Добірка наукової літератури з теми "Stochastic processes with large dimension"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Stochastic processes with large dimension".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Stochastic processes with large dimension"
Panos, Aristeidis, Petros Dellaportas, and Michalis K. Titsias. "Large scale multi-label learning using Gaussian processes." Machine Learning 110, no. 5 (April 14, 2021): 965–87. http://dx.doi.org/10.1007/s10994-021-05952-5.
Повний текст джерелаFeitzinger, J. V. "Star Formation in the Large Magellanic Cloud." Symposium - International Astronomical Union 115 (1987): 521–33. http://dx.doi.org/10.1017/s0074180900096315.
Повний текст джерелаFRICKE, THOMAS, and DIETMAR WENDT. "THE MARKOFF AUTOMATON: A NEW ALGORITHM FOR SIMULATING THE TIME-EVOLUTION OF LARGE STOCHASTIC DYNAMIC SYSTEMS." International Journal of Modern Physics C 06, no. 02 (April 1995): 277–306. http://dx.doi.org/10.1142/s0129183195000216.
Повний текст джерелаMazzolo, Alain, and Cécile Monthus. "Conditioning diffusion processes with killing rates." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 8 (August 1, 2022): 083207. http://dx.doi.org/10.1088/1742-5468/ac85ea.
Повний текст джерелаHonkonen, Juha. "Fractional Stochastic Field Theory." EPJ Web of Conferences 173 (2018): 01005. http://dx.doi.org/10.1051/epjconf/201817301005.
Повний текст джерелаJonckheere, Matthieu, and Seva Shneer. "Stability of Multi-Dimensional Birth-and-Death Processes with State-Dependent 0-Homogeneous Jumps." Advances in Applied Probability 46, no. 1 (March 2014): 59–75. http://dx.doi.org/10.1239/aap/1396360103.
Повний текст джерелаJonckheere, Matthieu, and Seva Shneer. "Stability of Multi-Dimensional Birth-and-Death Processes with State-Dependent 0-Homogeneous Jumps." Advances in Applied Probability 46, no. 01 (March 2014): 59–75. http://dx.doi.org/10.1017/s0001867800006935.
Повний текст джерелаAnantharam, Venkat, and François Baccelli. "Capacity and Error Exponents of Stationary Point Processes under Random Additive Displacements." Advances in Applied Probability 47, no. 1 (March 2015): 1–26. http://dx.doi.org/10.1239/aap/1427814578.
Повний текст джерелаAnantharam, Venkat, and François Baccelli. "Capacity and Error Exponents of Stationary Point Processes under Random Additive Displacements." Advances in Applied Probability 47, no. 01 (March 2015): 1–26. http://dx.doi.org/10.1017/s0001867800007679.
Повний текст джерелаDulfan, Anna, and Iryna Voronko. "Features of Spatial-Temporal Hierarchical Structures Formation." Lighting Engineering & Power Engineering 60, no. 2 (October 29, 2021): 66–70. http://dx.doi.org/10.33042/2079-424x.2021.60.2.03.
Повний текст джерелаДисертації з теми "Stochastic processes with large dimension"
Bastide, Dorinel-Marian. "Handling derivatives risks with XVAs in a one-period network model." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM027.
