Добірка наукової літератури з теми "STRESS IDENTIFICATION"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "STRESS IDENTIFICATION".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "STRESS IDENTIFICATION"

1

Wheeler, Robert J., and Monica A. Frank. "Identification of Stress Buffers." Behavioral Medicine 14, no. 2 (June 1988): 78–89. http://dx.doi.org/10.1080/08964289.1988.9935128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Newton, Cameron, and Stephen Teo. "Identification and Occupational Stress: A Stress-Buffering Perspective." Human Resource Management 53, no. 1 (December 30, 2013): 89–113. http://dx.doi.org/10.1002/hrm.21598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kunstmann, Antje, and Kerrin Christiansen. "Testosterone levels and stress in women: the role of stress coping strategies, anxiety and sex role identification." Anthropologischer Anzeiger 62, no. 3 (September 4, 2004): 311–21. http://dx.doi.org/10.1127/anthranz/62/2004/311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sauerland, Melanie, Linsey H. C. Raymaekers, Henry Otgaar, Amina Memon, Thijs T. Waltjen, Maud Nivo, Chiel Slegers, Nick J. Broers, and Tom Smeets. "Stress, stress-induced cortisol responses, and eyewitness identification performance." Behavioral Sciences & the Law 34, no. 4 (July 2016): 580–94. http://dx.doi.org/10.1002/bsl.2249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jovani, Théo, Hélène Chanal, Benoît Blaysat, and Michel Grédiac. "Direct Residual Stress Identification during Machining." Journal of Manufacturing Processes 82 (October 2022): 678–88. http://dx.doi.org/10.1016/j.jmapro.2022.08.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barac‐Cikoja, Dragana, and Sally Revoile. "Stress identification by hearing‐impaired listeners." Journal of the Acoustical Society of America 98, no. 5 (November 1995): 2983. http://dx.doi.org/10.1121/1.413908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Erkens, Valerie A., Urs M. Nater, Jürgen Hennig, and Jan A. Häusser. "Social identification and contagious stress reactions." Psychoneuroendocrinology 102 (April 2019): 58–62. http://dx.doi.org/10.1016/j.psyneuen.2018.11.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Davis, Russell H. "Discordant identification in critical incident stress." Journal of Religion and Health 33, no. 1 (March 1994): 7–15. http://dx.doi.org/10.1007/bf02354494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sinclair, GB. "Stress singularities in classical elasticity—II: Asymptotic identification." Applied Mechanics Reviews 57, no. 5 (September 1, 2004): 385–439. http://dx.doi.org/10.1115/1.1767846.

Повний текст джерела
Анотація:
This review article (Part II) is a sequel to an earlier one (Part I) that dealt with means of removal and interpretation of stress singularities in elasticity, as well as their asymptotic and numerical analysis. It reviews contributions to the literature that have actually effected asymptotic identifications of possible stress singularities for specific configurations. For the most part, attention is focused on 2D elastostatic configurations with constituent materials being homogeneous and isotropic. For such configurations, the following types of stress singularity are identified: power singularities with both real and complex exponents, logarithmic intensification of power singularities with real exponents, pure logarithmic singularities, and log-squared singularities. These identifications are reviewed for the in-plane loading of angular elastic plates comprised of a single material in Section 2, and for such plates comprised of multiple materials in Section 3. In Section 4, singularity identifications are examined for the out-of-plane shear of elastic wedges comprised of single and multiple materials, and for the out-of-plane bending of elastic plates within the context of classical and higher-order theory. A review of stress singularities identified for other geometries is given in Section 5, axisymmetric and 3D configurations being considered. A limited examination of the stress singularities identified for other field equations is given as well in Section 5. The paper closes with an overview of the status of singularity identification within elasticity. This Part II of the review has 227 references.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Asaadi, Erfan, and P. Stephan Heyns. "Flow stress identification of tubular materials using the progressive inverse identification method." Engineering Computations 33, no. 5 (July 4, 2016): 1472–89. http://dx.doi.org/10.1108/ec-08-2015-0219.

Повний текст джерела
Анотація:
Purpose – The purpose of this paper is to propose a progressive inverse identification algorithm to characterize flow stress of tubular materials from the material response, independent of choosing an a priori hardening constitutive model. Design/methodology/approach – In contrast to the conventional forward flow stress identification methods, the flow stress is characterized by a multi-linear curve rather than a limited number of hardening model parameters. The proposed algorithm optimizes the slopes and lengths of the curve increments simultaneously. The objective of the optimization is that the finite element (FE) simulation response of the test estimates the material response within a predefined accuracy. Findings – The authors employ the algorithm to identify flow stress of a 304 stainless steel tube in a tube bulge test as an example to illustrate application of the algorithm. Comparing response of the FE simulation using the obtained flow stress with the material response shows that the method can accurately determine the flow stress of the tube. Practical implications – The obtained flow stress can be employed for more accurate FE simulation of the metal forming processes as the material behaviour can be characterized in a similar state of stress as the target metal forming process. Moreover, since there is no need for a priori choosing the hardening model, there is no risk for choosing an improper hardening model, which in turn facilitates solving the inverse problem. Originality/value – The proposed algorithm is more efficient than the conventional inverse flow stress identification methods. In the latter, each attempt to select a more accurate hardening model, if it is available, result in constructing an entirely new inverse problem. However, this problem is avoided in the proposed algorithm.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "STRESS IDENTIFICATION"

1

Dorfi, Hans Robert. "Acoustoelasticity: stress identification based on ultrasonic measurements /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487856906257899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Howell, Geoffrey Peter. "Identification of plastic strain using thermoelastic stress analysis." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/412636/.

Повний текст джерела
Анотація:
Identification of regions containing plastic strain arising from the welding process is performed through the application of thermoelastic stress analysis (TSA) and finite element (FE) modelling. An approach is developed that removes the requirement to have a physical reference specimen for the component studied by developing a 'synthetic reference bitmap' using finite element analysis. The regions containing plastic strain can be identified with TSA by collecting data from a 'reference' plastic strain free specimen from the TSA data and creating a resultant bitmap. Here, a synthetic bitmap is developed that mimics the thermoelastic response of a physical reference specimen. The approach is validated against physical reference specimens of different geometries and materials (AL2024 and 316L stainless steel) and is shown to accurately model the thermoelastic response. The newly developed synthetic bit map approach is applied to specimens containing welds and it is shown that the regions that contain plastic strain in the heat affected zone (HAZ) of a double bead welded 316L stainless steel specimen can be revealed. The predicted changes in thermoelastic response are compared to plastic strain predictions generated by thermomechanical modelling of the welded specimen and the distribution of plastic strain found by the TSA matches that given by the model. The relationship between the change in thermoelastic response and plastic strain has been investigated and the results suggest there is a change in the thermoelastic response as a result of plastic straining. However, uncertainties in the data resulting from detector noise and other errors mean that further development of the experiments and the equipment is required to provide a conclusive and quantitative relationship. It has also been demonstrated that TSA can be used outside of the laboratory in onsite trials in two coal fired power stations. Thermoelastic data was successfully recorded from pipe welds in-situ. To achieve this a new means of loading the pipes was devised based on vibration excitation, and the difficulties of performing surface measurements on heavily corroded pipes were overcome. The results from the onsite tests show that TSA can be used as an in-situ assessment technique and that is no longer restricted to being a laboratory based technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chierichetti, Maria. "Combined analytical and experimental approaches to dynamic component stress prediction." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44850.

Повний текст джерела
Анотація:
In modern times, the ability to investigate the aeroelastic behavior of dynamic components on rotorcraft has become essential for the prediction of their useful fatigue life. At the same time, the aeroelastic modeling of a rotorcraft is particularly complex and costly. Inaccuracies in numerical predictions are mostly due to imprecisions in the structural modeling, to the presence of structural degradation or to the limited information on aerodynamic loads. The integration of experimental measurements on dynamic components such as rotor blades has the potential to improve fatigue estimation, augment the knowledge of the dynamic behavior and inform numerical models. The objective of this research is the development of a combined numerical and experimental approach, named Confluence Algorithm, that accurately predicts the response of dynamic components with a limited set of experimental data. The integration of experimental measurements into a numerical algorithm enables the continuous and accurate tracking of the dynamic strain and stress fields. The Confluence Algorithm systematically updates the numerical model of the external loads, and mass and stiffness distributions to improve the representation and extrapolation of the experimental data, and to extract information on the response of the system at non-measured locations. The capabilities of this algorithm are first verified in a numerical framework and with well-controlled lab experiments. Numerical results from a comprehensive UH-60A multibody model are then compared with available experimental data. These analyses demonstrate that the integration of the Confluence Algorithm improves the accuracy of the numerical prediction of the dynamic response of systems characterized by a periodic behavior, even in presence of non-linearities. The algorithm enables the use of simplified models that are corrected through experimental data to achieve accurate tracking of the system.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stålhand, Jonas. "Arterial mechanics : noninvasive identification of constitutive parameters and residual stress /." Linköping : Dept. of Mechanical Engineering, Univ, 2005. http://www.bibl.liu.se/liupubl/disp/disp2005/tek941s.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Emery, Trystan Ross. "Identification of damage in composite materials using thermoelastic stress analysis." Thesis, University of Southampton, 2007. https://eprints.soton.ac.uk/51292/.

Повний текст джерела
Анотація:
A quantitative damage assessment methodology for composite materials has been achieved using Thermoelastic Stress Analysis (TSA). The TSA technique provides fullfield data which is collected in a non-contacting and real time manner. The damage assessment methodology proposed requires a means of calibrating and temperature correcting the thermoelastic signal; these are developed and presented in this thesis. The thermoelastic theory for calibrating thermoelastic data from orthotropic bodies has traditionally been based on a stress formulation. There are difficulties in calibrating orthotropic materials in this manner and an alternative calibration routine has been devised and validated. The calibration routine provides the thermoelastic theory as a function of strain and permits a simplified calibration route as the laminate strains are the basis and can be measured in a straightforward manner. During damage propagation in laminated structures the specimen heats. The increase in temperature has a significant effect on the thermoelastic data and necessitates that the thermoelastic data be corrected to remove the effect of temperature from the data. A routine is developed that enables the correction of the thermoelastic data in a point-bypoint manner. By combining the strain calibration and temperature correction procedures a damage assessment methodology has been devised. The application of the methodology is demonstrated on glass / epoxy laminate specimens that are fatigue damaged and the damage state assessed using this method; the extent and type of damage is verified qualitatively using visual inspection methods. The work described is applicable to any orthotropic material. The effect of fatigue damage is assessed by periodically collecting thermoelastic data during the specimen life. This data is analysed using damage metrics based on the calibrated strain obtained from the TSA. The wider application of the TSA damage assessment methodology is considered by assessing the ability to locate subsurface damage. A complementary IR technique is used in conjunction with TSA known as Pulse Phase Thermography (PPT). Initial studies demonstrate the ability to resolve the spatial extents of subsurface damage. The purpose of this step is to guide TSA to areas of concern that can subsequently be assessed using the damage metrics to characterise the effect of damage on the residual life of the component. The strain calibration and temperature correction methods that enable TSA to be applied quantitatively to damaged composite materials have not been accomplished prior to this work. They provide novel methods by which TSA data can be assessed, and their application is not restricted to damage studies alone. The ability to temperature correct TSA data has been shown to be of vital importance if thermoelastic data is to be compared in a quantitative fashion. The strain calibration procedure presented will enable thermoelastic studies to be reported quantitatively and expand the application of TSA particularly in validation studies. The damage assessment methodology presented represents a step forward in the application of TSA to the damage assessment of composite materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Aiqing. "Identification Of Proteins Associated With Insect Diapause And Stress Tolerance." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211487603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nguyen, Cong Uy. "Hybrid stress visco-plasticity : formulation, discrete approximation, and stochastic identification." Thesis, Compiègne, 2022. http://www.theses.fr/2022COMP2695.

Повний текст джерела
Анотація:
Dans cette thèse, une nouvelle approche est développée pour les problèmes de viscoplasticité et de dynamique non linéaire. En particulier, les équations variationnelles sont élaborées selon le principe de Helligner-Reissner, de sorte que les champs de contrainte et de déplacement apparaissent comme des champs inconnus sous la forme faible. Trois nouveaux éléments finis sont développés. Le premier élément fini est formulé pour le problème axisymétrique, dans lequel le champ de contraintes est approximé par des polynômes d’ordre inférieur tels que des fonctions linéaires. Cette approche donne des solutions précises spécifiquement dans les problèmes incompressibles et rigides. De plus, un élément fini de flexion de membrane et de plaque est nouvellement conçu en discrétisant le champ de contraintes en utilisant l’espace vectoriel de Raviart-Thomas d’ordre le plus bas RT0. Cette approche garantit la continuité du champ de contraintes sur tout un domaine discret, ce qui est un avantage significatif dans la méthode numérique, notamment pour les problèmes de propagation des ondes. Les développements sont effectués pour le comportement constitutif visco-plastique des matériaux, où les équations d’évolution correspondantes sont obtenues en faisant appel au principe de dissipation maximale. Pour résoudre les équations d’équilibre dynamique, des schémas de conservation et de décroissance de l’énergie sont formulés en conséquence. Le schéma de conservation de l’énergie est inconditionnellement stable, car il peut préserver l’énergie totale d’un système donné sous une vibration libre, tandis que le schéma décroissant peut dissiper des modes de vibration à plus haute fréquence. La dernière partie de cette thèse présente les procédures d’upscaling du comportement des matériaux visco-plastiques. Plus précisément, la mise à l’échelle est effectuée par une méthode d’identification stochastique via une mise à jour baysienne en utilisant le filtre de Gauss-Markov-Kalman pour l’assimilation des propriétés importantes des matériaux dans les régimes élastique et inélastique
In this thesis, a novel approach is developed for visco-plasticity and nonlinear dynamics problems. In particular, variational equations are elaborated following the Helligner-Reissner principle, so that both stress and displacement fields appear as unknown fields in the weak form. Three novel finite elements are developed. The first finite element is formulated for the axisymmetric problem, in which the stress field is approximated by low-order polynomials such as linear functions. This approach yields accurate solutions specifically in incompressible and stiff problems. In addition, a membrane and plate bending finite element are newly designed by discretizing the stress field using the lowest order Raviart-Thomas vector space RT0. This approach guarantees the continuity of the stress field over an entire discrete domain, which is a significant advantage in the numerical method, especially for the wave propagation problems. The developments are carried out for the viscoplastic constitutive behavior of materials, where the corresponding evolution equations are obtained by appealing to the principle of maximum dissipation. To solve the dynamic equilibrium equations, energy conserving and decaying schemes are formulated correspondingly. The energy conserving scheme is unconditional stable, since it can preserve the total energy of a given system under a free vibration, while the decaying scheme can dissipate higher frequency vibration modes. The last part of this thesis presents procedures for upscaling of the visco-plastic material behavior. Specifically, the upscaling is performed by stochastic identification method via Baysian updating using the Gauss-Markov-Kalman filter for assimilation of important material properties in the elastic and inelastic regimes
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gauthier, David. "Financial stress and the business cycle." Thesis, Paris 1, 2019. http://www.theses.fr/2019PA01E057.

Повний текст джерела
Анотація:
Le fil directeur de cette thèse est l’étude du stress financier et en particulier de ses implications pour les fluctuations économiques. Comment expliquer l’impact des crises financières ? Quel est le rôle du système bancaire dans la propagation des chocs financiers ? Comment reconnaître et prévoir une crise financière ? Chacun des chapitres de cette thèse a pour but d’apporter des éléments de réponse nouveaux à ces grandes questions de la macroéconomie moderne. Dans le premier chapitre, réalisé en collaboration avec Yvan Bécard, nous estimons un modèle d’équilibre général dans lequel les banques ajustent leurs conditions de crédit selon leur capacité à liquider le collatéral de leurs emprunteurs. Nous montrons que les chocs de collatéral, c’est-à-dire des chocs affectant l’efficacité des banques à liquider le collatéral, permettent de comprendre le cycle des affaires américain et en particulier les variations de la consommation, des volumes de prêts et des taux d’emprunt. Les chocs de collatéral ont aussi la particularité de ressembler aux conditions de crédits bancaires observées ces trente dernières années pour les firmes et les ménages. Dans un second chapitre, je développe un modèle d’équilibre général où le système bancaire est organisé en compétition de monopole. J’utilise le modèle pour étudier le rôle de la compétition bancaire dans la propagation des crises financières. Je trouve qu’un faible degré de compétition du système bancaire peut limiter l’impact des chocs financiers lorsque l’efficacité de la politique monétaire est limitée par la borne à taux zéro. Dans le troisième chapitre, j’étudie l’évolution des choix de financement des firmes américaines en réponse à différent types de chocs économiques. Je trouve que seuls les chocs financiers impliquent des mouvements opposés pour les prêts bancaires et les prêts obligataires. J’utilise ce résultat couplé avec une méthode dite de restriction de signe pour identifier les chocs financiers dans un modèle VAR. Je trouve que les chocs ainsi identifiés expliquent une large partie du cycle des affaires et en particulier les deux dernières récessions. Finalement, cette stratégie d’identification me permet de calculer une mesure de stress financier capable de prédire l’évolution des spreads obligataires
In this thesis, I investigate the implications of financial stress for economic fluctuations along several dimensions. What is it that makes financial crisis so disruptive? What is the role of the banking system in their propagation? How to identify and forecast financial distress? Each chapter brings new elements to complement the literature on these broad questions. In the first chapter of this thesis, written together with Yvan Bécard, we estimate a general equilibrium model where banks can adjust their lending standards for households and firms depending on their ability to liquidate the collateral of their borrowers. We find that collateral shocks, shocks that modify the liquidity of banks’ collateral, explain most of the US business cycle fluctuations for investment, consumption, loan volumes, and the credit spreads. In addition, the collateral shocks resemble measures of bank lending standard as observed over the past 30 years for households and firms. In the second chapter, I develop a model where the banking system is characterized by monopolistic competition and used to study the role of bank competition in the propagation of financial crises. I find that low competition in the banking system can dampen the impact of financial stress in situations where monetary policy is impeded by the ZLB. In the last chapter, I study the evolution of firm debt choices in response to different types of aggregate shocks. I find that only financial shocks imply opposite movements in bond and loan volumes. I use this result with sign-restriction methods to identify financial shocks in a VAR model. I find that financial shocks identified with bond and loan series explain a large share of the business cycle and especially the two last recessions. I also use the identification strategy to recover a measure of financial stress. This measure allows predicting the evolution of corporate bond spreads
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Martínez, Cebrián Gerard 1992. "Identification of novel histone marks required for the transcriptional stress response." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/668153.

Повний текст джерела
Анотація:
Upon environmental stresses such as temperature fluctuations or increases in osmolarity, yeast Saccharomyces cerevisiae induces a transcriptional reprograming in order to survive and adapt to the stress. Histone post-translational modifications are key regulatory elements known to modulate transcription. By using a complete collection of histone mutants, we performed a high throughput transcriptional screening to assess the histone residues required for a proper induction of stressresponsive fluorescent reporters upon heat and osmotic stress. From our screening, we could extract general conclusions regarding the histone residues required for the stress-induced transcription. We observed poor overlap between the residues necessary for heat and osmotic stress. Results from the screening also suggested accessible and modifiable residues were more prone to affect stress-induced transcription when mutated. Following such indications, we selected the accessible and modifiable residues H4-S47 and H4-T30 as their mutation rendered transcriptional defects upon osmotic and heat stress respectively. We validated and characterized the extent of their transcriptional defects by northern blot and RNA sequencing. We also identified and characterized Cla4 and Ste20 for H4-S47 and Ste11 for the H4-T30 as the putative kinases phosphorylating these residues upon stress. In addition, the study of other residues identified in the screening opens new possibilities to identify novel histone modifications relevant for the transcriptional stress response.
Durant estressos ambientals, com ara fluctuacions de temperatura o augment de l'osmolaritat, el llevat Saccharomyces cerevisiae indueix una reprogramació transcripcional per sobreviure i adaptar-se a l'estrès. Les modificacions post-traduccionals d'histones són elements reguladors clau coneguts per modular la transcripció. Utilitzant una col·lecció complet de mutants d'histona, vam realitzar un cribratge transcripcional a gran escala per a avaluar els residus d'histona necessaris per a una inducció adequada de senyalitzadors fluorescents que responen a estrès osmòtic i tèrmic. Del nostre cribratge, vam poder extreure conclusions generals sobre els residus d'histona necessaris per a la transcripció induïda per estrès. Vam observar poc solapament entre els residus necessaris per l’estrès tèrmic i osmòtic. Els resultats del cribratge també suggereixen que els residus accessibles i modificables, quan se’ls mutava, eren més propensos a afectar la transcripció induïda per l'estrès. Seguint aquestes indicacions, vam seleccionar els residus accessibles i modificables H4-S47 i H4-T30 ja que la seva mutació proporcionava defectes transcripcionals en estrès osmòtic i tèrmic respectivament. Vam validar i caracteritzar l’extensió dels seus defectes transcripcionals mitjançant norther blot i seqüenciació d’ARN. També vam identificar i caracteritzar Cla4 i Ste20 per a H4-S47 i Ste11 per a H4-T30 com a possibles quinases que fosforilen els dos residus en estrès. A més, l'estudi d'altres residus identificats en el cribratge obre noves possibilitats per identificar noves modificacions d'histona rellevants per a la resposta transcripcional en estrès.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Herrmann, Leonie. "Identification and characterization of novel candidate molecules for posttraumatic stress disorder." Diss., Ludwig-Maximilians-Universität München, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-157327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "STRESS IDENTIFICATION"

1

Consortiun, UK Sports Information. Select bibliographies: Coping with stress, Sports injury prevention, talent identification. Leeds: UK Sports Information Consortium, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baines-Pinchen, David Adam. Identification of a stress-related protein in the pea-powdery mildew interaction. Birmingham: University of Birmingham, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Davenport, Patricia. School related stress: The measurment of early adolescent perceptions and the identification of sources. London: UEL, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

M, Liebschutz Jane, Frayne Susan M, Saxe Glenn N, and American College of Physicians, eds. Violence against women: A physician's guide to identification and management. Philadelphia, PA: American College of Physicians, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Garbarino, James. The psychologically battered child: (strategies for identification, assessment, and intervention). San Francisco: Jossey-Bass, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

(Organization), Ashalim, ред. Le-daber et ha-shetiḳah: Itur yeladim u-vene noʻar nifgaʻe hitʻalelut ṿe-haznaḥah be-sherute ha-beriut ba-ḳehilah. Yerushalayim: Ashalim, ʻamutah le-tikhnun ule-fituaḥ sherutim li-yeladim u-vene noʻar be-sikun u-mishpeḥotehem, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Surviving identity: Vulnerability and the psychology of recognition. Hove, East Sussex: Routledge, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Austin, Sarat, Davidovitch Nadav, and Alberstein Michal, eds. Trauma and memory: Reading, healing, and making law. Stanford, Calif: Stanford University Press, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

United States. Environmental Protection Agency. Office of Water and United States. Environmental Protection Agency. Office of Research and Development, eds. Stressor identification guidance document. Washington, DC: U.S. Environmental Protection Agency, Office of Water, Office of Research and Development, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1925-, Hall Zaida, ed. Understanding women in distress. London: Tavistock/Routledge, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "STRESS IDENTIFICATION"

1

Turner, J. Rick. "The Risk Identification Protocol." In Cardiovascular Reactivity and Stress, 173–85. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9579-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jalilisadrabad, Samaneh, Mostafa Behzadfar, and Khatereh Moghani Rahimi. "Identification of Urban Stress Measurement Methods." In Stress Relief Urban Planning, 119–29. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4202-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Miroshnychenko, Mykola, Oleksandr Kruglov, Pavlo Nazarok, and Stanislav Kovalenko. "Identification of the Structure of Soil Cover by Magnetic Susceptibility." In Soils Under Stress, 57–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68394-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Almeida, Eduardo Alves, Glaucia Regina Martinez, and Paolo Di Mascio. "Carotenoid Analysis and Identification in Marine Animals." In Oxidative Stress in Aquatic Ecosystems, 402–11. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781444345988.ch30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tiwari, Pradeep, and A. D. Darji. "Stress Identification from Speech Using Clustering Techniques." In Intelligent Systems Reference Library, 1–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76732-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grimplet, Jérôme. "Grapevine abiotic and biotic stress genomics and identification of stress markers." In Grapevine in a Changing Environment, 320–46. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118735985.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Harb, Amal. "Identification of Candidate Genes for Drought Stress Tolerance." In Drought Stress Tolerance in Plants, Vol 2, 385–414. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32423-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Han, Jae Hwan, Jung Suk Lee, Yun Hee Lee, Min Jae Choi, Gyu Jei Lee, Kwang Ho Kim, and Dong Il Kwon. "Residual Stress Estimation with Identification of Stress Directionality Using Instrumented Indentation Technique." In The Mechanical Behavior of Materials X, 1125–28. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-440-5.1125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lys, Brendan, Xiaohui Tao, Tony Machin, Ji Zhang, and Ning Zhong. "Identification of Stress Impact on Personality Density Distributions." In Brain Informatics, 265–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37078-7_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Clarke, N., H. Hetschkun, C. Jones, E. Boswell, and H. Marfaing. "Identification of Stress Tolerance Traits in Sugar Beet." In Interacting Stresses on Plants in a Changing Climate, 511–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78533-7_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "STRESS IDENTIFICATION"

1

Jun, Guo, and K. G. Smitha. "EEG based stress level identification." In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2016. http://dx.doi.org/10.1109/smc.2016.7844738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ramos-Auñón, Guillermo, Inma Mohino-Herranz, Héctor A. Sánchez-Hevia, Cosme Llerena-Aguilar, and David Ayllón. "Two-sensor EEG-based stress detection system." In Modelling, Identification and Control / 827: Computational Intelligence. Calgary,AB,Canada: ACTAPRESS, 2015. http://dx.doi.org/10.2316/p.2015.827-023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sysoev, Mikhail, Andrej Kos, Urban Sedlar, and Matev Pogacnik. "Sensors Classification for Stress Analysis: Toward Automatic Stress Recognition." In 2014 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI). IEEE, 2014. http://dx.doi.org/10.1109/iiki.2014.31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Deng, Yong, Zhonghai Wu, Chao-Hsien Chu, and Tao Yang. "Evaluating feature selection for stress identification." In 2012 IEEE 13th International Conference on Information Reuse & Integration (IRI). IEEE, 2012. http://dx.doi.org/10.1109/iri.2012.6303062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kumar, Ashok, Tina Esther Trueman, and Erik Cambria. "Stress Identification in Online Social Networks." In 2022 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2022. http://dx.doi.org/10.1109/icdmw58026.2022.00063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Frank, Korbinian, Patrick Robertson, Michael Gross, and Kevin Wiesner. "Sensor-based identification of human stress levels." In 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops 2013). IEEE, 2013. http://dx.doi.org/10.1109/percomw.2013.6529469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sethu, Raj Sekar, David Kho, Salil Hari Kulkarni, How Ung Ha, and Kok Heng Soon. "Numerical simulation of thick metal passivation stress, Part I: Identification of stress source." In 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). IEEE, 2017. http://dx.doi.org/10.1109/rsm.2017.8069137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Haider, Amna, Tassadaq Hussain, Areeb Agha, Bilal Khan, Fawad Rashid, Sohail Muzamil, Abdelmalik Taleb Ahmed, Soltan Abed Alharbi, and Eduard Ayguade. "An Iris based Smart System for Stress Identification." In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 2019. http://dx.doi.org/10.1109/icecce47252.2019.8940707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Han, Dong-soo, Jisoo Song, Janarbek Matai, and Minkyu Lee. "A Probability-Based Prediction Framework for Stress Identification." In 2007 9th International Conference on e-Health Networking, Application and Services. IEEE, 2007. http://dx.doi.org/10.1109/health.2007.381603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pandian, M. Jeya, and Durga Karthik. "Crop Water Stress Identification and Estimation: A Review." In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 2022. http://dx.doi.org/10.1109/icesc54411.2022.9885418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "STRESS IDENTIFICATION"

1

Shea, M. T., and Norman J. Hebert. Identification of Risk Factors for Chronic Posttraumatic Stress Disorder (PTSD). Fort Belvoir, VA: Defense Technical Information Center, July 2007. http://dx.doi.org/10.21236/ada484221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shea, M. T. Identification of Risk Factors for Chronic Posttraumatic Stress Disorder (PTSD). Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada524923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shea, M. T., and Norman J. Hebert. Identification of Risk Factors for Chronic Posttraumatic Stress Disorder (PTSD). Fort Belvoir, VA: Defense Technical Information Center, July 2008. http://dx.doi.org/10.21236/ada615368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Westall, Megan, Tara McDaneld, and Diane Moody Spurlock. Towards the Identification of Indicators for Metabolic Stress in Dairy Cattle. Ames (Iowa): Iowa State University, January 2006. http://dx.doi.org/10.31274/ans_air-180814-765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Firon, Nurit, Prem Chourey, Etan Pressman, Allen Hartwell, and Kenneth J. Boote. Molecular Identification and Characterization of Heat-Stress-Responsive Microgametogenesis Genes in Tomato and Sorghum - A Feasibility Study. United States Department of Agriculture, October 2007. http://dx.doi.org/10.32747/2007.7591741.bard.

Повний текст джерела
Анотація:
Exposure to higher than optimal temperatures - heat-stress (HS) - is becoming increasingly common to all crop plants worldwide. Heat stress coinciding with microgametogenesis, especially during the post-meiotic phase that is marked by starch biosynthesis, is often associated with starch-deficient pollen and male sterility and ultimately, greatly reduced crop yields. The molecular basis for the high sensitivity of developing pollen grains, on one hand, and factors involved in pollen heat-tolerance, on the other, is poorly understood. The long-term goal of this project is to provide a better understanding of the genes that control pollen quality under heat-stress conditions. The specific objectives of this project were: (1) Determination of the threshold heat stress temperature(s) that affects tomato and sorghum pollen quality whether: a) Chronic mild heat stress conditions (CMHS), or b) Acute heat stress (AHS). (2) Isolation of heat-responsive, microgametogenesis-specific sequences. During our one-year feasibility project, we have accomplished the proposed objectives as follows: Objectrive 1: We have determined the threshold HS conditions in tomato and sorghum. This was essential for achieving the 2nd objective, since our accumulated experience (both Israeli and US labs) indicate that when temperature is raised too high above "threshold HS levels" it may cause massive death of the developing pollen grains. Above-threshold conditions have additional major disadvantages including the "noise" caused by induced expression of genes involved in cell death and masking of the differences between heatsensitive and heat-tolerant pollen grains. Two different types of HS conditions were determined: a) Season-long CMHS conditions: 32/26°C day/night temperatures confirmed in tomato and 36/26°C day maximum/night minimum temperatures in sorghum. b) Short-term AHS: In tomato, 2 hour exposure to 42-45°C (at 7 to 3 days before anthesis) followed by transfer to 28/22±2oC day/night temperatures until flower opening and pollen maturation, caused 50% reduced germinating pollen in the heat-sensitive 3017 cv.. In sorghum, 36/26°C day/night temperatures 10 to 5 days prior to panicle emergence, occurring at 35 days after sowing (DAS) in cv. DeKalb28E, produced starch-deficient and sterile pollen. Objective 2: We have established protocols for the high throughput transcriptomic approach, cDNA-AFLP, for identifying and isolating genes exhibiting differential expression in developing microspores exposed to either ambient or HS conditions and created a databank of HS-responsivemicrogametogenesis-expressed genes. A subset of differentially displayed Transcript-Derived Fragments (TDFs) that were cloned and sequenced (35 & 23 TDFs in tomato and sorghum, respectively) show close sequence similarities with metabolic genes, genes involved in regulation of carbohydrate metabolism, genes implicated in thermotolerance (heat shock proteins), genes involved in long chain fatty acids elongation, genes involved in proteolysis, in oxidation-reduction, vesicle-mediated transport, cell division and transcription factors. T-DNA-tagged Arabidopsis mutants for part of these genes were obtained to be used for their functional analysis. These studies are planned for a continuation project. Following functional analyses of these genes under HS – a valuable resource of genes, engaged in the HS-response of developing pollen grains, that could be modulated for the improvement of pollen quality under HS in both dicots and monocots and/or used to look for natural variability of such genes for selecting heat-tolerant germplasm - is expected.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Porat, Ron, Gregory T. McCollum, Amnon Lers, and Charles L. Guy. Identification and characterization of genes involved in the acquisition of chilling tolerance in citrus fruit. United States Department of Agriculture, December 2007. http://dx.doi.org/10.32747/2007.7587727.bard.

Повний текст джерела
Анотація:
Citrus, like many other tropical and subtropical fruit are sensitive to chilling temperatures. However, application of a pre-storage temperature conditioning (CD) treatment at 16°C for 7 d or of a hot water brushing (HWB) treatment at 60°C for 20 sec remarkably enhances chilling tolerance and reduces the development of chilling injuries (CI) upon storage at 5°C. In the current research, we proposed to identify and characterize grapefruit genes that are induced by CD, and may contribute to the acquisition of fruit chilling tolerance, by two different molecular approaches: cDNA array analysis and PCR cDNA subtraction. In addition, following the recent development and commercialization of the new Affymetrix Citrus Genome Array, we further performed genome-wide transcript profiling analysis following exposure to CD and chilling treatments. To conduct the cDNA array analysis, we constructed cDNA libraries from the peel tissue of CD- and HWB-treated grapefruit, and performed an EST sequencing project including sequencing of 3,456 cDNAs from each library. Based on the obtained sequence information, we chose 70 stress-responsive and chilling-related genes and spotted them on nylon membranes. Following hybridization the constructed cDNA arrays with RNA probes from control and CD-treated fruit and detailed confirmations by RT-PCR analysis, we found that six genes: lipid-transfer protein, metallothionein-like protein, catalase, GTP-binding protein, Lea5, and stress-responsive zinc finger protein, showed higher transcript levels in flavedo of conditioned than in non-conditioned fruit stored at 5 ᵒC. The transcript levels of another four genes: galactinol synthase, ACC oxidase, temperature-induced lipocalin, and chilling-inducible oxygenase, increased only in control untreated fruit but not in chilling-tolerant CD-treated fruit. By PCR cDNA subtraction analysis we identified 17 new chilling-responsive and HWB- and CD-induced genes. Overall, characterization of the expression patterns of these genes as well as of 11 more stress-related genes by RNA gel blot hybridizations revealed that the HWB treatment activated mainly the expression of stress-related genes(HSP19-I, HSP19-II, dehydrin, universal stress protein, EIN2, 1,3;4-β-D-glucanase, and SOD), whereas the CD treatment activated mainly the expression of lipid modification enzymes, including fatty acid disaturase2 (FAD2) and lipid transfer protein (LTP). Genome wide transcriptional profiling analysis using the newly developed Affymetrix Citrus GeneChip® microarray (including 30,171 citrus probe sets) revealed the identification of three different chilling-related regulons: 1,345 probe sets were significantly affected by chilling in both control and CD-treated fruits (chilling-response regulon), 509 probe sets were unique to the CD-treated fruits (chilling tolerance regulon), and 417 probe sets were unique to the chilling-sensitive control fruits (chilling stress regulon). Overall, exposure to chilling led to expression governed arrest of general cellular metabolic activity, including concretive down-regulation of cell wall, pathogen defense, photosynthesis, respiration, and protein, nucleic acid and secondary metabolism. On the other hand, chilling enhanced various adaptation processes, such as changes in the expression levels of transcripts related to membranes, lipid, sterol and carbohydrate metabolism, stress stimuli, hormone biosynthesis, and modifications in DNA binding and transcription factors.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Been, Lu, and King. 3DWXATZ Inhibitive Effect of Organics on Near-neutral pH SCC. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2008. http://dx.doi.org/10.55274/r0011184.

Повний текст джерела
Анотація:
The objectives of the current project are to confirm the earlier observation of an inhibitive effect of organic soils on the stress corrosion cracking of pipeline steels and to determine the mechanism of this inhibition.� Identification of an inhibitor for near-neutral pH SCC that may be naturally present in some locations could perhaps be deliberately added in other locations.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lichter, Amnon, Gopi K. Podila, and Maria R. Davis. Identification of Genetic Determinants that Facilitate Development of B. cinerea at Low Temperature and its Postharvest Pathogenicity. United States Department of Agriculture, March 2011. http://dx.doi.org/10.32747/2011.7592641.bard.

Повний текст джерела
Анотація:
Botrytis cinerea is the postharvest pathogen of many agricultural produce with table grapes, strawberries and tomatoes as major targets. The high efficiency with which B. cinerea causes disease on these produce during storage is attributed in part due to its exceptional ability to develop at very low temperature. Our major goal was to understand the genetic determinants which enable it to develop at low temperature. The specific research objectives were: 1. Identify expression pattern of genes in a coldenriched cDNA library. 2. Identify B. cinerea orthologs of cold-induced genes 3. Profile protein expression and secretion at low temperature on strawberry and grape supplemented media. 4. Test novel methods for the functional analysis of coldresponsive genes. Objective 1 was modified during the research because a microarray platform became available and it allowed us to probe the whole set of candidate genes according to the sequence of 2 strains of the fungus, BO5.10 and T4. The results of this experiment allowed us to validate some of our earlier observations which referred to genes which were the product of a SSH suppression-subtraction library. Before the microarray became available during 2008 we also analyzed the expression of 15 orthologs of cold-induced genes and some of these results were also validated by the microarray experiment. One of our goals was also to perform functional analysis of cold-induced genes. This goal was hampered for 3 years because current methodology for transformation with ‘protoplasts’ failed to deliver knockouts of bacteriordopsin-like (bR) gene which was our primary target for functional analysis. Consequently, we developed 2 alternative transformation platforms, one which involves an air-gun based technique and another which involves DNA injection into sclerotia. Both techniques show great promise and have been validated using different constructs. This contribution is likely to serve the scientific community in the near future. Using these technologies we generated gene knockout constructs of 2 genes and have tested there effect on survival of the fungus at low temperature. With reference to the bR genes our results show that it has a significant effect on mycelial growth of the B. cinerea and the mutants have retarded development at extreme conditions of ionic stress, osmotic stress and low temperature. Another gene of unknown function, HP1 is still under analysis. An ortholog of the yeast cold-induced gene, CCH1 which encodes a calcium tunnel and was shown to be cold-induced in B. cinerea was recently cloned and used to complement yeast mutants and rescue them from cold-sensitivity. One of the significant findings of the microarray study involves a T2 ribonuclease which was validated to be cold-induced by qPCR analysis. This and other genes will serve for future studies. In the frame of the study we also screened a population of 631 natural B. cinerea isolates for development at low temperature and have identified several strains with much higher and lower capacity to develop at low temperature. These strains are likely to be used in the future as candidates for further functional analysis. The major conclusions from the above research point to specific targets of cold-induced genes which are likely to play a role in cold tolerance. One of the most significant observations from the microarray study is that low temperature does not induce ‘general stress response in B. cinerea, which is in agreement to its exceptional capacity to develop at low temperature. Due to the tragic murder of the Co-PI Maria R. Davis and GopiPodila on Feb. 2010 it is impossible to deliver their contribution to the research. The information of the PI is that they failed to deliver objective 4 and none of the information which relates to objective 3 has been delivered to the PI before the murder or in a visit to U. Alabama during June, 2010. Therefore, this report is based solely on the IS data.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mohanty, Subhasish M., Bryan J. Jagielo, William I. Iverson, Chi Bum Bhan, William S. Soppet, Saurin M. Majumdar, and Ken N. Natesan. Online stress corrosion crack and fatigue usages factor monitoring and prognostics in light water reactor components: Probabilistic modeling, system identification and data fusion based big data analytics approach. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1168230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brust. L51576 Crack Growth Behavior and Modeling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 1989. http://dx.doi.org/10.55274/r0010642.

Повний текст джерела
Анотація:
The objective of the Crack Growth/Modeling effort of the NG-18 Line Pipe Supervisory Committee's Stress-Corrosion Phase is to develop an understanding of the factors that control stress-corrosion crack growth. This information can be used to develop models for predicting crack growth and to mitigate crack growth through control of metallurgical parameters and operating conditions. This effort has been divided into the following four main tasks: (1) Characterization of crack shape,(2) Identification of a crack force driving parameter,(3) Determination of the effects of mechanical properties on crack growth and shape, and(4) Examination of the effects of crack interaction on overall crack growth. The background, procedures, and results of the work done in each of these tasks will be described separately.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії