Добірка наукової літератури з теми "Stator simulations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Stator simulations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Stator simulations"
Reinmo¨ller, U., B. Stephan, S. Schmidt, and R. Niehuis. "Clocking Effects in a 1.5 Stage Axial Turbine—Steady and Unsteady Experimental Investigations Supported by Numerical Simulations." Journal of Turbomachinery 124, no. 1 (February 1, 2001): 52–60. http://dx.doi.org/10.1115/1.1425811.
Повний текст джерелаTomasello, Stella Grazia, Roberto Meloni, Luca Andrei, and Antonio Andreini. "Study of Combustor–Turbine Interactions by Performing Coupled and Decoupled Hybrid RANS-LES Simulations under Representative Engine-like Conditions." Energies 16, no. 14 (July 15, 2023): 5395. http://dx.doi.org/10.3390/en16145395.
Повний текст джерелаWang, Ziwei, Xiong Jiang, Ti Chen, Yan Hao, and Min Qiu. "Numerical simulation of transonic compressor under circumferential inlet distortion and rotor/stator interference using harmonic balance method." Modern Physics Letters B 32, no. 12n13 (May 10, 2018): 1840021. http://dx.doi.org/10.1142/s0217984918400213.
Повний текст джерелаAkwa, J. V., and A. P. Petry. "STATORS USE INFLUENCE ON THE PERFORMANCE OF A SAVONIUS WIND ROTOR USING COMPUTATIONAL FLUID DYNAMICS." Revista de Engenharia Térmica 10, no. 1-2 (December 31, 2011): 63. http://dx.doi.org/10.5380/reterm.v10i1-2.61965.
Повний текст джерелаTang, Jing, Jie Chen, Kan Dong, Yongheng Yang, Haichen Lv, and Zhigang Liu. "Modeling and Evaluation of Stator and Rotor Faults for Induction Motors." Energies 13, no. 1 (December 26, 2019): 133. http://dx.doi.org/10.3390/en13010133.
Повний текст джерелаKaranayil, Baburaj, Muhammed Fazlur Rahman, and Colin Grantham. "Identification of Induction Motor Parameters in Industrial Drives with Artificial Neural Networks." Advances in Fuzzy Systems 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/241809.
Повний текст джерелаRai, M. M., and N. K. Madavan. "Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor–Stator Interaction." Journal of Turbomachinery 112, no. 3 (July 1, 1990): 377–84. http://dx.doi.org/10.1115/1.2927670.
Повний текст джерелаHembera, M., H. P. Kau, and E. Johann. "Simulation of Casing Treatments of a Transonic Compressor Stage." International Journal of Rotating Machinery 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/657202.
Повний текст джерелаXu, Jieqiong, Qunhong Li, and Shimin Wang. "Impulsive Control of the Rotor-Stator Rub Based on Phase Characteristic." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/495747.
Повний текст джерелаValkov, T. V., and C. S. Tan. "Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators: Part 1—Framework of Technical Approach and Wake–Stator Blade Interactions." Journal of Turbomachinery 121, no. 3 (July 1, 1999): 377–86. http://dx.doi.org/10.1115/1.2841330.
Повний текст джерелаДисертації з теми "Stator simulations"
JACQUES, REMI. "Simulations numeriques d'ecoulements transitionnels et turbulents dans des configurations de type rotor-stator." Paris 11, 1997. http://www.theses.fr/1997PA112386.
Повний текст джерелаSchreiber, Johannes. "Investigation of experimental and numerical methods, and analysis of stator clocking and instabilities in a high-speed multistage compressor." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC063/document.
