Добірка наукової літератури з теми "Structure vibration"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Structure vibration".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Structure vibration":

1

Lian, Jijian, Yan Zheng, Chao Liang, and Bin Ma. "Analysis for the Vibration Mechanism of the Spillway Guide Wall Considering the Associated-Forced Coupled Vibration." Applied Sciences 9, no. 12 (June 25, 2019): 2572. http://dx.doi.org/10.3390/app9122572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
During the flood discharge in large-scale hydraulic engineering projects, intense flow-induced vibrations may occur in hydraulic gates, gate piers, spillway guide walls, etc. Furthermore, the vibration mechanism is complicated. For the spillway guide wall, existing studies on the vibration mechanism usually focus on the vibrations caused by flow excitations, without considering the influence of dam vibration. According to prototype tests, the vibrations of the spillway guide wall and the dam show synchronization. Thus, this paper presents a new vibration mechanism of associated-forced coupled vibration (AFCV) for the spillway guide wall to investigate the dynamic responses and reveal coupled vibrational properties and vibrational correlations. Different from conventional flow-induced vibration theory, this paper considers the spillway guide wall as a lightweight accessory structure connected to a large-scale primary structure. A corresponding simplified theoretical model for the AFCV system is established, with theoretical derivations given. Then, several vibrational signals measured in different structures in prototype tests are handled by the cross-wavelet transform (XWS) to reveal the vibrational correlation between the spillway guide wall and the dam. Afterwards, mutual analyses of numeral simulation, theoretical derivation, and prototype data are employed to clarify the vibration mechanism of a spillway guide wall. The proposed mechanism can give more reasonable and accurate results regarding the dynamic response and amplitude coefficient of the guide wall. Moreover, by changing the parameters in the theoretical model through practical measures, the proposed vibration mechanism can provide benefits to vibration control and structural design.
2

Zhao, Ming Hui. "Vibration Analysis of a Shell Structure by Finite Element Method." Advanced Materials Research 591-593 (November 2012): 1929–33. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.1929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Plate-shell structures, especially cylindrical shells and spherical shells, are widely used in engineering fields, such as aircraft and tanks, missiles, submarines, ships, hydraulic pumps, infusion pipelines and gas pipelines, and so on. These structures are usually in a fluid medium, which are related to the structure fluid-solid coupling and acoustic radiation field. As many experiments show that enclosed air in a thin walled structure, just like the violin, affects some modes of vibration significantly, air coupling between vibrating sides of the structure cannot be neglected. In order to explore the sound pressure distribution of vibrational frequencies, this paper, considering the material anisotropy, analyzes a typical complex shell structure of the violin by finite element method, including acoustic-structure coupling analysis and post-processing, especially sound pressure vibration frequency extraction. Finally, we get the conclusion that the distribution of sound pressure vibration frequency is similar to the normal distribution.
3

Beltran-Carbajal, Francisco, Hugo Francisco Abundis-Fong, Luis Gerardo Trujillo-Franco, Hugo Yañez-Badillo, Antonio Favela-Contreras, and Eduardo Campos-Mercado. "Online Frequency Estimation on a Building-like Structure Using a Nonlinear Flexible Dynamic Vibration Absorber." Mathematics 10, no. 5 (February 24, 2022): 708. http://dx.doi.org/10.3390/math10050708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The online frequency estimation of forced harmonic vibrations on a building-like structure, using a nonlinear flexible vibration absorber in a cantilever beam configuration, is addressed in this article. Algebraic formulae to compute online the harmonic excitation frequency on the nonlinear vibrating mechanical system using solely available measurement signals of position, velocity, or acceleration are presented. Fast algebraic frequency estimation can, thus, be implemented to tune online a semi-active dynamic vibration absorber to obtain a high attenuation level of undesirable vibrations affecting the main mechanical system. A semi-active vibration absorber can be tuned for application where variations of the excitation frequency can be expected. Adaptive vibration absorption for forced harmonic vibration suppression for operational scenarios with variable excitation frequency can be then performed. Analytical, numerical, and experimental results to demonstrate the effectiveness and efficiency of the operating frequency estimation, as well as the acceptable attenuation level achieved by the tunable flexible vibration absorber, are presented. The algebraic parametric estimation approach can be extended to add capabilities of variable frequency vibration suppression for several configurations of dynamic vibration absorbers.
4

