Добірка наукової літератури з теми "STM simulations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "STM simulations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "STM simulations"
Wilson, J. H., D. A. McInnes, J. Knall, A. P. Sutton, and J. B. Pethica. "Quantitative voltage-dependent STM image simulations for semiconductors." Ultramicroscopy 42-44 (July 1992): 801–8. http://dx.doi.org/10.1016/0304-3991(92)90361-m.
Повний текст джерелаBocquet, Marie-Laure, and Bin Wang. "Metal–organic interaction probed by First Principles STM simulations." Progress in Surface Science 85, no. 9-12 (September 2010): 435–59. http://dx.doi.org/10.1016/j.progsurf.2010.09.001.
Повний текст джерелаTremblay, Jean Christophe, and María Blanco-Rey. "Manipulating interfacial hydrogens at palladium via STM." Physical Chemistry Chemical Physics 17, no. 21 (2015): 13973–83. http://dx.doi.org/10.1039/c5cp00663e.
Повний текст джерелаZhang, Rui, Liang Li, Laszlo Frazer, Kelvin B. Chang, Kenneth R. Poeppelmeier, Maria K. Y. Chan, and Jeffrey R. Guest. "Atomistic determination of the surface structure of Cu2O(111): experiment and theory." Physical Chemistry Chemical Physics 20, no. 43 (2018): 27456–63. http://dx.doi.org/10.1039/c8cp06023a.
Повний текст джерелаNakagiri, Nobuyuki, and Hiroshi Kaizuka. "Simulations of STM Images and Work Function for Rough Surfaces." Japanese Journal of Applied Physics 29, Part 1, No. 4 (April 20, 1990): 744–49. http://dx.doi.org/10.1143/jjap.29.744.
Повний текст джерелаRochefort, Alain, Stéphane Bedwani та Alejandro Lopez-Bezanilla. "Evidence for π-Interactions in Stacked Polymers by STM Simulations". Journal of Physical Chemistry C 115, № 38 (вересень 2011): 18625–33. http://dx.doi.org/10.1021/jp204832q.
Повний текст джерелаMagoga, Michaël, Fabien Archambault, and Jorge I. Cerdá. "Nt_STM: A step forward in Scanning Tunneling Microscopy (STM) simulations." Computer Physics Communications 183, no. 6 (June 2012): 1246–49. http://dx.doi.org/10.1016/j.cpc.2012.02.003.
Повний текст джерелаRubio-Verdú, C., G. Sáenz-Arce, J. Martinez-Asencio, D. C. Milan, M. Moaied, J. J. Palacios, M. J. Caturla, and C. Untiedt. "Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip." Physical Chemistry Chemical Physics 19, no. 11 (2017): 8061–68. http://dx.doi.org/10.1039/c6cp07236d.
Повний текст джерелаLI QUN-XIANG, YANG JIN-LONG, HOU JIAN-GUO, WANG KE-LIN, and ZHU QING-SHI. "THEORETICAL SIMULATIONS OF STM IMAGES FOR C60 WITH DIFFERENT ADSORBED ORIENTATIONS." Acta Physica Sinica 48, no. 8 (1999): 1477. http://dx.doi.org/10.7498/aps.48.1477.
Повний текст джерелаMáca, F., W. A. Hofer, and J. Redinger. "Ab initio simulations and STM-images for Co/Pt(110) surfaces." Surface Science 482-485 (June 2001): 844–49. http://dx.doi.org/10.1016/s0039-6028(01)00741-5.
Повний текст джерелаДисертації з теми "STM simulations"
Lesnard, Hervé. "Structure électronique de molécules aromatiques sur une surface sondée par STM : apports récents des simulations." Lyon, École normale supérieure (sciences), 2009. http://www.theses.fr/2009ENSL0553.
Повний текст джерелаThe subject of my theoretical work deals with the capabilities of the STM tool to induce two types of local excitations, either vibrational or electronic on single adsorbed aromatic molecules on surfaces. Concerning vibrational excitations, the changes in tunneling conductance at vibrational thresholds have recently been used as an Inelastic Electron Tunneling Spectroscopy (IETS). We study the STM-induced dehydrogenation of benzene on Cu(100), where the reaction products could be either phenyl or benzyne fragments (group of W. Ho, Irvine). We demonstrate that they are solely identified with their theoretical IETS fingerprints being in quantitative agreement with the IETS measurements. We similarly investigate the dehydrogenation of pyridine and show that one heteroatom in the aromatic ring affects the magnitude of the IETS signatures. Conversely, we rationalize our findings in terms of inelastic propensity rules that couple the symmetry of the electronic scattering states and the molecular vibrators. In a second part, we study the electron-induced reactions of individual biphenyl molecules on a Si(100) surface, which have been investigated by using the tip of the STM as an atomic size source of electrons (group of G. Dujardin, Orsay). Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. We determine all possible reaction pathways on the silicon surface, providing evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies
Vu, Van Binh. "Theoretical studies of novel graphene based nanostructures." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP039.
Повний текст джерелаSince its discovery, graphene has become a focal point of extensive research and interest because of its exceptional mechanical, thermal, and electrical characteristics. Nevertheless, the absence of a bandgap in graphene constitutes a barrier to applications in optics, nanoelectronics, and spintronics. Bandgap engineering involving the nanostructuration of graphene has been developed over the years, such as by quantum confinement, to overcome this limitation. This theoretical work is dedicated to the change of electronic, optical, and scanning tunneling microscopy/spectroscopy (STM/STS) responses as a function of system size of new carbon materials like graphene nanomeshes (GNMs), shape/size controlled graphene quantum dots (GQDs) and graphene nanoribbons (GNRs), in order to compare and analyze experimental data. These new carbon materials are theoretically deposited on gold Au(111) surfaces in STM simulation performed using the Non-equilibrium Green's function (NEGF) formalism based on the Fireball DFT method to support the experimental data. Concerning GQDs, we simulate their absorption spectrum using the GW approximation and the Bethe-Salpeter equations (BSE), if possible, to compare directly with the experiment data. Otherwise, their optical properties are achieved by a lower approach, the Tight-Binding (TB) approach. Also, the impacts of aggregations and impurities on their optical responses are explored by studying the twisted bilayer of the GQDs via the TB method. Moreover, the changes in these new carbon materials' electronic properties as a function of their system size are extracted using the TB method. The performance of the TB method is verified by DFT and GW simulations. Finally, other low-dimensional materials, new close-to 30° twisted hexagonal boron nitride bilayer structures (hBN-TBLs), are also studied in this thesis. DFT and TB methods perform the electronic and optical structures of further 30° hBN-TBLs to obtain the fit parameters for the TB model. These parameters are then used to predict closer to 30° hBN-TBLs, which are hardly to be obtained by DFT
Parditka, Bence. "Investigation of diffusion and solid state reactions on the nanoscale in silicon based systems of high industrial potential : experiments and simulations." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4348/document.
Повний текст джерелаDiffusion and related solid state reaction phenomena have been studied in four different material couples. The first section of the results concerned the diffusion related stress effects. We analyzed the question theoretically, for planar model geometry, to find the role of stress in diffusion. We obtained that stress effects do not have any measurable effects on the kinetic coefficient of the interface shift. However, the intermixing rate decreases. The second section we performed EXAFS and GIXRF experiments on sandwich structured Ta/a- Si/Ni/a-Si/Ta/substrate samples and followed the phase formation and growth at a given temperature at which the Ni2Si phase has formed and continued to grow. The third section we obtained in the Cu-Si system. We followed the early stages of phase formation of the Cu3Si phase under different circumstances. We performed XRD, APT, SNMS, profilometer and 4 wire resistance measurements on sputtering deposited samples. We found that in case of the Cu/a-Si/substrate samples the phase formation was followed by a linear kinetics. Secondly, prior to the linear phase growth, we observed an extremely fast phase formation that appeared immediately after the very first and shortest annealing, which showed that the preparation sequence of the sample is a crucial point in phase formation processes. The fourth section deals with the silicene. It is the honeycomb structured formation of Si atoms with properties similar to graphene. We investigated the dissolution of Si into Ag. We performed a combination of AES, LEED, STM measurements. We determined the dissolution limit of Si in Ag from data obtained from the AES measurements
Boukari, Khaoula. "De la molécule unique au tapis supramoléculaire sur surface de silicium passivée : Simulations numériques à l'échelle atomique." Thesis, Mulhouse, 2013. http://www.theses.fr/2013MULH8858/document.
Повний текст джерелаMy thesis presents the study of the adsorption of single molecules and molecular self-assembly, by numerical simulations at the atomic scale, on a boron doped silicon surface denoted Si(111)(√(3 ) x√3)R30°-B. After presenting the calculation methods and describing the surface model, this thesis is made of two parts: the first one is about the adsorption of single molecules and the second one is devoted to the formation of supramolecular network. In the first part, I studied the adsorption of single molecules on the silicon surface doped boron Si (111)(√(3 ) x√3)R30°-B. I have investigated the adsorption mechanisms of three different molecules: a molecule of pyridyl-azobenzene, a molecule of the family of porphyrin (Cu-TBBP) and two molecules which belong to the family of phtalocyanine (H2Pc and CuPc). For every molecule, I conducted energetic, structural and electronic studies. In most of the cases, I completed this work by calculating STM images in order to compare with experimental results. The second part of this thesis deals with the study of self assembly of organic molecules on the surface of Si(111)(√(3 ) x√3)R30°-B. Molecular self assembly is a technique which allows the formation of highly organized architectures at the atomic scale. I have studied three different molecules forming self assembly on the surface of Si (111)(√(3 ) x√3)R30°-B : 1,3,5-tri(4-bromophenyl benzene) denoted TBB, 1,3,5-tri(4-iodophenyle benzene) denoted TIB et 1,3,5-triphenylbenzene denoted THB. As the formation of a self organized network is a result of equilibrium between molecule-molecule interaction and molecule-substrate one, I have evaluated the interaction energies by using different approximations (LDA, GGA and GGA+D). Then, I have studied the electronic properties of these assemblies by calculating the projected density of states, the charge difference and the Laplacien of the charge or the ELF function (Electronic Localization Function). In order to compare our results with experimental ones, STM images calculations were performed by using two different approaches: the approach of Tersoff-Hamann and the multi-scattering approach proposed by bSKAN code. Finally, I have studied the growth of C60 molecules on the self organized network formed by the TBB molecules deposited on the Si (111)(√(3 ) x√3)R30°-B surface. The energetic study shows that C60 molecules are adsorbed preferentially in the hexagonal nanopores in agreement with the STM observations
Robinson, Michael C. "A study of the diffusion of Pb on Au(111) using scanning tunneling microscopy (STM), with a comparison to embedded atom method (EAM) and surface embedded atom method (SEAM) simulations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ52846.pdf.
Повний текст джерелаLaird, Rob. "Sim City : the simulation of ideology /." Title page, table of contents and introduction only, 2005. http://web4.library.adelaide.edu.au/theses/09AR/09arl188.pdf.
Повний текст джерелаWatcharasukarn, Montira. "Travel Adaptive Capacity Assessment Simulation (TACA Sim)." Thesis, University of Canterbury. Mechanical Engineering, 2010. http://hdl.handle.net/10092/5119.
Повний текст джерелаDeniz, Ertan. "Dds Based Mil-std-1553b Data Bus Interface Simulation." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614852/index.pdf.
Повний текст джерелаPetersson, Jenny. "3D-simulation som avprovningsmetod : Inriktat mot tights för sportutövning." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-14789.
Повний текст джерелаThis study on 3D fitting for sports tights is a Final Bachelor Degree Thesis in design technology. The company the study is developed for works with sportswear and currently has an interest in using 3D simulation as a fitting method. For the development of tights adapted for training, several prototypes are currently being sent between the company and the supplier before the product can start to be produced. In order for the production of the product to take less time, become more environmentally friendly and cost less, the study investigate if 3D fitting is applicable in the company's product development process. To check the validity of 3D fitting of tights, three surveys were made with the purpose of understanding the differences between physical and virtual testing. The studies focus on the base size Small and the largest size Extra Large. The study shows that 3D simulation is partially functional testing method for tights when it comes to controlling the design. In order to control the ease, the method in this study is not working. The participants of the study showed a positive attitude to use the method in their product development process, but mainly as a complement to physical fittings early in the design process.
Holt, Jennifer A. "THz Systems: Spectroscopy and Simulation." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417536443.
Повний текст джерелаКниги з теми "STM simulations"
McClean, Sean. Show me SAM: Computerised educational simulation-game. [S.l: The Author], 1997.
Знайти повний текст джерелаDeMaria, Rusel. Sim City 3000: Prima's official strategy guide. Rocklin, Calif: Prima Pub., 1999.
Знайти повний текст джерелаGreg, Kramer. Sim City 3000 unlimited: Prima's official strategy guide. Roseville, Calif: Prima Pub., 2000.
Знайти повний текст джерелаPaul, Gilman, and National Renewable Energy Laboratory (U.S.), eds. Technical manual for the SAM Physical Trough model. Golden, Colo: National Renewable Energy Laboratory, 2011.
Знайти повний текст джерелаR, Taylor Tony, and Villar Julie N, eds. Elements of STIL: Principles and applications of IEEE Std. 1450. Boston: Kluwer Academic Publishers, 2003.
Знайти повний текст джерелаEgon, Marx, and National Institute of Standards and Technology (U.S.), eds. User's manual for the program MONSEL-1: Monte Carlo simulation of SEM signals for linewidth metrology. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Знайти повний текст джерелаEgon, Marx, and National Institute of Standards and Technology (U.S.), eds. User's manual for the program MONSEL-1: Monte Carlo simulation of SEM signals for linewidth metrology. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Знайти повний текст джерелаEASTMAN. Official Guide to Command & Conquer. Indianapolis, USA: BradyGames, 1995.
Знайти повний текст джерелаMaston, Gregory A. Elements of STIL: Principles and applications of IEEE Std. 1450. Boston, MA: Kluwer Academic Publishers, 2004.
Знайти повний текст джерелаTauber, Daniel A. SimCity 2000 strategies and secrets. 2nd ed. San Francisco: Sybex, 1995.
Знайти повний текст джерелаЧастини книг з теми "STM simulations"
Kepenekian, M., R. Robles, R. Korytár, and N. Lorente. "Simulations of Constant Current STM Images of Open-Shell Systems." In Imaging and Manipulating Molecular Orbitals, 117–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38809-5_10.
Повний текст джерелаKönözsy, László. "Two-Dimensional Simulations with an Anisotropic Hybrid k-$$\omega $$ SST/STM Approach." In A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows, 215–357. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60603-9_4.
Повний текст джерелаKönözsy, László. "Three-Dimensional Simulations with an Anisotropic Hybrid k-$$\omega $$ SST/STM Approach." In A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows, 359–404. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60603-9_5.
Повний текст джерелаLawler, Gregory, and Lester Coyle. "Other simulations." In The Student Mathematical Library, 75–80. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/stml/002/12.
Повний текст джерелаLawler, Gregory, and Lester Coyle. "Random walk simulations." In The Student Mathematical Library, 69–74. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/stml/002/11.
Повний текст джерелаLawler, Gregory, and Lester Coyle. "Simulations in finance." In The Student Mathematical Library, 81–84. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/stml/002/13.
Повний текст джерелаWitthaut, Markus, and Bernd Hellingrath. "Simulation von SCM-Strategien." In Große Netze der Logistik, 59–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71048-6_3.
Повний текст джерелаvan Rosmalen, Peter. "SAM, Simulation And Multimedia." In Design and Production of Multimedia and Simulation-based Learning Material, 167–87. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0942-0_9.
Повний текст джерелаStanley, Todd. "Use Computer Models or Simulations." In 10 Performance-Based STEM Projects, 105–14. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003232520-10.
Повний текст джерелаStanley, Todd. "Use Computer Models or Simulations." In 10 Performance-Based STEM Projects, 109–16. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003232513-10.
Повний текст джерелаТези доповідей конференцій з теми "STM simulations"
Byun, Ki Ryang. "Atomic Scale Simulations of Silicon Nanotubes under Axial Compression: AFM Application." In SCANNING TUNNELING MICROSCOPY/SPECTROSCOPY AND RELATED TECHNIQUES: 12th International Conference STM'03. AIP, 2003. http://dx.doi.org/10.1063/1.1639752.
Повний текст джерелаSando, Kosuke, Ryota Wada, Jeremy Rohmer, Sophie Lecacheux, and Philip Jonathan. "Estimating Joint Extremes of Significant Wave Height and Wind Speed for Tropical Cyclones." In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-79888.
Повний текст джерелаMa, Boyang, Adi Goldner, and Michael Krüger. "Ultrafast Scanning Tunneling Microscopy." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.th4a.30.
Повний текст джерелаMohseni, Seyed Mohammad Javad, and Arndt Goldack. "Verification of reinforced concrete D-regions designed with strut-and- tie models by nonlinear FE-Methods." In IABSE Congress, New Delhi 2023: Engineering for Sustainable Development. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2023. http://dx.doi.org/10.2749/newdelhi.2023.1424.
Повний текст джерелаTsukamoto, S., G. R. Bell, A. Ishii, and Y. Arakawa. "InAs wetting layer and quantum dots on GaAs(001) surface studied by in situ STM placed inside MBE growth chamber and kMC simulations based on first-principles calculations." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2729790.
Повний текст джерелаFukuda, Koichi, Masayasu Nishizawa, Tetsuya Tada, Leonid Bolotov, Kaina Suzuki, Shigeo Sato, Hiroshi Arimoto, and Toshihiko Kanayama. "Simulation of light-illuminated STM measurements." In 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2014. http://dx.doi.org/10.1109/sispad.2014.6931580.
Повний текст джерелаKaris, T. E., M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack. "Tracking Servo Signal Simulation from STM Surface Profiles." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ods.1991.wb6.
Повний текст джерелаGrella, Luca, Matthew Marcus, Gian Lorusso, and David L. Adler. "SEM voltage contrast simulations." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Eric Munro. SPIE, 1999. http://dx.doi.org/10.1117/12.370123.
Повний текст джерелаMiao, Wansheng, Yue Zhou, Bingfei Li, Bobo Feng, and Huanchao Du. "XMI-based conversion of SysML-STM models to C++ code." In ICCMS 2024: 2024 The 16th International Conference on Computer Modeling and Simulation, 15–19. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3686812.3686815.
Повний текст джерелаKapitan, Vitalii, Konstantin Nefedev, and Alexey Peretyatko. "Supercomputer data processing and simulation of MFM and STM experiments." In 2014 Tenth International Vacuum Electron Sources Conference (IVESC). IEEE, 2014. http://dx.doi.org/10.1109/ivesc.2014.6892003.
Повний текст джерелаЗвіти організацій з теми "STM simulations"
W. Park, J. Breslau, J. Chen, G.Y. Fu, S.C. Jardin, S. Klasky, J. Menard, et al. Nonlinear Simulation Studies of Tokamaks and STs. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/814698.
Повний текст джерелаBekar, Kursat B., Thomas Martin Miller, Bruce W. Patton, and Charles F. Weber. Rapid Evaluation of Particle Properties using Inverse SEM Simulations. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1238023.
Повний текст джерелаHua, Thanh, Ling Zou, and Rui Hu. Simulations of the High Temperature Test Facility using SAM. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1825879.
Повний текст джерелаZou, Ling, Dan O'Grady, and Rui Hu. Enabling Parallel Execution of System-level Simulations in SAM. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1898043.
Повний текст джерелаMartin, S., Larry Daggett, Morgan Johnston, Chris Hewlett, Kiara Pazan, Mario Sanchez, Dennis Webb, Mary Allison, and George Burkley. Houston Ship Channel Expansion Improvement Project – Navigation Channel Improvement Study : ship simulation results. Coastal and Hydraulics Laboratory (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42342.
Повний текст джерелаPazan, Kiara, Natalie Memarsadeghi, and Jacob Hodges. Lock and Dam 25, Upper Mississippi River Navigation Study : ship-simulation results. Engineer Research and Development Center (U.S.), June 2024. http://dx.doi.org/10.21079/11681/48650.
Повний текст джерелаSantander, Horacio, and Martin Cicowiez. Construcción de una Matriz de Contabilidad Social para Paraguay para el Año 2009. Inter-American Development Bank, November 2015. http://dx.doi.org/10.18235/0010078.
Повний текст джерелаErvin, Kelly, Karl Smink, Bryan Vu, and Jonathan Boone. Ship Simulator of the Future in virtual reality. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45502.
Повний текст джерелаMitchell, R. STL (Simulation Technology Laboratory) Global Control System, technical reference. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6812798.
Повний текст джерелаJones, Scott A., William Kamery, Arnold Barry Baker, Thomas E. Drennen, Andrew E. Lutz, and Jennifer Elizabeth Rosthal. The Hydrogen Futures Simulation Model (H[2]Sim) technical description. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/919630.
Повний текст джерела