Повний текст джерелаFinance regulators require banking institutions to be able to conduct regular scenario analyses to assess their resistance to various shocks (stress tests) of their exposures, in particular towards clearing houses (CCPs) to which they are largely exposed, by applying market shocks to capture market risk and economic shocks leading some financial players to bankruptcy, known as default state, to reflect both credit and counterparty risks. By interposing itself between financial actors, one of the main purposes of CCPs are to limit counterparty risk due to contractual payment failures due to one or several defaults among engaged parties. They also facilitate the various financial flows of the trading activities even in the event of default of one or more of their members by re-arranging certain positions and allocating any loss that could materialize following these defaults to the surviving members. To develop a relevant view of risks and ensure effective capital steering tools, it is essential for banks to have the capacity to comprehensively understand the losses and liquidity needs caused by these various shocks within these financial networks as well as to have an understanding of the underlying mechanisms. This thesis project aims at tackling modelling issues to answer those different needs that are at the heart of risk management practices for banks under clearing environments. We begin by defining a one-period static model for reflecting the market heterogeneous positions and possible joint defaults of multiple financial players, being members of CCPs and other financial participants, to identify the different costs, known as XVAs, generated by both clearing and bilateral activities, with explicit formulas for these costs. Various use cases of this modelling framework are illustrated with stress test exercises examples on financial networks from a member's point of view or innovation of portfolio of CCP defaulted members with other surviving members. Fat-tailed distributions are favoured to generate portfolio losses and defaults with the application of very large-dimension Monte-Carlo methods along with numerical uncertainty quantifications. We also expand on the novation aspects of portfolios of defaulted members and the associated XVA costs transfers. These innovations can be carried out either on the marketplaces (exchanges) or by the CCPs themselves by identifying the optimal buyers or by conducting auctions of defaulted positions with dedicated economic equilibrium problems. Failures of members on several CCPs in common also lead to the formulation and resolution of multidimensional optimization problems of risk transfer that are introduced in this thesis
Jones, Elinor Mair. "Large deviations of random walks and levy processes." Thesis, University of Manchester, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491853.
Повний текст джерелаSuzuki, Kohei. "Convergence of stochastic processes on varying metric spaces." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215281.
Повний текст джерелаKuwada, Kazumasa. "On large deviations for current-valued processes induced from stochastic line integrals." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147585.
Повний текст джерелаHoshaw-Woodard, Stacy. "Large sample methods for analyzing longitudinal data in rehabilitation research /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9946263.
Повний текст джерелаLöhr, Wolfgang. "Models of Discrete-Time Stochastic Processes and Associated Complexity Measures." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-38267.
Повний текст джерелаLöhr, Wolfgang. "Models of Discrete-Time Stochastic Processes and Associated Complexity Measures." Doctoral thesis, Max Planck Institut für Mathematik in den Naturwissenschaften, 2009. https://ul.qucosa.de/id/qucosa%3A11017.
Повний текст джерелаKubasch, Madeleine. "Approximation of stochastic models for epidemics on large multi-level graphs." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04717689.
Повний текст джерелаWe study an SIR model with two levels of mixing, namely a uniformly mixing global level, and a local level with two layers of household and workplace contacts, respectively. More precisely, we aim at proposing reduced models which approximate well the epidemic dynamics at hand, while being more prone to mathematical analysis and/or numerical exploration.We investigate the epidemic impact of the workplace size distribution. Our simulation study shows that if the average workplace size is kept fixed, the variance of the workplace size distribution is a good indicator of its influence on key epidemic outcomes. In addition, this allows to design an efficient teleworking strategy. Next, we demonstrate that a deterministic, uniformly mixing SIR model calibrated using the epidemic growth rate yields a parsimonious approximation of the household-workplace model.However, the accuracy of this reduced model deteriorates over time and lacks theoretical guarantees. Hence, we study the large population limit of the stochastic household-workplace model, which we formalize as a measure-valued process with continuous state space. In a general setting, we establish convergence to the unique deterministic solution of a measure-valued equation. In the case of exponentially distributed infectious periods, a stronger reduction to a finite dimensional dynamical system is obtained.Further, in order to gain a finer insight on the impact of the model parameters on the performance of both reduced models, we perform a sensitivity study. We show that the large population limit of the household-workplace model can approximate well the epidemic even if some assumptions on the contact network are relaxed. Similarly, we quantify the impact of epidemic parameters on the capacity of the uniformly mixing reduced model to predict key epidemic outcomes.Finally, we consider density-dependent population processes in general. We establish a many-to-one formula which reduces the typical lineage of a sampled individual to a time-inhomogeneous spinal process. In addition, we use a coupling argument to quantify the large population convergence of a spinal process
De, Oliveira Gomes André. "Large Deviations Studies for Small Noise Limits of Dynamical Systems Perturbed by Lévy Processes." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19118.
Повний текст джерелаThis thesis deals with applications of Large Deviations Theory to different problems of Stochastic Dynamics and Stochastic Analysis concerning Jump Processes. The first problem we address is the first exit time from a fixed bounded domain for a certain class of exponentially light jump diffusions. According to the lightness of the jump measure of the driving process, we derive, when the source of the noise vanishes, the asymptotic behavior of the law and of the expected value of first exit time. In the super-exponential regime the law of the first exit time follows a large deviations scale and in the sub-exponential regime it follows a moderate deviations one. In both regimes the first exit time is comprehended, in the small noise limit, in terms of a deterministic quantity that encodes the minimal energy the jump diffusion needs to spend in order to follow an optimal controlled path that leads to the exit. The second problem that we analyze is the small noise limit of a certain class of coupled forward-backward systems of Stochastic Differential Equations. Associated to these stochastic objects are some nonlinear nonlocal Partial Differential Equations that arise as nonlocal toy-models of Fluid Dynamics. Using a probabilistic approach and the Markov nature of these systems we study the convergence at the level of viscosity solutions and we derive a large deviations principles for the laws of the stochastic processes that are involved.
Chinnici, Marta. "Stochastic self-similar processes and large scale structures." Tesi di dottorato, 2008. http://www.fedoa.unina.it/1993/1/Chinnici_Scienze_Computazionali.pdf.
Повний текст джерелаКниги з теми "Stochastic processes with large dimension"
1939-, Tzafestas S. G., and Watanabe Keigo 1952-, eds. Stochastic large-scale engineering systems. New York: M. Dekker, 1992.
Знайти повний текст джерелаBosq, Denis. Inference and prediction in large dimensions. Hoboken, NJ: John Wiley, 2007.
Знайти повний текст джерелаGirko, V. L. Statistical analysis of observations of increasing dimension. Dordrecht: Kluwer Academic Publishers, 1995.
Знайти повний текст джерелаG, Kurtz Thomas, ed. Large deviations for stochastic processes. Providence, R.I: American Mathematical Society, 2006.
Знайти повний текст джерелаAssing, Sigurd. Continuous strong Markov processes in dimension one: A stochastic calculus approach. Berlin: Springer, 1998.
Знайти повний текст джерелаWentzell, A. D. Limit Theorems on Large Deviations for Markov Stochastic Processes. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1852-8.
Повний текст джерелаWentzell, Alexander D. Limit theorems on large deviations for Markov stochastic processes. Dordrecht: Kluwer Academic Publishers, 1990.
Знайти повний текст джерелаWentzell, A. D. Limit Theorems on Large Deviations for Markov Stochastic Processes. Dordrecht: Springer Netherlands, 1990.
Знайти повний текст джерелаVaart, A. W. van der. Statistical estimation in large parameter spaces. Amsterdam: CWI, 1987.
Знайти повний текст джерелаA. W. van der Vaart. Statistical estimation in large parameter spaces. Amsterdam, Netherlands: Centre for Mathematics and Computer Science, 1988.
Знайти повний текст джерелаЧастини книг з теми "Stochastic processes with large dimension"
Athreya, K. B., and A. Vidyashankar. "Large Deviation Results for Branching Processes." In Stochastic Processes, 7–12. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4615-7909-0_2.
Повний текст джерелаMonrad, Ditlev, and Loren D. Pitt. "Local Nondeterminism and Hausdorff Dimension." In Seminar on Stochastic Processes, 1986, 163–89. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4684-6751-2_12.
Повний текст джерелаFeng, Jin, and Thomas Kurtz. "Large deviations for stochastic processes." In Mathematical Surveys and Monographs, 57–76. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/surv/131/04.
Повний текст джерелаSchinazi, Rinaldo B. "Asymmetric and Higher Dimension Random Walks." In Classical and Spatial Stochastic Processes, 67–80. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1869-0_4.
Повний текст джерелаBakry, Dominique. "Ricci Curvature and Dimension for Diffusion Semigroups." In Stochastic Processes and their Applications, 21–31. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2117-7_2.
Повний текст джерелаOrey, Steven. "Large Deviations in Ergodic Theory." In Seminar on Stochastic Processes, 1984, 195–249. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4684-6745-1_12.
Повний текст джерелаLe Jan, Y. "Haussdorf dimension for the statistical equilibrium of stochastics flows." In Stochastic Processes — Mathematics and Physics, 201–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0080218.
Повний текст джерелаTalagrand, Michel. "The Ultimate Matching Theorem in Dimension ≥3." In Upper and Lower Bounds for Stochastic Processes, 475–513. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54075-2_15.
Повний текст джерелаTalagrand, Michel. "The Ultimate Matching Theorem in Dimension 3." In Upper and Lower Bounds for Stochastic Processes, 561–603. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82595-9_18.
Повний текст джерелаArnold, Ludwig, and Petra Boxler. "Stochastic bifurcation: instructive examples in dimension one." In Diffusion Processes and Related Problems in Analysis, Volume II, 241–55. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_10.
Повний текст джерелаТези доповідей конференцій з теми "Stochastic processes with large dimension"
Sastry, A. M., C. W. Wang, and L. Berhan. "Deformation and Failure in Stochastic Fibrous Networks: Scale, Dimension and Application." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2667.
Повний текст джерелаWang, Yan. "Simulating Stochastic Diffusions by Quantum Walks." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12739.
Повний текст джерелаZhang, Xin, Xin Li, Xueping Zhang, and Zhenqiang Yao. "Grinding Force Prediction Model by Discretizing Stochastic Grains." In ASME 2023 18th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/msec2023-104618.
Повний текст джерелаJin, Yuan, Jin Chai, and Olivier Jung. "Automatically Designed Deep Gaussian Process for Turbomachinery Application." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-58469.
Повний текст джерелаRezagah, Farideh Ebrahim, Shirin Jalali, Elza Erkip, and H. Vincent Poor. "Rate-distortion dimension of stochastic processes." In 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, 2016. http://dx.doi.org/10.1109/isit.2016.7541665.
Повний текст джерелаGeiger, Bernhard C., and Tobias Koch. "On the information dimension rate of stochastic processes." In 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. http://dx.doi.org/10.1109/isit.2017.8006656.
Повний текст джерелаBuchkovskii, I. A., A. G. Gorkavchuk, M. S. Gavrylyak, and P. P. Maksimyak. "Study of stochastic processes into phase with finite dimension." In SPIE Proceedings, edited by Malgorzata Kujawinska and Oleg V. Angelsky. SPIE, 2008. http://dx.doi.org/10.1117/12.797122.
Повний текст джерелаTianhai Tian and K. Burrage. "Parallel implementation of stochastic simulation for large-scale cellular processes." In Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA'05). IEEE, 2005. http://dx.doi.org/10.1109/hpcasia.2005.67.
Повний текст джерелаMorton, David, Bruce Letellier, Jeremy Tejada, David Johnson, Zahra Mohaghegh, Ernie Kee, Vera Moiseytseva, Seyed Reihani, and Alexander Zolan. "Sensitivity Analyses of a Simulation Model for Estimating Fiber-Induced Sump Screen and Core Failure Rates." In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30917.
Повний текст джерелаStu¨bing, S., M. Dietzel, and M. Sommerfeld. "Modelling Agglomeration and the Fluid Dynamic Behaviour of Agglomerates." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-12025.
Повний текст джерелаЗвіти організацій з теми "Stochastic processes with large dimension"
Jury, William A., and David Russo. Characterization of Field-Scale Solute Transport in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7568772.bard.
Повний текст джерелаGonzalez Diez, Verónica M. Resettlement Processes and their Socioeconomic Impact: Porce II Hydroelectric Project, Colombia. Inter-American Development Bank, March 2011. http://dx.doi.org/10.18235/0010448.
Повний текст джерелаMizrahi, Itzhak, and Bryan A. White. Uncovering rumen microbiome components shaping feed efficiency in dairy cows. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600020.bard.
Повний текст джерелаSnyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Повний текст джерела