Повний текст джерелаThe following experimental and numerical investigations aim at the deep understanding of the flow field in the 3.5 stages high-speed axial compressor CREATE, studied on a 2 MW test rig at the Laboratory of Fluid Mechanics and Acoustics (LMFA) in Lyon, France. This work focuses on three major objectives: Firstly, a global description of the flow field with an identification of limitations to the used exploration methods; Secondly, the characterization of the effect of stator-stator clocking in a high-speed compressor; Thirdly, the identification of instabilities arising at low mass flow rates for confirming studies on low-speed compressors and giving new insights.This work demonstrates that a mis-interpretation of steady performance data occurs easily due to measurement constraints and correction coefficients are proposed. At certain locations in the compressor, the flow field exploration (experimental and numerical) methods are identified to be challenged. This identification will initiate further development of the methods. The main mis-predictions of the simulations concern the over-prediction of the blockage induced by the tip leakage flow and eventually an over-predicted pressure rise. Furthermore, the measurements provided by the pneumatic pressure probes over-estimate the static pressure upstream of the stators. This error is induced by the interaction between the stator potential field and the probe it-self. In addition, the laser Doppler anemometry method over-estimates the velocity downstream the stators. The transport of the rotor wakes through the stators might not be correctly captured with the seeding particles in this high-speed compressor.The investigation of the stator clocking reveals only a small global effect within the measurement uncertainty band. Several contributions to the weak effect of clocking are identified by analysis of the flow structure transport, namely the time-mean mixing out of the stator wakes and the deformation of wakes along their flow path. The local effect of clocking depends on the span-height because of the variation of the circumferential position of the stator wakes and the stator blade shape over the span-height. Local possible positive and negative effects of clocking are identified and are shown to be almost in balance in this compressor. Furthermore, this work demonstrates that the unsteadiness in the flow field is not linked conclusively to the stator clocking.In this compressor, the arising instabilities depend on the operating point and flow field exploration methods. At stable operating points and nominal compressor speed, the numerical results reveal a rotating disturbance in the rotors 2 and 3, whereas the measurements show a rotating disturbance only in the first rotor and only at part speed. In both cases the disturbance exhibits rotating instability like characteristics. An exhaustive numerical study allows to exclude the commonly assumed influence of rotor-stator interactions on the rotating disturbance and pinpoints its source. New insights into the stable behavior and periodicity of the measured rotating instability are derived contrary to the unstable behavior suggested by the naming and literature. This disturbance is shown to evolve into rotating stall cells when approaching the stability limit. At nominal compressor speed, a spike type surge inception is identified I n the measured field. A precise description of the abrupt onset of the spike cell and its difference to a rotating stall cell are presented
D'Haudt, Emmanuel. "Étude expérimentale de l'influence des conditions périphériques sur un écoulement turbulent de type rotor-stator : premières confrontations avec des résultats de simulations numériques." Lille 1, 2006. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2006/50376-2006-D_Haudt.pdf.
Повний текст джерелаD'Haudt, Emmanuel Bois Gérard Debuchy Roger. "Étude expérimentale de l'influence des conditions périphériques sur un écoulement turbulent de type rotor-stator premières confrontations avec des résultats de simulations numériques /." Villeneuve d'Ascq : Université des sciences et technologies de Lille, 2007. https://iris.univ-lille1.fr/dspace/handle/1908/988.
Повний текст джерелаN° d'ordre (Lille 1) :3874. Résumé en français et en anglais. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 171-173.
Peres, Noele. "A 3D pseudospectral method for cylindrical coordinates. Application to the simulations of rotating cavity flows." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4309/document.
Повний текст джерелаWhen simulating flows in cylindrical rotating cavities, a difficulty arises from the singularities appearing on the axis. In the same time, the flow field itself does not have any singularity on the axis and this singularity is only apparent. The present work proposes an efficient and accurate collocation pseudospectral method for solving the 3D Navier-Stokes equations using cylindrical coordinates. This method has been developed in the framework of different studies of rotor-stator flows, using Chebyshev collocation in the radial and axial directions and Fourier-Galerkin approximation in the azimuthal periodic direction [thêta]. To avoid the difficulty on the axis without prescribing any pole and parity conditions usually required, a new approach has been developed. The calculation domain is defined as (r,[thêta];,z)∈[-1,1]×[0,2π]×[-1,1] using an even number N of collocation points in the radial direction. Thus, r=0 is not a collocation point. The method keeps the spectral convergence. The grid-point distribution densifies the mesh only near the boundaries that makes the algorithm well-suited to simulate rotating cavity flows where thin layers develop along the walls. In the azimuthal direction, the overlap in the discretization is avoided by introducing a shift equal to π/2K for [thêta]>π in the Fourier transform. Comparisons with reliable experimental and numerical results of the literature show good quantitative agreements for flows driven by rotating discs in cylindrical cavities. Associated to a Spectral Vanishing Viscosity, the method provides very promising LES results of turbulent cavity flows with or without heat transfer
Millithaler, Pierre. "Dynamic behaviour of electric machine stators : modelling guidelines for efficient finite-element simulations and design specifications for noise reduction." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2003/document.
Повний текст джерелаBoosted by the increasing interest of industries such as automotive,100% electric engine technologies power more and more affordable vehicles for the general public.Inspite of a rather favourable common opinion about the low noisee mitted by electric motors, controlling the vibratory and acoustic performances of such machines remains a very costly challenge to take up. Associating the expertise of the company Vibratec and the institute Femto-ST Applied Mechanics Department, this industry-orientedPh.D.thesisaimsatimprovingthecurrentknowledgeaboutthe mechanicalbehaviour ofelectric machines. New finite-element modelling method sare proposedf rom homogenisation approaches,experimental analyses, model up dating procedures and variability studies in temperature and frequency, in order to predict the behaviour of an electric motor more efficiently
Sauvage, Bastien. "Approximation et adaptation numériques pour les écoulements en machines tournantes." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5045.
Повний текст джерелаThis work is part of a research project aimed at proposing numerical fluid simulations (CFD) capable of capturing the noise produced by rotating machines.The aim of this thesis is to study mesh adaptation methods for unsteady turbulent flows. We begin by describing the tools required for our studies, namely numerical methods, turbulence models and mesh adaptation. The first part is devoted to the study of the "Transient" unsteady mesh adaptation algorithms applied to turbulent flows around cylinders at different Reynolds numbers. A method for taking rotation into account in simulations is then studied, and coupled with mesh the adaptation methods. Numerical examples are proposed.This initial work encounted two major unsolved problems in CFD mesh-adaptation. In order to optimally select the implicit time step, a new space-time mesh adaptation method is presented, which simultaneously adapts the space mesh and the time mesh. In order to adapt the mesh to both mean flow and large turbulent structures, a new mesh adaptation approach is proposed for turbulence in LES and hybrid computation
Jung, Alexander. "Berechnung der Stator-Rotor-Wechselwirkung in Turbomaschinen." [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8862171.
Повний текст джерелаBridel-Bertomeu, Thibault. "Investigation of unsteady phenomena in rotor/stator cavities using Large Eddy Simulation." Thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/17867/1/BRIDEL_BERTOMEU.pdf.
Повний текст джерелаEmmanuelli, Ariane. "Numerical simulation and modelling of entropy noise in nozzle and turbine stator flows." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC067.
Повний текст джерелаThe investigation of combustion noise is motivated by its growing relative contribution to the noise emitted by modern turbofan engines overall, as well as its effect on low NOx emission combustor design. Entropy noise is a source of indirect combustion noise, which is generated by the acceleration of heterogeneities, in this case entropy, downstream of the combustion chamber. This study consists of the investigation of entropy noise in nozzle and turbine stator flow using both analytical and numerical methods. Nozzle flow is considered first. A Computational AeroAcoustics (CAA) reference case is built for the validation of an existing two-dimensional semi-analytical model developed under similar assumptions. The levels of entropy noise and acoustic scattering estimated using both methods are in good agreement. Two-dimensional effects on entropy noise are highlighted, notably by comparison with compact and 1D models. In addition, vorticity induced by the acceleration of entropy noise is evidenced, but it yields negligible vortex sound. Next, the focus is shifted to a 2D high-pressure turbine stator. The 2D model for nozzle flow is extended to this configuration, inheriting some of its main assumptions. Their investigation, using CAA in particular, sets the path for future developments and allows insight to be gained into the role of both vorticity and azimuthal variation of acoustics, which are neglected by the model. CAA also allows to characterise entropy noise generation in 2D stator flow under simplifying assumptions, using Euler and RANS mean flows. Further investigation is needed to validate the RANS case and to fully understand the effect of boundary layers on entropy noise generation. Finally, entropy noise is simulated using Zonal Detached Eddy Simulation (ZDES) in a stator channel in order to investigate 3D and viscous effects on entropy noise. The three-dimensionality of the flow is highlighted and acoustic signals are carefully post-processed, ensuring hydrodynamic perturbations are correctly filtered and boundary reflections are minimised. The closeness of noise levels obtained using CAA and ZDES suggest three-dimensional and viscous effects have a limited impact on the entropy noise generated in turbine stator flow
Книги з теми "Stator simulations"
Center, Ames Research, ed. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Знайти повний текст джерелаCenter, Ames Research, ed. Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Знайти повний текст джерелаBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Знайти повний текст джерелаBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. Cleveland, Ohio: Lewis Research Centre, 1990.
Знайти повний текст джерелаLewis Research Center. Institute for Computational Mechanics in Propulsion., ed. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Знайти повний текст джерелаBoretti, A. A. Three-dimensional Euler time accurate simulations of fan rotor-stator interactions. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1990.
Знайти повний текст джерелаFederico, Cecconi, ed. La società dei beni: Dalla famiglia allo Stato alle imprese private. Torino: Bollati Boringhieri, 2006.
Знайти повний текст джерелаUnited States. Army Test and Evaluation Command, ed. TECOM, modeling & simulation. [Aberdeen Proving Ground, MD: U.S. Army Test and Evaluation Command, 1994.
Знайти повний текст джерелаCenter, Ames Research, ed. Gas-Grain Simulation Facility. [Moffett Field, Calif.]: NASA Ames Research Center, 1993.
Знайти повний текст джерелаCenter, Ames Research, ed. Gas-Grain Simulation Facility. [Moffett Field, Calif.]: NASA Ames Research Center, 1993.
Знайти повний текст джерелаЧастини книг з теми "Stator simulations"
Neuhauser, Magdalena, Francis Leboeuf, Jean-Christophe Marongiu, Etienne Parkinson, and Daniel Robb. "Simulations of Rotor–Stator Interactions with SPH-ALE." In Advances in Hydroinformatics, 349–61. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-42-0_29.
Повний текст джерелаSong, An, Xiang Luo, Zhongliang He, and Jian He. "Numerical Investigation on Flow and Heat Transfer of a Rotor–Stator Cavity with Labyrinth Seal." In Computational and Experimental Simulations in Engineering, 797–814. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-42515-8_56.
Повний текст джерелаGiangaspero, G., M. Almquist, K. Mattsson, and E. van der Weide. "Unsteady Simulations of Rotor Stator Interactions Using SBP-SAT Schemes: Status and Challenges." In Lecture Notes in Computational Science and Engineering, 247–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19800-2_21.
Повний текст джерелаFeng, Wenzong, Qing Zhang, Zhuoxiang Chen, Jianqun Zhang, and Haoyu Wang. "Dynamical Simulation Analysis of Faulty Gearbox in Quay Crane Under Dynamic Load." In Lecture Notes in Mechanical Engineering, 187–99. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1876-4_15.
Повний текст джерелаWang, Rui, Tong Zhu, Chuang Zhou, and Jian-Min Zhang. "LEAP-ASIA-2019 Simulations at Tsinghua University." In Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading II, 399–408. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48821-4_19.
Повний текст джерелаSerre, Eric, Patrick Bontoux, and Brian Launder. "Studies of Transitional and Turbulent Flows in Rotor-Stator Cavity Using High-Performance Computations." In Direct and Large-Eddy Simulation V, 205–12. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2313-2_22.
Повний текст джерелаQi, Jianhui. "Multi-objective Optimisation for Supercritical CO$$_2$$ Radial Inflow Turbine Stator." In Simulation Tools and Methods for Supercritical Carbon Dioxide Radial Inflow Turbine, 197–235. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2860-4_7.
Повний текст джерелаTheorell, Axel, and Jörg Stelling. "Microbial Community Decision Making Models in Batch and Chemostat Cultures." In Computational Methods in Systems Biology, 141–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85633-5_9.
Повний текст джерелаNegri, Luca, and Andrea Chiarini. "Power Simulation of Communication Protocols with StateC." In Applications of Specification and Design Languages for SoCs, 277–94. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-4998-9_16.
Повний текст джерелаVerma, Amar Kumar, P. Spandana, S. V. Padmanabhan, and Sudha Radhika. "Quantitative Modeling and Simulation for Stator Inter-turn Fault Detection in Industrial Machine." In Intelligent Computing and Communication, 87–97. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1084-7_10.
Повний текст джерелаТези доповідей конференцій з теми "Stator simulations"
Stummann, Simon, Daniel Pohl, Peter Jeschke, Hannes Wolf, Alexander Halcoussis, and Matthias Franke. "Secondary Flow in Variable Stator Vanes With Penny-Cavities." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63771.
Повний текст джерелаFeng, Dakui, Hang Zhang, Yue Sun, Qing Wang, and Xiaofei Hu. "Studies About Design of Rear Stator of Ducted Propeller Using CFD." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96020.
Повний текст джерелаGalpin, Paul, Thorsten Hansen, Georg Scheuerer, Ryan Kelly, Adam Hickman, Aleksandar Jemcov, and Scott C. Morris. "Validation of Transonic Axial Compressor Stage Unsteady-State Rotor-Stator Simulations." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-64786.
Повний текст джерелаRAI, MAN, and NATERI MADAVAN. "Multi-airfoil Navier-Stokes simulations of turbine rotor-stator interaction." In 26th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-361.
Повний текст джерелаZhou, Haowei, Pengcheng Du, and Fangfei Ning. "Time step criteria for rotor-stator unsteady simulations of turbomachinery." In GPPS Chania24. GPPS, 2024. http://dx.doi.org/10.33737/gpps24-tc-065.
Повний текст джерелаGraf, Martin B., and Om P. Sharma. "Effects of Downstream Stator Pressure Field on Upstream Rotor Performance." In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-507.
Повний текст джерелаBlaszczak, Jaroslaw R. "Efficiency Improvement and Noise Reduction Through Stator-Stator Clocking Effect of a Two-Stage Turbine." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68833.
Повний текст джерелаReinmöller, U., B. Stephan, S. Schmidt, and R. Niehuis. "Clocking Effects in a 1.5 Stage Axial Turbine: Steady and Unsteady Experimental Investigations Supported by Numerical Simulations." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0304.
Повний текст джерелаSato, Masanori, Takashi Nagumo, Kazuyuki Toda, and Makoto Yamamoto. "Computation of Rotor/Stator Interaction With Hydrogen-Fuelled Combustion." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45618.
Повний текст джерелаDorney, D. J., D. L. Sondak, P. G. A. Cizmas, V. E. Saren, and N. M. Savin. "Full-Annulus Simulations of Airfoil Clocking in a 1-1/2 Stage Axial Compressor." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-023.
Повний текст джерелаЗвіти організацій з теми "Stator simulations"
Zhu, Minjie, and Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, April 2024. http://dx.doi.org/10.55461/gsfh8371.
Повний текст джерелаAllen, Luke, Robert Haehnel, and Yonghu Wenren. South Pole Station snowdrift model. Engineer Research and Development Center (U.S.), August 2022. http://dx.doi.org/10.21079/11681/44943.
Повний текст джерелаMurray, Trevor, and Timothy Jacobs. PR-457-16200-R01 Control of Vented Methane Emissions from Integral Compressor Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2018. http://dx.doi.org/10.55274/r0011475.
Повний текст джерелаJohnston, Morgan, Kiara Pazan, Yan Ding, Mary Allison, and Sung-Chan Kim. Surge analysis in Mobile Harbor, Alabama : ship-simulation report. Engineer Research and Development Center (U.S.), September 2023. http://dx.doi.org/10.21079/11681/47596.
Повний текст джерелаGrenade, Kari, Allan Wright, and Ankie Scott-Joseph. Fiscal Rules: Towards a New Paradigm for Fiscal Sustainability in Small States. Inter-American Development Bank, February 2017. http://dx.doi.org/10.18235/0011783.
Повний текст джерелаFarhi, Edward, and Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, December 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Повний текст джерелаHenager, Charles H., Fei Gao, Shenyang Y. Hu, Guang Lin, Eric J. Bylaska, and Nicholas Zabaras. Simulating Interface Growth and Defect Generation in CZT – Simulation State of the Art and Known Gaps. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1118122.
Повний текст джерелаMurphy, Richard D. Work Station for Particle Simulations of Plasmas. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada299086.
Повний текст джерелаde Melo Kort-Kamp, Wilton Junior, Diego Alejandro Roberto Dalvit, Sinhara Rishi Malinda Silva, and Jeremiah Joseph Rushton. Modeling and Simulation of Static Metasurfaces. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1493539.
Повний текст джерелаRambo, P. W., and J. Denavit. Monte Carlo simulations of solid-state photoswitches. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/123236.
Повний текст джерела