1

Andrinopoulos, Lampros. "Including van der Waals interactions in first-principles electronic structure calculations." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/22152.

Повний текст джерела
Анотація:
Dispersion (van der Waals or vdW) interactions are long-range, non-local in nature, and can be important for understanding and predicting structure and energetics in many systems. Examples of such systems include weakly bound dimers, molecules on surfaces and molecular crystals. Because of the inherent non-locality of these interactions, they are not accounted for by traditional local and semi-local exchange and correlation functionals in density functional theory (DFT). In this thesis, two different approaches to including dispersion interactions in DFT were investigated and implemented. The first approach is based on a recently developed method [Silvestrelli, PRL 100, 053002 (2008)] that maps the DFT ground-state electron density onto a set of maximally-localized Wannier functions (MLWFs). These MLWFs act as fragments of electron density that are used in a pairwise summation of the vdW contribution to the total energy. This contribution is added to the total DFT ground-state energy in a post-processing fashion. The method, as originally proposed, has a number of shortcomings that hamper its predictive power. To overcome these problems, we developed and implemented a number of improvements to it and demonstrated that these modifications give rise to calculated binding energies and equilibrium geometries that are in closer agreement to results of quantum-chemical coupled-cluster calculations. The second approach, known as the vdW density functional (vdW-DF) method, incorporates a non-local vdW term directly into the exchange and correlation functional. Following a recent efficient implementation [Guillermo Román-Pérez and José M. Soler, PRL 103, 096102 (2009)] we coded this approach and a number of vdW functionals (vdW-DF, vdW-DF2, optB88, optPBE) in the ONETEP linear-scaling DFT package, enabling treatment of very large systems that were previously too computationally demanding for such methods. We applied the vdW-DF method to a system of interest for applications in photovoltaics, namely fullerene (C60) molecular crystals, and investigated the effect of including vdW interactions on the relative stability of different crystal structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, Hee-Seung. "The structure, spectroscopy and dynamics of Small Van Der Waals Complexes /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486572165276376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

SCHMIDT, PER MARTIN. "Structure et dynamique des complexes de van der waals benzene-argon." Paris 11, 1992. http://www.theses.fr/1992PA112315.

Повний текст джерела
Анотація:
La presente these a pour objet une etude systematique de l'effet de la solvatation progressive du benzene (bz) par un nombre croissant d'atomes d'argon (ar) (n9). Dans ce but les agregats heterogenes bz-ar#n, formes dans un jet supersonique, sont etudies separement par la technique d'ionisation biphotonique resonnante a deux couleurs associee a la spectrometrie de masse a temps de vol. Cette etude a permis, d'autre part, de caracteriser les changements de la structure electronique du benzene induits par les complexations successives et, d'autre part, d'identifier deux types d'isomeres, les uns avec les argons d'un seul cote du plan moleculaire (n|0), les autres avec les deux cotes occupes (n-m|m). Des modelisations par simulation monte carlo ont fourni une image plus precise de ces structures, et ont notamment permis de mettre en evidence, dans les complexes n|0, l'existence de deux arrangements possibles de l'agregat d'argon au-dessus du benzene. L'ensemble de ces modelisations et des resultats d'une etude spectroscopique plus poussee, ont permis de caracteriser les proprietes thermodynamiques des differents complexes et de mettre en evidence une transition structurale des isomeres n|0 et n-m|m vers des structures de type ponte lorsque la taille des complexes augmente (n4). Finalement, ce travail a mis en evidence un processus de redistribution d'energie vibrationnelle intracluster a l'etat s#1, responsable de l'observation de deux comportements d'ionisation differents
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Watkins, Jason Derrick. "X-ray structures of P22 c2 repressor-DNA complexes the mechansism of direct and indirect readout /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26709.

Повний текст джерела
Анотація:
Thesis (Ph.D)--Chemistry and Biochemistry, Georgia Institute of Technology, 2009.
Committee Chair: Loren D. Williams; Committee Member: Donald Doyle; Committee Member: Nicholas V. Hud; Committee Member: Roger Wartell; Committee Member: Stephen Harvey. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Economides, George. "Investigations of open-shell open-shell Van der Waals complexes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e27330e0-2eaa-4181-af30-70e8b7a3a692.