Xuan, Yan, Linyun Xu, Guanhua Liu, and Jie Zhou. "The Potential Influence of Tree Crown Structure on the Ginkgo Harvest." Forests 12, no. 3 (March 19, 2021): 366. http://dx.doi.org/10.3390/f12030366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ginkgo biloba L. has significant health benefits and considerable economic value, but harvesting the fruit is highly labor-intensive. Mechanical vibration harvesting has been shown effective in harvesting various fruit types. In the study of vibration harvesting, the research on the vibration characteristics of fruit trees focuses on the natural frequency (resonance frequency), model, and damping coefficient, which are the main factors affecting the vibration characteristics of trees. But field harvesting experiments have shown that the tree structure may have an impact on the vibration characteristics of the fruit tree and the efficiency of mechanical harvesting. In addition, the research on the damping coefficient of fruit trees is mainly low-frequency damping, and the relevant results cannot be applied to the actual vibration harvesting frequency range. Applying a natural frequency with low damping coefficient to excite a tree can reduce additional energy dissipation. This study explored the influence of ginkgo crown structure on the vibration characteristics and the law of damping changes with frequency. After counting 273 ginkgo trees, two typical ginkgo crown structures, monopodial branching and sympodial branching, were selected to be analyzed for vibration spectrum and damping coefficient. The vibration models for different crown-shaped ginkgo trees were simulated to analyze the vibration state at different frequencies. For sympodial branching ginkgo trees, the consistency of natural frequencies at different branches was better than monopodial branching ginkgo trees. The finite element model analysis shows that monopodial branching ginkgo trees have mainly partial vibrations at different branches when vibrating at high frequencies. The high-frequency vibrations in sympodial branching reflect the better overall vibration of the canopy. The damping coefficients for the two crown types decreased with the increase in frequency. The monopodial branching damping coefficient was 0.0148–0.0298, and the sympodial branching damping coefficient was slightly smaller at 0.0139–0.0248. Based on the test results, the sympodial branching ginkgo tree has better vibration characteristics. The results indicate that controlling the crown structure of fruit trees to be sympodial branching by pruning may help improve the overall vibration characteristics of fruit trees.
5

Trujillo-Franco, Luis Gerardo, Nestor Flores-Morita, Hugo Francisco Abundis-Fong, Francisco Beltran-Carbajal, Alejandro Enrique Dzul-Lopez, and Daniel Eduardo Rivera-Arreola. "Oscillation Attenuation in a Building-like Structure by Using a Flexible Vibration Absorber." Mathematics 10, no. 3 (January 18, 2022): 289. http://dx.doi.org/10.3390/math10030289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This is a theoretical, numerical, and experimental study on the vibration attenuation capability of the dynamic response of a building-like structure using a dynamic vibration absorber in cantilever flexible beam configuration, taking into account gravitational effects associated with its mass. The dynamic model of the primary vibrating structure with the passive vibration control device is obtained using the Euler–Lagrange formulation considering the flexible vibration absorber as a generalized system of one degree of freedom. The application of the Hilbert transform to the frequency response function to determine the tuning conditions between this nonlinear flexible beam vibration absorber and the primary system is also proposed. In this fashion, Hilbert transform analysis is then carried out to show that nonlinearities present in the dynamic model do not significantly contribute to the performance of the implemented absorber. Therefore, it is valid to linearize the equations of motion to obtain the tuning condition in which the flexible vibration absorber can attenuate undesirable harmonic vibrations that are disturbing to the building-like flexible structure. Thus, the present study shows that the Hilbert transform can be applied to obtain tuning conditions for other configurations of dynamic vibration absorbers in nonlinear vibrating systems. Simulation and experimental results are included to demonstrate the efficient performance of the presented vibration absorption scheme.
6

Szulej, Jacek, and Paweł Ogrodnik. "Determining the level of damping vibration in bridges and footbridges." Budownictwo i Architektura 15, no. 1 (April 1, 2016): 095–103. http://dx.doi.org/10.24358/bud-arch_16_151_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
While designing slim and slender structures such as cable-stayed, suspended and arch bridges and footbridges, data on the dynamic behavior of structure are required. One of the main quantities, included in the calculations, is the damping parameter of vibration of the structure whose corresponding value has a direct impact on the proper behavior of the facility. One of currently applied approaches in the case of complex constructions, is the use of methods defining the equivalent damping coefficient which refers to the given form of natural vibrations. Among these methods, the collocation method and energy method can be distinguished. The collocation method refers to the existing facilities and requires performing measurements of vibration and spectral processing of time course of vibrations. The energy method requires the creation of FEM model of construction and it estimates the kinetic energy of the vibrating system. The above- mentioned methods are used in the calculations of the damping level of vibration of two structures, i.e.: arch John Paul II Bridge in Pulawy and a footbridge located in Lublin.
7

Sugakov, V. I. "Fine structure of thermoluminescence assisted by molecular vibrations in disordered organic semiconductors." Journal of Physics: Condensed Matter 34, no. 18 (March 2, 2022): 185703. http://dx.doi.org/10.1088/1361-648x/ac50d9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The article deals with the issue of the influence of a separate mode of molecular vibrations on the formation of the thermoluminescence from disordered systems with quasi-continuous spectra of localized carriers. The contribution of vibrations is noticeable if the energy of their quanta is close to the depth of some localized carriers and the transition of the carrier into the conductive region occurs via absorption of these quanta. At some value of a carrier–vibration interaction, the effect manifests itself in the appearance of a fine discrete structure on the generally smooth thermoluminescence curve. The thermoluminescence of polymers is calculated using the model of non-adiabatic transitions, in which the carrier–vibrational interaction is determined by the displacements of nuclei in the presence of the carrier. The dependence of the arising discrete structure of the thermoluminescence curve on a number of parameters of the system like the magnitude of the carrier–vibration interaction, the width of vibrational levels, the parameters of the conductive region is investigated. The processes with participation of multiple quanta of vibrations are investigated and the formation of repetitive structures on the thermoluminescence curve has been shown owing to the absorption of several vibrational quanta. Analysis of a number of experiments is presented using the suggested theory.
8

Xu, Yuan, Hui Li, Jue Hou, Liming Zhu, and Lingkun Chen. "Newly Constructed Subway on Over-Track Bridge Safety and Vibration Reduction Measure." Advances in Civil Engineering 2024 (May 16, 2024): 1–12. http://dx.doi.org/10.1155/2024/5851849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Primarily generated at the interface between the wheel and the rail, railroad vibrations then propagate through the supporting soil. If these vibrations reach nearby bridges and buildings, they amplify the vibration nuisance and cause ground noise, which has detrimental effects on nearby residents, sensitive equipment, and historic structures. By analyzing measured data from metro vibration field vibration experiments, this article attempts to contribute to the body of knowledge on environmental vibration propagation patterns by offering insightful conclusions. Before analyzing the deformation response of the metro jet system (MJS) vibration isolation piles to the structure and the ground, we investigated the effect of MJS vibration isolation piles in the ground of the existing subway tunnel structure on the control of vibration of the proximate structure and conducted dynamic tests on the vibration of bridges without vibration isolation measures caused by operating subway trains. The tests determined that the acceleration of the bridge’s lateral vibration exceeded the code limit; one of the contributing factors was that the bridge’s structure had already sustained damage. The utilization of MJS isolation piles was also discovered to safeguard the extant bridge pile foundations. The paper presents an innovation in the form of economically viable vibration mitigation strategies that were implemented subsequent to the identification that the lateral vibration acceleration of the preexisting bridge surpassed the prescribed code standards. Considerable insight is gained regarding the design and implementation of vibration control systems for structures situated near caverns, encompassing deep foundation works.
9

Mroz, A., A. Orlowska, and J. Holnicki-Szulc. "Semi-Active Damping of Vibrations. Prestress Accumulation-Release Strategy Development." Shock and Vibration 17, no. 2 (2010): 123–36. http://dx.doi.org/10.1155/2010/126402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
New method for semi-active control of vibrating structures is introduced. So-called Prestress Accumulation-Release (PAR) strategy aims at releasing of the strain energy accumulated in the structure during its deformation process. The strain energy is converted into kinetic energy of higher modes of vibration which is suppressed with structural damping or by means of a damping device. The adaptation process essentially affects the first mode vibrations by introducing an elastic force that opposes the movement. Numerical simulations as well as experimental results prove that the strategy can be very effective in mitigating of the fundamental mode of a free – vibrating structure. In a numerical example 95% of the vibration amplitude was mitigated after two cycles. An experimental demonstrator shows 85% reduction of the amplitude in a cantilever free- vibrations. In much more complex practical problems smaller portion of total energy can be released from the system in each cycle, nevertheless the strategy could be applied to mitigate the vibrations of, for example, pipeline systems or pedestrian walkways.
10

Shen, Y. X., Ke Hua Zhang, Y. C. Chen, H. W. Zhu, and K. Fei. "Numerical Simulation Analysis of Vibrating Screen’s Structure Vibration Property." Advanced Materials Research 215 (March 2011): 272–75. http://dx.doi.org/10.4028/www.scientific.net/amr.215.272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vibrating screen sifts materials via screen mesh, vibration displacement and velocity. In order to completing optimal design of vibrating screen’s vibration frequency. Firstly, Using the CAD function of the three dimensional software UG NX 6.0 to achieve vibrating screen modeling. Secondly, modal simulation analysis was carried out using the simulation soft NX NASTRAN. Numerical simulation experimental result indicates: this designed vibrating screen’s natural vibration frequency are 27.79Hz, 32.58 Hz, and 46.39Hz, consequently, designing this vibrating screen should avoid identical or approaching these natural vibration frequencies as far as possible, while choosing the vibration frequency.

Дисертації з теми "Structure vibration":

1

Griffin, Steven F. "Acoustic replication in smart structure using active structural/acoustic control." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/13085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kari, Leif. "Structure-borne sound properties of vibration isolators /." Stockholm, 1998. http://www.lib.kth.se/abs98/kari0312.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sénéchal, Aurélien. "Réduction de vibrations de structure complexe par shunts piézoélectriques : application aux turbomachines." Phd thesis, Conservatoire national des arts et metiers - CNAM, 2011. http://tel.archives-ouvertes.fr/tel-00862517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objet de cette thèse est d'étudier différents dispositifs d'amortissement de vibrations en basses fréquences des aubes de rotor de soufflante ("fan") d'un turboréacteur. Les solutions étudiées utilisent des pastilles piézoélectriques, liées à l'aube et connectées à un circuit électrique passif ou semi-passif. Dans la première partie, il s'agit de mettre en pratique le modèle électromécanique développé dans la thèse de Julien Ducarne, puis de l'étendre au cas tridimensionnel par l'utilisation de la méthode des éléments finis. Ce modèle de comportement prend en compte le couplage entre une structure mécanique quelconque et des pastilles piézoélectriques planes ou courbes. Par la suite, un modèle réduit à faible nombre de degrés de liberté est construit, ce qui permet après résolution de prédire l'efficacité des dispositifs amortissants. Deux techniques, nommées "shunt" et "switch" sont appliquées au cas d'une aube fan. La première consiste à utiliser un circuit électrique résistif ou résonant. La seconde, encore à l'état de recherche, comporte un circuit muni d'un interrupteur synchronisé aux oscillations de la structure, ce qui produit un amortissement analogue à celui d'un frottement sec. La modélisation et l'optimisation électrique de ces circuits, issus de différents travaux antérieurs, ne font l'objet que d'un rappel dans ce mémoire. Une procédure d'optimisation est développée pour pouvoir trouver les géométries et les emplacements des pastilles qui maximisent le couplage électromécanique. Deux algorithmes différents (recuit simulé et recherche avec liste taboue) sont utilisés et mis en interaction avec les outils de calcul éléments finis pour trouver des solutions optimisées. Afin de valider sur un cas industriel l'ensemble des travaux sur les dispositifs piézoélectriques, une campagne d'essai est menée sur une aube fan de CFM56-7b. Les niveaux d'atténuation mesurés et ceux prévus par le modèle sont ensuite comparés. La seconde partie est consacrée à l'évaluation de l'effet des nonlinéarités géométriques sur la dynamique d'une structure tournante. Initialement prévue pour être intégrée à la partie shunt piézoélectrique, ceci afin de pouvoir estimer l'efficacité de ce dernier lorsque la structure tourne et vibre en grande amplitude, l'étude n'a pas été poursuivie et constitue une partie sans lien avec les techniques de réduction de vibrations. Néanmoins, les résultats obtenus en 1D, ainsi que la méthode de prise en compte des nonlinéarités dans le cas 3D viennent compléter et enrichir les différentes études actuelles menées sur le sujet, raison pour laquelle ce chapitre a été ajouté à ce mémoire. La détermination des caractéristiques dynamiques modales et leurs évolutions en fonction de certains paramètres de fonctionnement de l'aube constituent l'objet de cette partie. Plusieurs modèles sont développés et comparés pour pouvoir juger de la présence et de l'importance des divers phénomènes non linéaires dans la réponse forcée d'une poutre en rotation.
4

Purohit, Ashish. "Aeroacoustics of a vibrating structure in flow." Thesis, IIT Delhi, 2016. http://localhost:8080/iit/handle/2074/7077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Xiangkun. "Elastic wave propagation in periodic structures through numerical and analytical homogenization techniques." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC041/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans ce travail, la méthode homogénéisation de multi-échelle, ainsi que diverses méthodes non homogénéisation, seront présentés pour étudier le comportement dynamique des structures périodiques. La méthode de multi-échelle commence par la séparation d'échelles. Dans ce cas, une échelle microscopique pour décrire le comportement local et une échelle macroscopique pour décrire le comportement global sont introduites. D'après la théorie de l'homogénéisation, la longueur d'onde est supposée grande, et la longueur de la cellule doit être beaucoup plus petite que la longueur caractéristique de la structure. Ainsi, le domaine d'homogénéisation est limité à la première zone de propagation. Le modèle d'homogénéisation traditionnel utilise des valeurs moyennes des éléments, mais le domaine de validité pratique est beaucoup plus petit que la première bande interdite. Alors, le développement de nouveaux modèles homogénéisés est beaucoup motivé par cet inconvénient. Par rapport au modèle d'homogénéisation traditionnel, équations d'ordre supérieur sont proposées pour fournir des modèles homogénéisation plus précises. Deux méthodes multi-échelles sont introduites: la méthode de développement asymptotique, et la méthode de l'homogénéisation des milieux périodiques discrètes (HMPD). Ces méthodes seront appliquées de façon séquentielle dans le cas d'onde longitudinale et le cas d'onde transversale. Les mêmes modèles d'ordre supérieur sont obtenus par les deux méthodes dans les deux cas. Ensuite, les modèles proposés sont validés en examinant la relation de dispersion et de la fonction de réponse fréquentielle. Des solutions analytiques et la méthode des ondes éléments finis(WFEM) sont utilisés pour donner les références. Des études paramétriques sont effectuées dans le cas infini, et deux différentes conditions aux limites sont prises en compte dans le cas fini. Ensuite, le HMPD et CWFEM sont utilisés pour étudier les vibrations longitudinales et transversales des structures réticulées dans le cas 1D et 2D. Le domaine de validité du HPDM est réévalué à l'aide de la fonction de propagation identifiée par le CWFEM. L'erreur relative au nombre d'onde obtenue par HPDM est illustré sur la fonction de la fréquence et le rapport d'échelle. Des études paramétriques sur l'épaisseur de la structure sont réalisées par la relation de dispersion. La dynamique des structures finies sont également étudiés en utilisant la HPDM et CWFEM
In this work, the multi-scale homogenization method, as well as various non homogenization methods, will be presented to study the dynamic behaviour of periodic structures. The multi-scale method starts with the scale-separation, which indicates a micro-scale to describe the local behaviour and a macro-scale to describe the global behaviour. According to the homogenization theory, the long-wave assumption is used, and the unit cell length should be much smaller than the characteristic length of the structure. Thus, the valid frequency range of homogenization is limited to the first propagating zone. The traditional homogenization model makes use of material properties mean values, but the practical validity range is far less than the first Bragg band gap. This deficiency motivated the development of new enriched homogenized models. Compared to traditional homogenization model, higher order homogenized wave equations are proposed to provide more accuracy homogenized models. Two multi-scale methods are introduced: the asymptotic expansion method, and the homogenization of periodic discrete media method (HPDM). These methods will be applied sequentially in longitudinal wave cases in bi-periodic rods and flexural wave cases in bi-periodic beams. Same higher order models are obtained by the two methods in both cases. Then, the proposed models are validated by investigating the dispersion relation and the frequency response function. Analytical solutions and wave finite element method (WFEM) are used as references. Parametric studies are carried out in the infinite case while two different boundary conditions are considered in the finite case. Afterwards, the HPDM and the CWFEM are employed to study the longitudinal and transverse vibrations of framed structures in 1D case and 2D case. The valid frequency range of the HPDM is re-evaluated using the wave propagation feature identified by the CWFEM. The relative error of the wavenumber by HPDM compared to CWFEM is illustrated in the function of frequency and scale ratio. Parametric studies on the thickness of the structure is carried out through the dispersion relation. The dynamics of finite structures are also investigated using the HPDM and CWFEM
6

Dayou, Jedol. "Global control of flexural vibration of a one dimensional structure using tuneable vibration neutralisers." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baran, Ismet. "Optimization Of Vibration Characteristics Of A Radar Antenna Structure." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612978/index.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Radar antenna structures especially array antennas which are integrated onto structures of aerial vehicles are subject to dynamic structural and aerodynamic loads. Due to occurrences of these dynamic loads there will be certain dynamic deformations which affect the antenna&rsquo
s performance in an adverse manner. The influence of deformations and vibrations are important on array antenna structures, since they cause a change in orientation of elements of the phased array antenna which affects the gain of the antenna negatively. In this study, vibration characteristics of a particular radar antenna structure are optimized using topology and stiffener design optimization methods such that negative effects of mechanical vibrations on functional performance of radar antenna are minimized. Topology and stiffener design optimization techniques are performed separately by the use of ANSYS Finite Element (FE) software in order to modify the design of the radar antenna structure such that its critical natural frequencies in the range of 0-500 Hz are shifted out of the dominant peak sinusoid frequency range of the air platform. As a result of this, it will be possible to minimize the vibration response of the phased array elements in the frequency range of 0-500 Hz
hence better antenna performance can be achieved. In addition to this, it will also be possible to minimize the broadband random vibration response of base excitation coming from air platform.
8

Tratch, Jorge. "Vibration transmission through machinery foundation and ship bottom structure." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Mech.E)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1985.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Includes bibliographical references.
by Jorge Tratch Junior.
Mech.E
9

Thomas, Benjamin. "Dynamique d’une structure complexe à non linéarités localisées sous environnement vibratoire évolutif : Application à l'isolation vibratoire d'un équipement automobile." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0106/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette recherche porte sur le développement d’un modèle de structure de géométrie complexe équipée de composants à comportement non linéaire viscoélastique dans le but de simuler sa réponse à des excitations définies par des densités spectrales de puissance (DSP). L’application industrielle concerne l’isolation vibratoire d’un module de refroidissement automobile monté sur plot de suspension en élastomère. Une revue du comportement des élastomères en fonction de leurs conditions d’environnement et de sollicitations identifie les paramètres des différents modèles analysés. Des essais préliminaires ont été menés pour définir les intervalles des niveaux de sollicitations et quantifier l’échauffement des plots. La caractérisation expérimentale de la suspension porte sur des plots en élastomère munis de leurs interfaces afin d’agréger dans un seul modèle les non linéarités du comportement viscoélastique, des glissements et des frottements. Les boucles effort-déflexion axiales et radiales mesurées sont traitées avec un système expert développé spécialement pour caler les paramètres du modèle retenu. Il s’agit du modèle de Dahl généralisé qu’il a fallu étendre aux aspects viscoélastiques. Ce processus de calage automatique a été codé avec un logiciel développé sous Octave/Matlab. Des méthodes d’interpolations et extrapolations rendent opérationnel ce modèle sur toute la gamme fonctionnement de l’application définie dans l’espace fréquence-déflexion. Ce processus a été codé dans le module UserSubroutine pour Abaqus. Soumettre le système mécanique non linéaire à des excitations définies par une DSP nécessite de s’appesantir sur le traitement des vibrations aléatoires. En effet il faut, pour calculer les réponses, considérer le passage fréquence-temps et inversement pour les comparer éventuellement aux exigences des normes. De plus, la taille et la complexité du modèle EF de la structure industrielle rendent impossible une résolution temporelle sur l’ensemble de ses degrés de liberté. Il s’agit alors de faire appel à des techniques d’homogénéisation et de condensation dynamique afin de prévoir la réponse aux excitations à large bande fréquentielle dans le but d’analyser les performances de l’isolation vibratoire
This research work regards the development of a complex structure model with non-linear viscoelastic components. The purpose of this study is to simulate the response of this structure submitted to a random vibration excitation based on a power spectral density definition (PSD). The industrial applicative case is the vibratory insulation of a automotive engine cooling module supported by elastomer mounts. A brief review of elastomers behavior depending on solicitations types enables to identify the parameters of the different investigated models. Preliminary tests have been conducted to define the range of amplitudes of excitations and evaluate the internal warming of rubbers during the full structure validation test. The experimental characterization of the suspension is based on rubbers mounts and their interfaces with the cooling module, in order to take into account in a unique model all nonlinearities due to the viscoelastic behavior, the slidings, and the friction. Measured force-deflection hysteretic cycles in axial and radial direction are post-processed with an expert system developed to obtain the parameters of the retained model: the modified Dahl’s model, generalized to viscoleastic aspect. This process has been developed with Octave/Matlab code. Interpolation and extrapolation methods enable to obtain a good model response on the global operating range. These methods have been coded in an Abaqus UserSubroutine. Imposing random vibration excitation of a non linear mechanical system based on PSD imposes to take into account signal processing aspects. To evaluate response levels versus norms requirements, it’s mandatory to consider the time-frequency transfer. In addition, the size and the complexity of the total finite element model of the industrial structure don’t allow a global resolution in the time domain for all the degrees of freedom. Homogenization and dynamic reduction techniques are used to evaluate the response of the system submitted to large frequency range excitations, and to analyse the behavior of the suspension
10

Thomas, Benjamin. "Dynamique d’une structure complexe à non linéarités localisées sous environnement vibratoire évolutif : Application à l'isolation vibratoire d'un équipement automobile." Electronic Thesis or Diss., Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette recherche porte sur le développement d’un modèle de structure de géométrie complexe équipée de composants à comportement non linéaire viscoélastique dans le but de simuler sa réponse à des excitations définies par des densités spectrales de puissance (DSP). L’application industrielle concerne l’isolation vibratoire d’un module de refroidissement automobile monté sur plot de suspension en élastomère. Une revue du comportement des élastomères en fonction de leurs conditions d’environnement et de sollicitations identifie les paramètres des différents modèles analysés. Des essais préliminaires ont été menés pour définir les intervalles des niveaux de sollicitations et quantifier l’échauffement des plots. La caractérisation expérimentale de la suspension porte sur des plots en élastomère munis de leurs interfaces afin d’agréger dans un seul modèle les non linéarités du comportement viscoélastique, des glissements et des frottements. Les boucles effort-déflexion axiales et radiales mesurées sont traitées avec un système expert développé spécialement pour caler les paramètres du modèle retenu. Il s’agit du modèle de Dahl généralisé qu’il a fallu étendre aux aspects viscoélastiques. Ce processus de calage automatique a été codé avec un logiciel développé sous Octave/Matlab. Des méthodes d’interpolations et extrapolations rendent opérationnel ce modèle sur toute la gamme fonctionnement de l’application définie dans l’espace fréquence-déflexion. Ce processus a été codé dans le module UserSubroutine pour Abaqus. Soumettre le système mécanique non linéaire à des excitations définies par une DSP nécessite de s’appesantir sur le traitement des vibrations aléatoires. En effet il faut, pour calculer les réponses, considérer le passage fréquence-temps et inversement pour les comparer éventuellement aux exigences des normes. De plus, la taille et la complexité du modèle EF de la structure industrielle rendent impossible une résolution temporelle sur l’ensemble de ses degrés de liberté. Il s’agit alors de faire appel à des techniques d’homogénéisation et de condensation dynamique afin de prévoir la réponse aux excitations à large bande fréquentielle dans le but d’analyser les performances de l’isolation vibratoire
This research work regards the development of a complex structure model with non-linear viscoelastic components. The purpose of this study is to simulate the response of this structure submitted to a random vibration excitation based on a power spectral density definition (PSD). The industrial applicative case is the vibratory insulation of a automotive engine cooling module supported by elastomer mounts. A brief review of elastomers behavior depending on solicitations types enables to identify the parameters of the different investigated models. Preliminary tests have been conducted to define the range of amplitudes of excitations and evaluate the internal warming of rubbers during the full structure validation test. The experimental characterization of the suspension is based on rubbers mounts and their interfaces with the cooling module, in order to take into account in a unique model all nonlinearities due to the viscoelastic behavior, the slidings, and the friction. Measured force-deflection hysteretic cycles in axial and radial direction are post-processed with an expert system developed to obtain the parameters of the retained model: the modified Dahl’s model, generalized to viscoleastic aspect. This process has been developed with Octave/Matlab code. Interpolation and extrapolation methods enable to obtain a good model response on the global operating range. These methods have been coded in an Abaqus UserSubroutine. Imposing random vibration excitation of a non linear mechanical system based on PSD imposes to take into account signal processing aspects. To evaluate response levels versus norms requirements, it’s mandatory to consider the time-frequency transfer. In addition, the size and the complexity of the total finite element model of the industrial structure don’t allow a global resolution in the time domain for all the degrees of freedom. Homogenization and dynamic reduction techniques are used to evaluate the response of the system submitted to large frequency range excitations, and to analyse the behavior of the suspension

Книги з теми "Structure vibration":

1

Pressure, Vessels and Piping Conference (1987 San Diego Calif ). Fluid-structure vibration and liquid sloshing. New York, N.Y. (345 E. 47th St., New York 10017): American Society of Mechanical Engineers, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pressure Vessels and Piping Conference (1987 San Diego, Calif.). Fluid-structure vibration and liquid sloshing. New York, N.Y. (345 E. 47th St., New York 10017): American Society of Mechanical Engineers, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Knippenberg, P. H. Structure and Dynamics of RNA. Boston, MA: Springer US, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

P, Townsend Dennis, Coy John J, United States. Army Aviation Systems Command., and United States. National Aeronautics and Space Administration., eds. Minimization of the vibration energy of thin-plate structure. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Siskind, D. E. Blast vibration measurements near and on structure foundations. Avondale, Md: U.S. Dept. of the Interior, Bureau of Mines, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cremer, Lothar. Structure-borne sound: Structural vibrations and sound radiation at audio frequencies. 3rd ed. Berlin: Springer, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cremer, Lothar. Structure-borne sound: Structural vibrations and sound radiation at audio frequencies. 2nd ed. Berlin: Springer-Verlag, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Flaga, Andrzej. Wind vortex-induced excitation and vibration of slender structures: Single structure of circular cross-section normal to flow. Cracow: Cracow University of Technology, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Banakh, Liudmila Ya. Vibrations of mechanical systems with regular structure. Heidelberg: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Göran, Sandberg, and Ohayon R, eds. Computational aspects of structural acoustics and vibration. Wien: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Structure vibration":

1

Huang, Weiping, Xuemin Wu, Juan Liu, and Xinglan Bai. "Vibration of Structure." In Dynamics of Deepwater Riser, 73–108. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2888-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Srbulov, Milutin. "Foundation and Structure Effects." In Ground Vibration Engineering, 85–102. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9082-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jaiman, Rajeev, Guojun Li, and Amir Chizfahm. "Thin Structure Aeroelasticity." In Mechanics of Flow-Induced Vibration, 899–928. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8578-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yu, Wen, and Satyam Paul. "Active Structure Control." In Active Control of Bidirectional Structural Vibration, 1–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46650-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barnes, R. B., L. G. Bonner, and E. U. Condon. "Vibration Spectra and Molecular Structure." In Selected Scientific Papers of E.U. Condon, 283–93. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4613-9083-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xue, Tianfan, Jiajun Wu, Zhoutong Zhang, Chengkai Zhang, Joshua B. Tenenbaum, and William T. Freeman. "Seeing Tree Structure from Vibration." In Computer Vision – ECCV 2018, 762–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01240-3_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huang, Wei, and Jian Xu. "Vibration Control for Equipment-Structure." In Optimized Engineering Vibration Isolation, Absorption and Control, 173–216. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2213-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Limongelli, Maria Pina, Emil Manoach, Said Quqa, Pier Francesco Giordano, Basuraj Bhowmik, Vikram Pakrashi, and Alfredo Cigada. "Vibration Response-Based Damage Detection." In Structural Health Monitoring Damage Detection Systems for Aerospace, 133–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72192-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThis chapter aimed to present different data driven Vibration-Based Methods (VBMs) for Structural Health Monitoring (SHM). This family of methods, widely used for engineering applications, present several advantages for damage identification applications. First, VBMs provide continuous information on the health state of the structure at a global level without the need to access the damaged elements and to know their location. Furthermore, damage can be identified using the dynamic response of the structure measured by sensors non-necessarily located in the proximity of damage and without any prior knowledge about the damage location. By principle, VBMs can identify damage related to changes in the dynamic properties of structures, such as stiffness variations due to modifications in the connections between structural elements, or changes in geometric and material properties. A classification of different VBMs was presented in this chapter. Furthermore, several case studies were presented to demonstrate the potential of these methods.
9

Li, Aiqun. "Isolation Bearing of Building Structure." In Vibration Control for Building Structures, 259–312. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40790-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yu, Wen, and Satyam Paul. "Structure Models in Bidirection." In Active Control of Bidirectional Structural Vibration, 19–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46650-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Structure vibration":

1

Choura, Slim A. "Vibration Confinement in a Flexible Truss-Structure." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this paper, the vibration of a flexible truss-structure, described as a finite element model, is confined and suppressed simultaneously using feedback. The structure is assumed to possess regions that are sensitive to vibrations. The control objective is concerned with the isolation of the sensitive regions from vibrational amplitudes. This necessitates the employment of point force actuators for altering the eigenvalues and mode shapes of the structure. The modified eigenstructure of the system allows the confinement of vibration away from the sensitive regions. In order to avoid build-up of vibrational amplitudes during the confinement process, the proposed feedback contains a mechanism for vibration suppression. In addition, the proposed control strategy demonstrates that the vibrational amplitudes associated with the sensitive regions are brought faster to rest as opposed to those associated with the remaining regions of the structure. We show that the confinement-suppression of structural vibration is possible with a reduced amount of actuators whose number is less or equal to the dimension of the structure model.
2

Huntington, D., and C. Lyrintzis. "Random vibration in aircraft landing gear." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Hongjun, Jie Liu, and Jun Teng. "Control-Structure Interaction in Structural Vibration Control." In 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gaul, Lothar, and Jens Becker. "Vibration Reduction by Passive and Semi-Active Friction Joints." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Reduction of structural vibrations is of major interest in mechanical engineering for lowering sound emission of vibrating structures, improving accuracy of machines and increasing structure durability. Besides optimization of the mechanical design or various types of passive damping treatments, active structural vibration control concepts are efficient means to reduce unwanted vibrations. In this contribution, two different semi-active control concepts for vibration reduction are proposed that adapt the normal force of attached friction dampers. Thereby, semi-active control concepts generally possess the advantage over active control that the closed loop is intrinsically stable and that less energy is required for the actuation than in active control. In the chosen experimental implementation, a piezoelectric stack actuators is used to apply adjustable normal forces between a structure and an attached friction damper. Simulation and experimental results of a benchmark structure with passive and semi-actively controlled friction dampers are compared for stationary narrow-band excitation.
5

Gharib, Mohamed, and Mansour Karkoub. "An Experimental Study of Bi-Directional Structure Vibration Suppression Using LPC Impact Dampers." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Vibration control of large structures has been the focus of a lot of research in recent years. Some of these structures include high rise buildings, offshore platforms, and bridges. In this article, we present the results of an experimental investigation of the usage of linear impact dampers in the control of the elasto-dynamic vibrations of 3D structures. Linear Particle Chain Impact Dampers (LPCIDs) are the off-spring of the commonly used conventional (single unit) impact damper. The free vibration response of a 3D symmetric frame subjected to a bidirectional initial condition is measured and analyzed. The objective is to examine the efficacy of the LPCID in attenuating the free vibrations of 3D frame structures. The settling times and amplitudes of vibration of the structure, with and without the LPCIDs, under free vibration conditions are measured and analyzed to study the efficacy of the dampers. The experimental study showed that the LPCID can be more effective in reducing the structure’s vibration when placed in specific orientations on the structure. Therefore, it can by concluded from the experiments’ outcomes that LPCIDs may be used to effectively attenuate the free vibrations of 3D structures.
6

Chamis, Christos. "Probabilistic vibration assessment of composite engine fan blades." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yashiro, Haruki, Ken-ichiro Suzuki, Yoshihiro Kajio, Ichiro Hagiwara, and Akira Arai. "An Application of Structural-Acoustic Analysis to Car Body Structure." In SAE Surface Vehicle Noise and Vibration Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/850961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Snyder, David S., Matthew P. Kriss, and Robert S. Thomas. "Improving Vehicle Body Structure NVH - An Experimental Approach." In Noise & Vibration Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/931342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mei, C. "Control of Vibration Flow at the Joint of an L-Shaped Frame." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There has been an increasing interest in vibration control in recent years. This is due to demands for mechanical structures to be lighter and faster. Lighter and faster structures are more prone to vibrations. Hence, there is an imperative need for practical solutions to vibration problems in complex practical mechanical systems. Regardless of the complexity of a structure, from wave vibration standpoint, it consists of only two basic types of structural components, namely, structural elements and structural joints. In this paper, a control strategy is developed for controlling vibrations flowing from one structural element to another through the structural joint. An L-shaped beam is studied as an example structure. Numerical results are given.
10

Kaoud, M., and J. Ari-Gur. "Vibration of annular circular plate with indeterminate ring support." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Structure vibration":

1

Boffo, C. Water Flow Vibration Effect on the NLC RF Structure - Girder System. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/827304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Inman, Daniel J. Vibration Analysis and Control of an Inflatable Structure Using Smart Materials. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada425363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rockwell, Donald. Wake Structure, Loading and Vibration of Cylinders: Effects of Surface Nonuniformities and Unsteady Inflow. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada460740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jendrzejczyk, J. A., M. W. Wambsganss, and R. K. Smith. General vibration monitoring: Coupling between the experimental hall structure and storage ring tunnel and basemat. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10187058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Junkins, John L. Optimization of Closed Loop Eigenvalues: Maneuvering, Vibration Control, and Structure/Control Design Iteration for Flexible Spacecraft. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada172716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jendrzejczyk, J. A., M. W. Wambsganss, and R. K. Smith. General vibration monitoring: Coupling between a storage ring tunnel I-beam support structure and the tunnel/basemat. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10188941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Farrar, C., W. Baker, J. Fales, and D. Shevitz. Active vibration control of civil structures. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/400183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Shoei-Sheng. Flow-Induced Vibration of Circular Cylindrical Structures. Office of Scientific and Technical Information (OSTI), June 1985. http://dx.doi.org/10.2172/6331788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chambers, David H. Acoustically Driven Vibrations in Cylindrical Structures. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1124822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Miele, Sarah Ann, and Vivek Agarwal. Vibration-Based Non-Destructive Evaluation of Concrete Structures. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1546718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії