Добірка наукової літератури з теми "Structure de zone de faille"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Structure de zone de faille".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Structure de zone de faille"
Tremblay, Alain, Pierre St-Julien, and Jean-Yves Labbé. "Mise à l'évidence et cinématique de la faille de La Guadeloupe, Appalaches du sud du Québec." Canadian Journal of Earth Sciences 26, no. 10 (October 1, 1989): 1932–43. http://dx.doi.org/10.1139/e89-163.
Повний текст джерелаJang, Deh-Jeng, and J. David Frost. "Use of image analysis to study the microstructure of a failed sand specimen." Canadian Geotechnical Journal 37, no. 5 (October 1, 2000): 1141–49. http://dx.doi.org/10.1139/t00-031.
Повний текст джерелаGouze, Philippe, Riad Hassani, Dominique Bernard, and Anne Coudrain-Ribstein. "Calcul de l'evolution de la permeabilite des reservoirs sedimentaries contenant des argiles; application a la zone de la faille de Bray (bassin de Paris)." Bulletin de la Société Géologique de France 172, no. 4 (July 1, 2001): 427–36. http://dx.doi.org/10.2113/172.4.427.
Повний текст джерелаLin, Jing-Yi, Jean-Claude Sibuet, Shu-Kun Hsu, Chao-Shing Lee, and Frauke Klingelhoefer. "Sismicité et volcanisme dans le Sud-Ouest du bassin arrière-arc d’Okinawa (Nord-Est Taiwan)." Bulletin de la Société Géologique de France 180, no. 2 (March 1, 2009): 155–70. http://dx.doi.org/10.2113/gssgfbull.180.2.155.
Повний текст джерелаHossain, M., and W. Malalasekera. "Numerical study of bluff-body non-premixed flame structures using laminar flamelet model." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 219, no. 5 (August 1, 2005): 361–70. http://dx.doi.org/10.1243/095765005x28616.
Повний текст джерелаKâ, S. L., Mamadou Ousseynou Ly, Mayécor Diouf, Mouhamadou Diandy, Moustapha Guéye, Mame Samba Mbaye, and Kandioura Noba. "Diversité herbacée dans les parcours du noyau de sélection du Centre de recherches zootechniques de Kolda en zone soudanienne du Sénégal." Revue d’élevage et de médecine vétérinaire des pays tropicaux 73, no. 3 (September 17, 2020): 199–205. http://dx.doi.org/10.19182/remvt.31891.
Повний текст джерелаGarba, Amadou, Abdou Amani, Soumana Douma, Abdoul Kader Soumaila Sina, and Ali Mahamane. "Structure des populations de Tamarindus indica L. dans la zone Sud-Ouest du Niger." International Journal of Biological and Chemical Sciences 14, no. 1 (April 3, 2020): 126–42. http://dx.doi.org/10.4314/ijbcs.v14i1.11.
Повний текст джерелаBuffin-Bélanger, T., A. G. Roy, and M. Levasseur. "Interactions entre les structures d'échappement et les structures à grande échelle dans l'écoulement turbulent des rivières à lit de graviers." Revue des sciences de l'eau 14, no. 3 (April 12, 2005): 381–407. http://dx.doi.org/10.7202/705425ar.
Повний текст джерелаRamezani, Hadi, Seyed Ali Asghar Akbari Mousavi, and Hossein Ebrahimzadeh. "The Effect of Process Parameters on Pulsed Nd:YAG Laser Welding of Inconel 625." Advanced Materials Research 829 (November 2013): 36–40. http://dx.doi.org/10.4028/www.scientific.net/amr.829.36.
Повний текст джерелаJohnston, Arch C., and Kaye M. Shedlock. "Overview of Research in The New Madrid Seismic Zone." Seismological Research Letters 63, no. 3 (July 1, 1992): 193–208. http://dx.doi.org/10.1785/gssrl.63.3.193.
Повний текст джерелаДисертації з теми "Structure de zone de faille"
Lefèvre, Mélody. "Propriétés structurales, pétro-physiques et circulations de fluides au sein d'une zone de failles dans les argiles." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4320/document.
Повний текст джерелаFault zones concentrate fluids migration and deformations in the upper crust. The shale hydraulic properties make them excellent storage sites and hydrocarbon reservoirs/source rocks. Fault zones can play two roles in the fluid circulation; drains or barriers, in general, both roles are combined within the same fault zone. What are the conditions that promote the fluid circulation along the fault zones in shales and what are the fault zone impacts on the formation properties are relatively poorly explored key questions. This study focused on characterizing the relationships between fault architecture, paleo-fluid as well as current fluid circulations through the analysis of fault calcite mineralization, injection tests and petrophysical properties conducted on a fault zone outcropping underground in the Tournemire research laboratory nested in the Toarcian shale. The fault zone structure was characterized using boreholes data and reconstructed in 3D through modeling to define different deformation facies. No clear facies organization is observed, a fault core and a fault damage zone being difficult to define as it is in hard rocks. The intact, fractured and breccia facies are characterized by a porosity of 9.5-13.5, 10-15 and 13-21%. Large fluid flowrate concentrated along a few “channels” located at the breccia boundaries and in the secondary fault zones that displayed fractured facies and limited breccia fillings. Detailed microstructural and geochemical analysis at the breccia/fractured zones interface revealed that fluids circulated out of the main shear zones, in micro-more or less inherited fractures highlighting a decoupling between fault slip and fluid migrations
Aubert, Irène. "Fault zone structural and diagenetic evolution in carbonates : impact on reservoir properties (urgonian case study, SE France)." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0175.
Повний текст джерелаFault zones strongly impact carbonates reservoir properties as they can act as drains or barriers depending of their structural and diagenetic properties. Hence, it is important to have an integrativecomprehension of these properties that affect the fault zones hydraulic properties. To this end, the multidisciplinary approach of this thesis combining structural, diagenetic and geochemical approaches aims to (1) constrain the structural and diagenetic evolution of fault zones in carbonates (2) draw rules and geometrical concepts allowing building of coherent geological models, and (3) allow a better understanding of the hydraulic dynamic response of fault zones in carbonates through their evolutions. We studied 3 fault zones (Castellas, D19) affecting lower Barremian platform carbonates (Urgonian facies) located in La Fare and Nerthe anticlines (Provence – SE France). This work allowed the restoration of fault zones diagenetic sequences with cement analyses under catholuminescence and 13C and 18O isotopes. The structural analysis completed the diagenetic evolution by determining the architectural characteristics related to each fault activity and discriminating the effect of pre-existing structures on subsequent fault development. Finally, this study improved our understanding of fault zones hydraulic behaviour in carbonates through times
Vitard, Clément. "Investigation sismique du domaine avant-arc Égéen du segment Sud-Ouest de la zone de subduction Hellénique." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4116/document.
Повний текст джерелаThe Hellenic subduction zone, in the eastern part of the Mediterranean sea, is characterized by the highest rate of current seismicity in Europe. In the southwestern segment, several earthquakes of large magnitude (Mw 7,5-8) occured a the turn of the 19th to 20th century. This segment of 400 km long, has also been the nucleation site of the largest historical earthquake in Europe, named the 365 AD earthquake, with a magnitude of Mw 8. This event generates a devastating tsunami, which spread along the Adriactic Sea and in the Nile Delta region. Two main models differ about the interplate seismic coupling question in this region, from a total seismic coupling at the interplate, at the opposite assumption of a very weak seismic coupling. However, these opposing models consider an approximate geometry, mostly because of the lack of information available on the geometry and the localization of the interplate in this region of the forearc domain. The localization of the fault responsible of the 365 AD event is also debated, because, there is no available data who provides imagery of the interfaces potentially responsible of this devastating earthquake. The megathrust fault and the forearc domain of the southwestern segment of the Hellenic subduction zone has been the target of the Ulysse marine survey in November 2012. The aim of this survey was to provide information of the structural geometry of the main units in this part of the subduction zone, and to bring information on the recent tectonic activity in this region
Touma, Rita. "Approche matricielle de l’imagerie sismique passive par ondes de volume." Thesis, Université Grenoble Alpes, 2022. http://www.theses.fr/2022GRALU011.
Повний текст джерелаRevealing the structure of fault zones provides insights required to assess seismic hazards. Reflection imaging methods, in particular migration, are commonly used to image the subsurface. An accurate velocity model is often needed to properly locate the reflectors in depth.Imaging fault zones is challenging due to the complex distribution of velocity. Also, most reflection techniques image fault zones indirectly from the discontinuity of geological layers. Wave diffraction by small-scale heterogeneities, such as cracks and fractures is generally neglected.In this thesis, we propose a matrix imaging approach for geophysical exploration that handles the velocity variation in the crust and allows to resolve heterogeneities of the order of the wavelength throughout the fault zone.The reflection matrix approach is inspired from previous studies in ultrasound and optical imaging of complex media. First, ambient noise cross-correlations are used to retrieve the reflection matrix associated with a dense array of geophones. The body wave components of this matrix contains all the information available on the medium. Second, the presented approach does not require a detailed velocity model of the subsurface. A set of matrix operation is applied to compensate for the mismatch between the actual wave velocity model and its approximate model.In a first application, we use ambient noise records in the frequency band [10 20] Hz from a dense array in order image the San Jacinto Fault, California, at small scale with an horizontal resolution of 80 m. ZZ cross-correlations are computed and arranged as 2D matrix. By applying time delays, the response matrix is projected to depth, using a homogeneous velocity model. A focused reflection matrix is obtained, that contains the impulse response between virtual sources and receivers at depth. From this matrix, the image of the medium is built and the resolution of the image can be quantified.Variations between the considered model and the reality result in phase distortions, i.e aberrations, that have detrimental effects on the image of the medium.We develop an aberration correction process that allows to compensate for these distortions by introducing a novel operator, the distortion matrix. 3D images of the first 4 km of the crust are retrieved. These images reveal the backscattered intensity generated by the heterogeneities in the medium. The location and reflectivity of scatterers are retrieved with a resolution 8 times better than the one in free space. Differences in the scattering between the Northwest and the Southeast of the fault were reported with an intense localized damage zone in the Southeast.In a second application, we image the large scale structure of North Anatolian Fault using [0.1 0.5] Hz horizontal cross-correlations computed between 73 pairs of stations. A multi-layered velocity model is considered. A local correction of the phase distortions is performed. The scattering structure of the crust and the upper mantle is revealed. Differences in the Moho depth are reported, with a step below the northern branch. Strong scattering is observed in the region lying along the northern strand of the fault, coinciding with the limit of the lithospheric blocks. The scattering in the North extends to 60 km depth, suggesting a shear zone that penetrates in the upper mantle beneath the northern strand. The scattering also reveals the deep structure of the main geological blocks.In the last part of this thesis, we propose an approach that paves the route towards a 3D passive tomography of the body wave velocity. Finally, all the presented applications confirm the efficiency of the reflection matrix approach in revealing the structure of the subsurface. It provides new insights into the scattering distribution in the Earth. It can be applied to any scale, scattering regime, and frequency bandwith, if the spatial sampling of the geophones' array satisfies the Nyquist criterion
Garcia, Sebastian. "Implications d'un saut de rift et du fonctionnement d'une zone transformante sur les déformations du Nord de l'Islande. Approches structurale, sismotectonique et radiochronologique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00009796.
Повний текст джерелаMayolle, Sylvain. "Croissance des zones d’endommagement de faille : étude structurale en milieu carbonaté et modélisations analogiques." Thesis, Montpellier, 2021. http://www.theses.fr/2021MONTG019.
Повний текст джерелаThe study of faults in the upper crust generates interest in modeling their impact on fluid flow and the mechanical behavior of the earth's crust. Fault damage zones are important structures with multiple implications for resource management and earthquake studies. This thesis aims to characterize the distribution and growth of damage around faults and to study its impact on the Displacement - Damage thickness (D-T) scaling law. Two complementary approaches of field measurements and analog modeling of normal faults are developed to answer this question. This manuscript presents new results of fault damage mapping, D-T scaling in carbonate rocks, and the first analog modeling experiments of fault damage zones. The results show a heterogeneous and asymmetric distribution of damage around faults, mainly influenced by fault interactions during their growth (segmentation, conjugate faults). A D-T law specific to wall damage is established and shows a normal correlation between D and T for less than 100 m of fault displacement, and also confirms the existence of a damage thickness threshold after 100 m of displacement. To explain this law, we propose a damage zone growth model controlled by the interaction and coalescence of fault segments. Analog modeling experiments allowed the description of two new types of damage (graben damage and dip-change link damage), and show a failure mode transition during fault growth, from a segmented dilatational-shear mode to a localized compactional-shear mode. They also demonstrate that initiation of segmentation, segment activity selection, interaction and coalescence processes control the development of fault damage zones and the D-T law. We propose that the thickness of the faulted brittle layer is a main controlling parameter of segmentation, strain localization, and the fault damage thickness threshold observed
Rodriguez, Mathieu. "La limite de plaque Inde-Arabie : évolution structurale du Crétacé supérieur à l'actuel et aléa tsunami associé." Paris 6, 2013. http://www.theses.fr/2013PA066756.
Повний текст джерелаThe Owen Fracture Zone (OFZ) is a 800 km-long fault system that currently accommodates the dextral strike-slip motion between India and Arabia plates. It closely follows a small circle about a rotation pole determined with GPS and seismicity data, which is consistent with a pure strike-slip motion along the entire fracture zone. As shown by the high resolution multibeam bathymetric map with full coverage (OWEN-1 cruise), it is made up of a series of fault segments separated by releasing and restraining bends, including a major pull-apart basin at latitude 20°N and two stepover basins at its terminations, the Beautemps-Beaupré Basin to the south and the Dalrymple Trough to the north. The OFZ crosscuts the Owen-Murray Ridge, a series of prominent oceanic highs. Offsets of the Owen Ridge observed on the seafloor indicate a finite dextral displacement of 10-12 km along the OFZ. Considering a steady motion of 3 ±1 mm. Y-1 estimated independently from geodetic and geological data, this implies that the present-day trace of the OFZ has been active since at least 3 to 6 Ma. Consistently, the age of opening of the 20°N Basin and the Dalrymple trough is estimated at about 2-3 Ma ago by calibration with DSDP-ODP drillings, coevally with a regional unconformity over the Oman abyssal plain (the M-unconformity). The Owen-Murray Ridge is dissected by complex systems of submarine landslides, which may represent a source of tsunami hazard for the nearby Oman coast according to numerical models. Stratigraphic studies document a recurrence in the order of 105-106 yrs, indicating that such tsunamis are infrequent. The seismic dataset collected during the Owen-2 cruise provides the first identification of the Miocene and Paleogene traces of the plate boundary prior to the activation of the OFZ, and leads to a full revision of the geological history of the area. We highlight the composite age of the Owen Basin basement, made of Paleocene crust drilled on its eastern part, and composed of pre-Maastrichtian crust overlain by Upper Cretaceous ophiolites on its western side (at the edge of the Oman Margin). A major transform fault crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages. This transform system used to be associated with the Carlsberg spreading center during the Paleogene, which formed most of the Owen Basin basement. The inactivation of the transform system in Late Eocene-Early Oligocene times is marked by the uplift of marginal ridges along the Oman Margin and a regional angular unconformity. The transform system then shifted to a narrow structure located at the edge of the present-day Owen Ridge in Late Oligocene times, shortly before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the capture of a part of the Indian oceanic lithosphere accreted at the Carlsberg Ridge (in Paleocene-Eocene times) to the Arabian plate. The Owen Ridge uplifted much latter, in Late Miocene times (8. 2-8. 8 Ma), in response to a kinematic change of the Indian plate. This episode of deformation ultimately led to the inactivation of the Miocene plate boundary and the activation of the OFZ. A major environmental change is recorded over the Arabian Sea coasts in the Siwalik paleosol sequence, coevally with this episode of deformation. This environmental change was previously interpreted as the result of an intensification of the Indian Monsoon at ~8. 5 Ma recorded by a drastic increase in G. Bulloides abundance in the sedimentary cover of the Owen Ridge. In contrast, we propose that the uplift of the Owen Ridge 8-9 Ma ago induced better preservation of foraminifers. Furthermore, this episode of deformation could have also triggered continental uplift along the East Oman and the Dhofar margin, and at the Makran accretionary wedge, leading to a reorganization of the atmospheric circulation that could explain the coeval environmental change recorded in the Siwalik sequence in Pakistan
Conin, Marianne. "Evolution des propriétés physiques des sédiments et des zones de failles du front de déformation à la zone sismogène : cas de la marge de Nankai." Thesis, Aix-Marseille 3, 2011. http://www.theses.fr/2011AIX30027/document.
Повний текст джерелаThis study is focused on the upper limit of the seismogenic zone in the Kumano transect of the Nankai margin in relation with the construction of the wedge. The first step was to determine the stress orientations and amplitude within the wedge from borehole breakouts analysis. We show the striking presence of a trench normal extension zone behind the splay fault in a wedge dominated by a strike-slip stress regime. Locally an extensional stress regime is also observed in the slope sediment of the outer part of the wedge. In a second part of this work, we used porosity corrected from water bound to clay minerals to study the compaction state of the sediments and to quantify the amount of erosion in the slope sediments. Results also highlight the existence of past erosion related to the activity of the splay fault. In a third part, the observation of deformation style within sediments showed that erosion could explain the distribution of dilatant and compactive structures within the wedge. Finally, we show, based on mechanical modeling, that the splay fault slow slip rate over the last million year, and the presence of an extension zone landward of the splay fault, could both be explained by a pause in the accretion and a weak décollement beneath the outer wedge
TATAR, Mohammad. "Etude sismotectonique de deux zones de collision continentale : le zagros central et l'alborz (iran)." Université Joseph Fourier (Grenoble), 2001. http://www.theses.fr/2001GRE10083.
Повний текст джерелаDauch, Christian. "Decrochements et chevauchements dans une zone de plate-forme : l'exemple du massif de la gresigne (aquitaine nord-orientale)." Toulouse 3, 1988. http://www.theses.fr/1988TOU30081.
Повний текст джерелаКниги з теми "Structure de zone de faille"
Chen, Shengzao. Waveform analysis and velocity structure at Quirke Mine and adjacent areas. Part 2: Extension of the failure zone. Elliot Lake, Ont: CANMET, Canada Centre for Mineral and Energy Technology, 1990.
Знайти повний текст джерелаTorvela, Taija. The Sottunga-Jurmo shear zone: Structure and deformation history of a crustal-scale ductile shear zone in SW Finland. Åbo: Åbo Akademi University Press, 2007.
Знайти повний текст джерелаMvuluya, Mulambu. Migrations et structure des grupements dans la zone de Miabi: Mythes et réalités. Kinshasa: [s.n.], 1991.
Знайти повний текст джерелаE, Bowen Robert. The Massachusetts Bays management system: A valuation of bays resources and uses and an analysis of its regulatory and management structure : executive summary. [Boston, Mass.]: Massachusetts Bays Program, 1992.
Знайти повний текст джерелаSvensson, Lars E. O. The term structure of interest rate differentials in a target zone: Theory and Swedish data. Cambridge, MA: National Bureau of Economic Research, 1990.
Знайти повний текст джерелаSvensson, Lars E. O. The term structure of interest rate differentials in a target zone: Theory and Swedish data. London: Centre for Economic Policy Research, 1991.
Знайти повний текст джерелаWu, Xuan Hui. Generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool Publishers, 2008.
Знайти повний текст джерелаWu, Xuan Hui, Ahmed A. Kishk, and Allen W. Glisson. Generalized Transmission Line Method to Study the Far-zone Radiation of Antennas under a Multilayer Structure. Cham: Springer International Publishing, 2008. http://dx.doi.org/10.1007/978-3-031-01538-0.
Повний текст джерелаMorozov, Eugene G. Abyssal Channels in the Atlantic Ocean: Water Structure and Flows. Dordrecht: Springer Science+Business Media B.V., 2010.
Знайти повний текст джерелаBowen, Robert E. The Massachusetts Bays management system: A valuation of bays resources and uses and an analysis of its regulatory and management structure. [Boston, Mass.] (100 Cambridge St., Boston 02202): Massachusetts Bays Program, 1993.
Знайти повний текст джерелаЧастини книг з теми "Structure de zone de faille"
Seagraves, Andrew, and Raúl Radovitzky. "Advances in Cohesive Zone Modeling of Dynamic Fracture." In Dynamic Failure of Materials and Structures, 349–405. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0446-1_12.
Повний текст джерелаvan Hal, B. A. E., R. H. J. Peerlings, M. G. D. Geers, and G. Q. Zhang. "Failure Prediction of IC Interconnect Structures Using Cohesive Zone Modelling." In Fracture of Nano and Engineering Materials and Structures, 387–88. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4972-2_191.
Повний текст джерелаHuene, Roland von, Cesar R. Ranero, and Dave W. Scholl. "Convergent Margin Structure in High-Quality Geophysical Images and Current Kinematic and Dynamic Models." In Subduction Zone Geodynamics, 137–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87974-9_8.
Повний текст джерелаWortel, Rinus, Rob Govers, and Wim Spakman. "Continental Collision and the STEP-wise Evolution of Convergent Plate Boundaries: From Structure to Dynamics." In Subduction Zone Geodynamics, 47–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87974-9_3.
Повний текст джерелаMcBirney, Alexander R., and W. John Russell. "Constitutional Zone Refining of Magmatic Intrusions." In Structure and Dynamics of Partially Solidified Systems, 349–65. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3587-7_16.
Повний текст джерелаEdge, Billy, Lesley Ewing, Karyn Erickson, and Orville Magoon. "Application of Coastal Engineering in Coastal Zone Management." In Advances in Coastal Structure Design, 200–215. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/9780784406892.ch10.
Повний текст джерелаKozák, Vladislav. "Ductile Crack Growth Modelling Using Cohesive Zone Approach." In Composites with Micro- and Nano-Structure, 191–207. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6975-8_11.
Повний текст джерелаZámećník, J., J. Bieblová, and M. Grospietsch. "Safety zone as a barrier to root-shoot ice propagation." In Structure and Function of Roots, 311–17. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-3101-0_41.
Повний текст джерелаSchmid, S. M., O. A. Pfiffner, and G. Schreurs. "Rifting and collision in the Penninic zone of eastern Switzerland." In Deep Structure of the Swiss Alps, 160–85. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9098-4_14.
Повний текст джерелаTurcan, Iana, and Marcel F. Jonkman. "Structure of Hemidesmosomes and the Epidermal Basement Membrane Zone." In Autoimmune Bullous Diseases, 113–17. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23754-1_13.
Повний текст джерелаТези доповідей конференцій з теми "Structure de zone de faille"
Hossain, Ridwan, Rocky Taylor, and Lorenzo Moro. "A Probabilistic High-Pressure Zone Model of Dynamic Ice Structure Interactions and Associated Ice-Induced Vibrations." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-62966.
Повний текст джерелаLi Xiaoqing and Lam Tim Fai. "Three zone-reactive wetting ring structure at interface between lead-free Sn-Ag-Cu solder and Ni pad." In 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2009. http://dx.doi.org/10.1109/ipfa.2009.5232663.
Повний текст джерелаTaylor, Rocky S., and Martin Richard. "Development of a Probabilistic Ice Load Model Based on Empirical Descriptions of High Pressure Zone Attributes." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24353.
Повний текст джерелаRichard, Martin, and Rocky S. Taylor. "Analysis of High Pressure Zone Attributes From Tactile Pressure Sensor Field Data." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24342.
Повний текст джерелаDevaney, Ronan J., Adrian Connaire, Padraic E. O’Donoghue, and Sean B. Leen. "Process-Structure-Property Fatigue Characterisation for Welding of X100 Steel Catenary Risers." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96516.
Повний текст джерелаBooth, Martin, and Michael Martin. "Use of the Extended Finite Element Method in the Assessment of Delayed Hydride Cracking." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63156.
Повний текст джерелаYu, Hailing, Yim H. Tang, Jeffrey E. Gordon, and David Y. Jeong. "Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11926.
Повний текст джерелаOgata, Kenneth A., Sladjan Lazarevic, and Scott F. Miller. "Dissimilar Material Joint Strength and Structure for Friction Stir Forming Process." In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4044.
Повний текст джерелаYou, Jun, Chao Zhu, and Dawei Wang. "Heterogeneous Structure in Dense Gas-Solid Riser Flows." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37462.
Повний текст джерелаCai, Qingjun, Ya-Chi Chen, and Chung-lung Chen. "Dryout Studies of Carbon Nanotube Bi-Porous Structure." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44168.
Повний текст джерелаЗвіти організацій з теми "Structure de zone de faille"
Thomas, M. D. Magnetic and gravity models, northern half of the Taltson Magmatic Zone, Rae Craton, Northwest Territories: insights into upper crustal structure. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328244.
Повний текст джерелаPintgen, F., C. A. Eckett, J. M. Austin, and J. E. Shepherd. Direct Observations of Reaction Zone Structure in Propagating Detonations. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada539314.
Повний текст джерелаMichelini, A. Fault zone structure determined through the analysis of earthquake arrival times. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5610347.
Повний текст джерелаMichelini, Alberto. Fault zone structure determined through the analysis of earthquake arrival times. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/10132626.
Повний текст джерелаvan Uffelen, Lora J. Vertical Structure of Shadow Zone Arrivals: Comparison of Parabolic Equation Simulations and Acoustic Data. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada537310.
Повний текст джерелаVan Uffelen, Lora J. Vertical Structure of Shadow Zone Arrivals: Comparison of Parabolic Equation Simulations and Acoustic Data. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada532583.
Повний текст джерелаVan Uffelen, Lora J. Vertical Structure of Shadow Zone Arrivals: Comparison of Parabolic Equation Simulations and Acoustic Data. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533091.
Повний текст джерелаLippmann, Thomas C. The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada514685.
Повний текст джерелаBalkwill, David L. Vadose zone microbial community structure and activity in metal/radionuclide contaminated sediments. Final technical report. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/807073.
Повний текст джерелаDrew, J. J., and R. M. Clowes. A re-interpretation of the seismic structure across the active subduction zone of western Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/129021.
Повний текст джерела