Повний текст джерела
Анотація:
The question posed in this work is how one would model and predict the rotational spectrum of open-shell open-shell van der Waals complexes. There are two secondary questions that arise: the nature of radical-radical interactions in such systems and the modelling of the large amplitude motion of the constituent molecules. Four different systems were studied in this work, each providing part of the answer to the main question. Starting with the large amplitude motion, there are two theoretical approaches that may be adopted: to either model the whole complex as a semi-rigid molecule, or to perform quantum dynamical calculations. We recorded and analysed the rotational spectrum (using Fourier transform microwave spectroscopy) of the molecule of tertiary butyl acetate (TBAc) which exhibits a high degree of internal rotation; and of the weakly-bound complex between a neon atom and a nitrogen dioxide molecule (Ne-NO2). We used the semi-rigid approach for TBAc and the quantum dynamical approach for Ne-NO2. We also explored the compatibility of these two approaches. Moreover, we were able to predict and analyse the fine and hyperfine structure of the Ne-NO2 spectrum using spherical tensor operator algebra and the results of our dynamics calculations. To explore the nature of the interactions in an radical-radical van der Waals complex we calculated the PESs of the possible states that the complex may be formed in, when an oxygen and a nitrogen monoxide molecule meet on a plane using a number of high level ab initio methods. Finally, our conclusions were tested and applied when we performed the angular quantum dynamics to predict the rotational spectrum of the complex between an oxygen and a nitrogen dioxide molecule, and account for the effect of nuclear spin statistics in that system.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Constantinescu, Gabriel Cristian. "Large-scale density functional theory study of van-der-Waals heterostructures." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274876.

Повний текст джерела
Анотація:
Research on two-dimensional (2D) materials currently occupies a sizeable fraction of the materials science community, which has led to the development of a comprehensive body of knowledge on such layered structures. However, the goal of this thesis is to deepen the understanding of the comparatively unknown heterostructures composed of different stacked layers. First, we utilise linear-scaling density functional theory (LS-DFT) to simulate intricate interfaces between the most promising layered materials, such as transition metal dichalcogenides (TMDC) or black phosphorus (BP) and hexagonal boron nitride (hBN). We show that hBN can protect BP from external influences, while also preventing the band-gap reduction in BP stacks, and enabling the use of BP heterostructures as tunnelling field effect transistors. Moreover, our simulations of the electronic structure of TMDC interfaces have reproduced photoemission spectroscopy observations, and have also provided an explanation for the coexistence of commensurate and incommensurate phases within the same crystal. Secondly, we have developed new functionality to be used in the future study of 2D heterostructures, in the form of a linear-response phonon formalism for LS-DFT. As part of its implementation, we have solved multiple implementation and theoretical issues through the use of novel algorithms.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Walters, Alan. "Spectroscopy and structure of jet cooled aromatics and van der Waals complexes." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Skouteris, Dimitris. "Structure and dynamics of weakly bound complexes." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Duval-Été, Marie-Christine. "Structure électronique et mouvements moléculaires dans les complexes de Van der Waals du mercure." Paris 11, 1988. http://www.theses.fr/1988PA112191.

Повний текст джерела
Анотація:
The work reported here concerns the vibrational and electronic structures of mercury van der Waals complexes in their excited states. The deactivation paths are shown to depend on the electronic and vibrational states optically excited. The spectroscopic study of several systems, mercury-atom: Hg-Ar and mercury-molecule: N₂ , Hg-CH₄ , Hg-NH₃ and Hg-H₂ 0 leads to the determination of their van der Waals potentials. In the case of the mercury-argon complex a model is proposed which accounts for the structures of the first electronic excited states correlated with the 6³p levels of mercury. The binding energy can be related simply to the average orientation of the 6p mercury orbital with respect to the internuclear axis. The molecular movements of the complex, stretching and bending ones, are studied for the Hg-N ₂ system. Their efficiency upon the deactivation mechanisms is clearly shown, especially the part of the bending vibration in the complex photo dissociation. We provide through the simulation of the various spectra, fluorescence excitation, emission and fragment Hg (6³P0) excitation, a wealth of consistent information about potentials in the ground and excited states. The optical excitation of mercury-ammonia and mercury-water complexes allows the direct observation and the spectroscopic characterization of the well known collisional complexes. The insight into their electronic states, molecular movements and decay modes, helps to interpret their formation and emissions in collision experiments. For the more bound complexes observed in the excited state, we propose a bonding-back bonding mechanism between the excited metal and the molecule to describe the interaction. It is of the same nature to which takes place between ligands and metallic surfaces and producing catalytic phenomena. Thus the deepest bound complexes can be considered as catalytic or precatalytic systems
Ce travail porte sur l'étude de la structure électronique et vibrationnelle de complexes de van der Waals du mercure. Il met en évidence l'influence de la nature électronique et vibrationnelle du niveau optiquement excité sur les voies de désactivation. L'étude spectroscopique des différents systèmes, mercure-atome : Hg-Ar et mercure-molécule : Hg-N₂ , Hg-CH₄ , Hg-NH₃ et Hg-H₂ 0, conduit à la détermination des potentiels d'interaction van der Waals. Dans le cas du complexe mercure-argon on a pu montrer, par un modèle simple, que pour les premiers états électroniques excités, états corrélés aux niveaux 6³P du mercure, le facteur essentiel décrivant l'interaction van der Waals est l'orientation moyenne de l'orbitale 6³p du mercure par rapport à l'axe internucléaire du complexe. L'étude des états excités supérieurs corrélés à l'état de Rydberg 7³s₁ du mercure a révélé une structure en double puits. L'argon peut occuper deux positions d'équilibre, situé à l'intérieur du nuage électronique de l'orbitale 7s du mercure, le complexe a les caractéristiques de l'ion Hg+-Ar, situé à l'extérieur de ce nuage il forme une molécule de van der Waals très peu liée. Les mouvements moléculaires du complexe : Allongement et torsion et leur influence sur les mécanismes de désactivation, sont plus spécialement étudiés avec le système Hg-N₂. La modélisation des spectres expérimentaux: Excitation de fluorescence, émission, excitation du fragment Hg (6 ³P0), conduit à une description des potentiels d'interaction de l'état fondamental et des états excités atteints. Les mouvements de torsion du complexe peuvent être décrits comme une rotation bloquée de l'azote. Observant une dépendance de la dissociation du complexe avec le niveau vibrationnel excité, on a pu mettre en évidence le rôle du moment angulaire de vibration sur la dissociation du complexe induisant la relaxation intra multiplet du mercure vers le niveau ³P0. Enfin, l'excitation optique des complexes de van der Waals mercure-ammoniac et mercure-eau permet l'observation directe et la caractérisation spectroscopique des complexes collisionnels dont les émissions ont été observées précédemment. Donnant une image précise de la structure électronique, des mouvements moléculaires et des processus de désactivation de ces complexes, cette étude contribue à la compréhension de leur formation et des émissions caractéristiques leur étant liées. Un mécanisme de double échange de charge entre le mercure et la molécule est proposé pour rendre compte des énergies de liaison des complexes les plus liés à l'état excité. Il est de même nature que ceux ayant lieu entre ligands et surfaces métalliques, aussi les complexes très liés peuvent-ils être considérés comme des systèmes catalytiques ou pré-catalytiques
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hay, Henri. "Étude de la structure et des propriétés des polymorphes de SiO2 et B2O3 par méthodes ab initio." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066318.

Повний текст джерела
Анотація:
Au cours de cette thèse nous avons utilisé la théorie de la fonctionnelle de la densité et les calculs Monte Carlo quantiques pour analyser l'impact des effets de van der Waals sur la structure, l'énergie, et les propriétés des polymorphes de SiO2 et B2O3. Nous avons mis en évidence un phénomène de compensation d'erreur, lié à l'utilisation de fonctionnelle d'échange et corrélation incluant les effets de van der Waals, dans les polymorphes basse densité de SiO2 entre une sur-évaluation des longueurs Si-O et une sous-estimation des angles Si-O-Si. Nous avons effectué des calculs Monte-Carlo quantiques afin de prédire la structure et l'énergie d'un nouveau polymorphe de B2O3 avec une grande précision, ce qui nous a permis d'évaluer les performances de différentes fonctionnelles d'échange et corrélation sur B2O3. Nous avons ensuite utilisé la théorie de la fonctionnelle de la densité pour prédire la structure et l'énergie de 25 nouveaux polymorphes de B2O3 , ainsi que leurs propriétés mécaniques et électroniques. Cette étude permet de proposer une explication à l'anomalie de cristallisation de B2O3, et réconcilie le comportement de B2O3 avec celui des autres oxydes formateurs de réseaux. Elle souligne la possibilité de créer des borates cristallins aux propriétés mécaniques remarquables, et confirme qu'il existe lien entre polymorphisme de basse énergie et facilité de vitrification
During this PhD I use density functional theory and quantum Monte Carlo to evaluate the importance of van der Waals effects on the structures, the energies, and the properties of SiO2 and B2O3 polymorphs. I show that exchange-correlation functionals including dispersion effects lead to an error cancellation between an overestimation of the Si-O distances and an underestimation of the Si-O-Si angles in low densities SiO2 polymorphs. By using quantum Monte Carlo calculations, I have predicted with high accuracy the relative energy of a new B2O3 polymorph, which allowed me to evaluate the performances of different exchange-correlation functionals on this material. I then use the best functional possible to compute the mechanical and electronic properties of 25 predicted B2O3 polymorphs. Some of the predicted polymorphs exhibit intriguing mechanical properties, such as negative linear compressibility, auxeticity and anisotropy. These calculations allow me to make a hypothesis explaining the crystallization anomaly in B2O3. They underline a seemingly universal link between low energy polymorphism and ease of vitrification
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Structures de Van der Waals"

1

Yeh, Po-Chun. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure. [New York, N.Y.?]: [publisher not identified], 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Serrée, Raoul. Amsterdam ommuurd: Het raadsel van de middeleeuwse stadsmuur (1481-1601). Abcoude: Uniepers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Holwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

L, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

1926-, Rowlinson J. S., and I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Halberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Halberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Structures de Van der Waals"

1

Horing, Norman J. Morgenstern, Vassilios Fessatidis, and Jay D. Mancini. "Atom/Molecule van der Waals Interaction with Graphene." In Low Dimensional Semiconductor Structures, 93–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28424-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sanchez, Oswaldo, Joung Min Kim, and Ganesh Balasubramanian. "Graphene Analogous Elemental van der Waals Structures." In Advances in Nanomaterials, 77–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sernelius, Bo E. "Van der Waals Interaction in Spherical Structures." In Fundamentals of van der Waals and Casimir Interactions, 209–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sernelius, Bo E. "Van der Waals Interaction in Cylindrical Structures." In Fundamentals of van der Waals and Casimir Interactions, 233–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sernelius, Bo E. "Van der Waals Interaction in Planar Structures." In Fundamentals of van der Waals and Casimir Interactions, 153–207. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sernelius, Bo E. "Dispersion Interaction in Planar Structures." In Fundamentals of van der Waals and Casimir Interactions, 273–337. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sernelius, Bo E. "Dispersion Interaction in Spherical Structures." In Fundamentals of van der Waals and Casimir Interactions, 339–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sernelius, Bo E. "Dispersion Interaction in Cylindrical Structures." In Fundamentals of van der Waals and Casimir Interactions, 373–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Howard, Brian J. "The Structure and Dynamics of Van Der Waals Molecules." In Structures and Conformations of Non-Rigid Molecules, 137–61. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2074-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sanchez, Oswaldo, Joung Min Kim, and Ganesh Balasubramanian. "Erratum to: Graphene Analogous Elemental van der Waals Structures." In Advances in Nanomaterials, E1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Structures de Van der Waals"

1

Li, Jie, Yirong Guo, and Pengying Chang. "Copper Ion Migration in van der Waals CuInP2S6 Devices with Vertical and Lateral Structures." In 2024 IEEE 17th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), 1–3. IEEE, 2024. https://doi.org/10.1109/icsict62049.2024.10831410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Norden, Tenzin, Luis M. Martinez, Nehan Tarefder, Kevin W. C. Kwock, Luke M. McClintock, Nicholas Olsen, Xiaoyang Zhu, et al. "Two-dimensional nonlinear optics with a twist." In CLEO: Fundamental Science, FTh5B.8. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth5b.8.

Повний текст джерела
Анотація:
We demonstrate multi-beam structured nonlinear optics in a monolayer van der Waals crystal, realizing the independent manipulation of the wavelength and topological charge of a vortex beam through second- and third-order nonlinearities. Our results pave the way for a new route to realize nanoscale tunable sources of vortex light.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zong, Zhen, Ryosuke Morisaki, Kanami Sugiyama, Masahiro Higashi, Takayuki Umakoshi, and Prabhat Verma. "Probing Forbidden Low-Frequency Raman Modes in MoS2 via Plasmonic Nanoparticle." In JSAP-Optica Joint Symposia, 17a_A34_9. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a34_9.

Повний текст джерела
Анотація:
Interlayer interaction through the van der Waals forces in two-dimensional (2D) materials like molybdenum disulfide (MoS2) determine most of the layer properties, which shows up as low-frequency modes (less than 50cm-1) in Raman scattering. But the weak low-frequency signals are often obscured by background noise, requiring enhancement techniques [1]. Furthermore, detecting forbidden low-frequency Raman modes poses additional challenges. These modes, suppressed by symmetry selection rules, provide important information into molecular structures and electronic properties but are not observed in conventional Raman spectroscopy as they are symmetry forbidden. Our approach can detect forbidden low-frequency modes and achieve high-sensitivity through low-frequency surface-enhanced Raman spectroscopy (LF-SERS).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Roy, Ajit K., Jonghoon Lee, Dhriti Nepal, and John Ferguson. "Electronic Conduction Mechanism in Van Der Waals Flake Thin Film." In ASME 2023 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/ssdm2023-108595.

Повний текст джерела
Анотація:
Abstract Despite the wide sample by sample variation, the electrical conduction mechanism of van der Waals flake thin film is characterized by the variable range hopping over wide range of temperature and subsequent transition into an Arrhenius type conduction at higher temperature. Using the reduced activation energy analysis and a multi-channel conduction model, we discuss how to characterize the nature of the Arrhenius type conduction at high temperature between the nearest neighbor hopping and the band conduction. Also, we examine how those conduction mechanisms are related to the microscopic structure in the electronic density of states of the sample. For the graphene flake thin film sample we synthesized, Mott VRH and band conduction are identified.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhu, Kaichen, Xianhu Liang, Bin Yuan, Marco A. Villena, Chao Wen, Tao Wang, Shaochuan Chen, Mario Lanza, Fei Hui, and Yuanyuan Shi. "Tristate Resistive Switching in Heterogenous Van Der Waals Dielectric Structures." In 2019 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2019. http://dx.doi.org/10.1109/irps.2019.8720485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Caliskan, U. "New approach for modeling randomly distributed CNT reinforced polymer nanocomposite with van der Waals interactions." In Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-7.

Повний текст джерела
Анотація:
Abstract. In this paper, using molecular and micromechanics methods, a new approach for the prediction of the stiffness of randomly distributed CNT/polymer nanocomposites with the van der walls interactions is presented. A multi-scale modeling technique was designed for CNT nanoparticles randomly embedded in the polymer using AMBER force field. This multi-scale model constitutes a representative volume element. The representative volume element consists of polymer, CNT nanoparticle, CNT-polymer interfacial region and van der waals bonds. A programming code was developed that randomly distributes nanoparticles according to the desired volume fraction. Python scripting language was used for the modeling technique performed in a finite element environment. By modeling the interfacial regions around randomly distributed CNTs, van der Waals bonds are modeled stochastically. In this study, the subject of interest is the number of CNTs positioned in the RVE according to the volume ratio. These numbers were determined at the level allowed by finite element equations and computational solvers and their effects were investigated by calculated stiffness behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Loreau, J. "Structure and dynamics of small van der Waals complexes." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cho, Hyunhee, Dong-Jin Shin, Junghyun Sung, Young-Ho Ko, and Su-Hyun Gong. "Ultra-thin Photonic Structures for Integration of Quantum Emitters in van der Waals Materials." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jw4a.76.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bunte, S. W., J. B. Miller, Z. S. Huang, J. E. Verdasco, C. Wittig, and R. A. Beaudet. "Structure determination of the CO−CI2 van der Waals complex." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tul3.

Повний текст джерела
Анотація:
High resolution rovibrational spectra of the weakly bonded CO−C12 complex have been recorded in the 2143 cm-1 region by exciting the CO chromophore with a tunable diode laser. The spectra indicate that CO−C12 is linear and semi-rigid. By fitting the data to a linear molecule Hamiltonian, the following constants (in cm-1) were obtained: νO= 2149.5424(4), B″= 0.0315823(39), B′ = 0.0314867(52), D J ″ = 4.37(25) × 10−8, and D J ′ = 4.58(35) × 10−8. The distance between the CO and Cl2 centers of mass is approximately 4.78 Å. The orientation of CO is not determined experimentally. However, Cl2 appears to act as a classical six-electron acceptor, while CO behaves like a weak Lewis base, donating charge from the carbon side via the weakly antibonding 5σ orbital, thereby raising the CO vibrational frequency.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rosser, David. "High-precision local transfer of van der Waals materials on nanophotonic structures (Conference Presentation)." In 2D Photonic Materials and Devices III, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2020. http://dx.doi.org/10.1117/12.2543902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Structures de Van der Waals"

1

Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

O'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Menezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

French, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії