Добірка наукової літератури з теми "Statistical graph analysis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Statistical graph analysis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Statistical graph analysis"
Jain, Brijnesh J. "Statistical graph space analysis." Pattern Recognition 60 (December 2016): 802–12. http://dx.doi.org/10.1016/j.patcog.2016.06.023.
Повний текст джерелаMartins, Maria Maria Pereira, Carolina Fernandes de Carvalho, and Carlos Eduardo Ferreira Monteiro. "The analysis of statistical graphs constructed by primary school teachers." Acta Scientiae 23, no. 6 (November 18, 2021): 28–57. http://dx.doi.org/10.17648/acta.scientiae.6762.
Повний текст джерелаNowicki, Krzysztof. "Asymptotic Poisson distributions with applications to statistical analysis of graphs." Advances in Applied Probability 20, no. 02 (June 1988): 315–30. http://dx.doi.org/10.1017/s0001867800016992.
Повний текст джерелаNowicki, Krzysztof. "Asymptotic Poisson distributions with applications to statistical analysis of graphs." Advances in Applied Probability 20, no. 2 (June 1988): 315–30. http://dx.doi.org/10.2307/1427392.
Повний текст джерелаLin, Zhenxian, Jiagang Wang, and Chengmao Wu. "Robust Spectral Clustering Incorporating Statistical Sub-Graph Affinity Model." Axioms 11, no. 6 (June 5, 2022): 269. http://dx.doi.org/10.3390/axioms11060269.
Повний текст джерелаHora, Akihito. "Central Limit Theorems and Asymptotic Spectral Analysis on Large Graphs." Infinite Dimensional Analysis, Quantum Probability and Related Topics 01, no. 02 (April 1998): 221–46. http://dx.doi.org/10.1142/s0219025798000144.
Повний текст джерелаKalikova, A. "Statistical analysis of random walks on network." Scientific Journal of Astana IT University, no. 5 (July 27, 2021): 77–83. http://dx.doi.org/10.37943/aitu.2021.99.34.007.
Повний текст джерелаTurab, Ali, Wutiphol Sintunavarat, and Jong-Suk Ro. "On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT." Fractal and Fractional 7, no. 2 (January 17, 2023): 99. http://dx.doi.org/10.3390/fractalfract7020099.
Повний текст джерелаZhao, Jin-Hua. "A local algorithm and its percolation analysis of bipartite z-matching problem." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 5 (May 1, 2023): 053401. http://dx.doi.org/10.1088/1742-5468/acd105.
Повний текст джерелаGhazwani, Haleemah, Muhammad Faisal Nadeem, Faiza Ishfaq, and Ali N. A. Koam. "On Entropy of Some Fractal Structures." Fractal and Fractional 7, no. 5 (April 30, 2023): 378. http://dx.doi.org/10.3390/fractalfract7050378.
Повний текст джерелаДисертації з теми "Statistical graph analysis"
Fairbanks, James Paul. "Graph analysis combining numerical, statistical, and streaming techniques." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54972.
Повний текст джерелаSoriani, Nicola. "Topics in Statistical Models for Network Analysis." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422100.
Повний текст джерелаLa Network Analysis è un insieme di tecniche statistiche e matematiche per lo studio di dati relazionali per un sistema di entità interconnesse. Molti dei risultati per i dati di rete provengono dalla Social Network Analysis (SNA), incentrata principalmente sullo studio delle relazioni tra un insieme di individui e organizzazioni. La tesi tratta alcuni argomenti riguardanti la modellazione statistica per dati di rete, con particolare attenzione ai modelli utilizzati in SNA. Il nucleo centrale della tesi è rappresentato dai Capitoli 3, 4 e 5. Nel Capitolo 3, viene proposto un approccio alternativo per la stima dei modelli esponenziali per grafi casuali (Exponential Random Graph Models - ERGMs). Nel capitolo 4, l'approccio di modellazione ERGM e quello a Spazio Latente vengono confrontati in termini di bontà di adattamento. Nel capitolo 5, vengono proposti metodi alternativi per la stima della classe di modelli p2.
GRASSI, FRANCESCO. "Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710580.
Повний текст джерелаMeinhardt, Llopis Enric. "Morphological and statistical techniques for the analysis of 3D images." Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/22719.
Повний текст джерелаThis thesis proposes a tree data structure to encode the connected components of level sets of 3D images. This data structure is applied as a main tool in several proposed applications: 3D morphological operators, medical image visualization, analysis of color histograms, object tracking in videos and edge detection. Motivated by the problem of edge linking, the thesis contains also an study of anisotropic total variation denoising as a tool for computing anisotropic Cheeger sets. These anisotropic Cheeger sets can be used to find global optima of a class of edge linking functionals. They are also related to some affine invariant descriptors which are used in object recognition, and this relationship is laid out explicitly.
Tavernari, Daniele. "Statistical and network-based methods for the analysis of chromatin accessibility maps in single cells." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12297/.
Повний текст джерелаValba, Olga. "Statistical analysis of networks and biophysical systems of complex architecture." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00919606.
Повний текст джерелаKamal, Tariq. "Computational Cost Analysis of Large-Scale Agent-Based Epidemic Simulations." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82507.
Повний текст джерелаPh. D.
Jiang, Shan. "Statistical Modeling of Multi-Dimensional Knowledge Diffusion Networks: An ERGM-Based Framework." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/555946.
Повний текст джерелаLamont, Morné Michael Connell. "Binary classification trees : a comparison with popular classification methods in statistics using different software." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52718.
Повний текст джерелаENGLISH ABSTRACT: Consider a data set with a categorical response variable and a set of explanatory variables. The response variable can have two or more categories and the explanatory variables can be numerical or categorical. This is a typical setup for a classification analysis, where we want to model the response based on the explanatory variables. Traditional statistical methods have been developed under certain assumptions such as: the explanatory variables are numeric only and! or the data follow a multivariate normal distribution. hl practice such assumptions are not always met. Different research fields generate data that have a mixed structure (categorical and numeric) and researchers are often interested using all these data in the analysis. hl recent years robust methods such as classification trees have become the substitute for traditional statistical methods when the above assumptions are violated. Classification trees are not only an effective classification method, but offer many other advantages. The aim of this thesis is to highlight the advantages of classification trees. hl the chapters that follow, the theory of and further developments on classification trees are discussed. This forms the foundation for the CART software which is discussed in Chapter 5, as well as other software in which classification tree modeling is possible. We will compare classification trees to parametric-, kernel- and k-nearest-neighbour discriminant analyses. A neural network is also compared to classification trees and finally we draw some conclusions on classification trees and its comparisons with other methods.
AFRIKAANSE OPSOMMING: Beskou 'n datastel met 'n kategoriese respons veranderlike en 'n stel verklarende veranderlikes. Die respons veranderlike kan twee of meer kategorieë hê en die verklarende veranderlikes kan numeries of kategories wees. Hierdie is 'n tipiese opset vir 'n klassifikasie analise, waar ons die respons wil modelleer deur gebruik te maak van die verklarende veranderlikes. Tradisionele statistiese metodes is ontwikkelonder sekere aannames soos: die verklarende veranderlikes is slegs numeries en! of dat die data 'n meerveranderlike normaal verdeling het. In die praktyk word daar nie altyd voldoen aan hierdie aannames nie. Verskillende navorsingsvelde genereer data wat 'n gemengde struktuur het (kategories en numeries) en navorsers wil soms al hierdie data gebruik in die analise. In die afgelope jare het robuuste metodes soos klassifikasie bome die alternatief geword vir tradisionele statistiese metodes as daar nie aan bogenoemde aannames voldoen word nie. Klassifikasie bome is nie net 'n effektiewe klassifikasie metode nie, maar bied baie meer voordele. Die doel van hierdie werkstuk is om die voordele van klassifikasie bome uit te wys. In die hoofstukke wat volg word die teorie en verdere ontwikkelinge van klassifikasie bome bespreek. Hierdie vorm die fondament vir die CART sagteware wat bespreek word in Hoofstuk 5, asook ander sagteware waarin klassifikasie boom modelering moontlik is. Ons sal klassifikasie bome vergelyk met parametriese-, "kernel"- en "k-nearest-neighbour" diskriminant analise. 'n Neurale netwerk word ook vergelyk met klassifikasie bome en ten slote word daar gevolgtrekkings gemaak oor klassifikasie bome en hoe dit vergelyk met ander metodes.
Noel, Jonathan A. "Extremal combinatorics, graph limits and computational complexity." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8743ff27-b5e9-403a-a52a-3d6299792c7b.
Повний текст джерелаКниги з теми "Statistical graph analysis"
Kalyagin, V. A., A. P. Koldanov, P. A. Koldanov, and P. M. Pardalos. Statistical Analysis of Graph Structures in Random Variable Networks. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60293-2.
Повний текст джерелаLangtangen, Hans Petter. Solving PDEs in Python: The FEniCS Tutorial I. Cham: Springer Nature, 2017.
Знайти повний текст джерелаStructure in complex networks. Berlin: Springer, 2009.
Знайти повний текст джерелаBasford, Kaye E. Graphical analysis of multiresponse data: Illustrated with a plant breeding trial : interdisciplinary statistics. Boca Raton, Fla: Chapman & Hall/CRC, 1999.
Знайти повний текст джерелаBasford, Kaye E. Graphical analysis of multiresponse data: Illustrated with a plant breeding trial. Boca Raton, Fla: Chapman & Hall/CRC, 1999.
Знайти повний текст джерелаWhittaker, J. Graphical models in applied multivariate statistics. Chichester [England]: Wiley, 1990.
Знайти повний текст джерелаPhilippe, Mathis, ed. Graphs and networks. London: ISTE, 2007.
Знайти повний текст джерелаBarthélemy, Jean-Pierre. Trees and proximity representations. Chichester: Wiley, 1991.
Знайти повний текст джерелаPhilippe, Mathis, ed. Graphs and networks: Multilevel modeling. 2nd ed. London: J. Wiley & Sons, 2010.
Знайти повний текст джерелаPhilippe, Mathis, ed. Graphs and networks: Multilevel modeling. 2nd ed. London: J. Wiley & Sons, 2010.
Знайти повний текст джерелаЧастини книг з теми "Statistical graph analysis"
Marasinghe, Mervyn G., and William J. Kennedy. "Statistical Graphics Using SAS/GRAPH." In SAS for Data Analysis, 1–58. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77372-8_3.
Повний текст джерелаRupp, Matthias. "Graph Kernels." In Statistical and Machine Learning Approaches for Network Analysis, 217–43. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch8.
Повний текст джерелаLange, Kenneth. "Descent Graph Methods." In Mathematical and Statistical Methods for Genetic Analysis, 169–201. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-21750-5_9.
Повний текст джерелаAh-Pine, Julien. "Graph Clustering by Maximizing Statistical Association Measures." In Advances in Intelligent Data Analysis XII, 56–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41398-8_6.
Повний текст джерелаGras, Régis, Antoine Bodin, Raphaël Couturier, and Pablo Gregori. "Fractal Dimension of an Implicative Graph." In The Theory of Statistical Implicative Analysis, 179–89. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003458777-16.
Повний текст джерелаMiasnikof, Pierre, Alexander Y. Shestopaloff, Anthony J. Bonner, and Yuri Lawryshyn. "A Statistical Performance Analysis of Graph Clustering Algorithms." In Lecture Notes in Computer Science, 170–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92871-5_11.
Повний текст джерелаvor der Brück, Tim. "Hyponym Extraction Employing a Weighted Graph Kernel." In Statistical and Machine Learning Approaches for Network Analysis, 303–25. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch11.
Повний текст джерелаGras, Régis, Antoine Bodin, Raphaël Couturier, and Pablo Gregori. "A Mechanical Metaphor of the Implicative Graph of Statistical Implicative Analysis." In The Theory of Statistical Implicative Analysis, 201–6. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003458777-18.
Повний текст джерелаKutzelnigg, Reinhard. "The Structure of an Evolving Random Bipartite Graph." In Statistical and Machine Learning Approaches for Network Analysis, 191–215. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118346990.ch7.
Повний текст джерелаLi, Shoumei, and Yukio Ogura. "Convergence in graph for fuzzy valued martingales and smartingales." In Statistical Modeling, Analysis and Management of Fuzzy Data, 72–89. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-7908-1800-0_5.
Повний текст джерелаТези доповідей конференцій з теми "Statistical graph analysis"
Fairbanks, James, David Ediger, Rob McColl, David A. Bader, and Eric Gilbert. "A statistical framework for streaming graph analysis." In ASONAM '13: Advances in Social Networks Analysis and Mining 2013. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2492517.2492620.
Повний текст джерелаChen, Jia, Gang Wang, Yanning Shen, and Georgios B. Giannakis. "Canonical Correlation Analysis with Common Graph Priors." In 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2018. http://dx.doi.org/10.1109/ssp.2018.8450749.
Повний текст джерелаVillafane-Delgado, Marisel, and Selin Aviyente. "Temporal network tracking based on tensor factor analysis of graph signal spectrum." In 2016 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2016. http://dx.doi.org/10.1109/ssp.2016.7551718.
Повний текст джерелаKim, Won Hwa, Vikas Singh, Moo K. Chung, Nagesh Adluru, Barbara B. Bendlin, and Sterling C. Johnson. "Multi-resolution statistical analysis on graph structured data in neuroimaging." In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE, 2015. http://dx.doi.org/10.1109/isbi.2015.7164173.
Повний текст джерелаMadhuri, Mrs A., and T. Uma Devi. "Statistical Analysis of Design Aspects on Various Graph Embedding Learning Classifiers." In 2023 7th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2023. http://dx.doi.org/10.1109/iccmc56507.2023.10083741.
Повний текст джерелаXue-Xin Liu, S. X.-D. Tan, and Hai Wang. "Parallel statistical analysis of analog circuits by GPU-accelerated graph-based approach." In 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE 2012). IEEE, 2012. http://dx.doi.org/10.1109/date.2012.6176615.
Повний текст джерелаKaurov, B. "A NEW APPROACH TO THE CONSTRUCTION OF A HUMAN AGING SCHEME." In XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9bae6739.66243641.
Повний текст джерелаPavan Perin, Andréa, and Celso Ribeiro Campos. "Reading and Interpretation of Statistical Graphics by 2nd Year Students of High School." In Bridging the Gap: Empowering and Educating Today’s Learners in Statistics. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.icots11.t2f1.
Повний текст джерелаFreeley, Jennifer, Dmvtro Mishagli, Tom Brazil, and Elena Blokhina. "Statistical Simulations of Delay Propagation in Large Scale Circuits Using Graph Traversal and Kernel Function Decomposition." In 2018 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). IEEE, 2018. http://dx.doi.org/10.1109/smacd.2018.8434901.
Повний текст джерелаMa, Xin, Guorong Wu, and Won Hwa Kim. "Enriching Statistical Inferences on Brain Connectivity for Alzheimer's Disease Analysis via Latent Space Graph Embedding." In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020. http://dx.doi.org/10.1109/isbi45749.2020.9098641.
Повний текст джерелаЗвіти організацій з теми "Statistical graph analysis"
Juden, Matthew, Tichaona Mapuwei, Till Tietz, Rachel Sarguta, Lily Medina, Audrey Prost, Macartan Humphreys, et al. Process Outcome Integration with Theory (POInT): academic report. Centre for Excellence and Development Impact and Learning (CEDIL), March 2023. http://dx.doi.org/10.51744/crpp5.
Повний текст джерелаStriuk, Andrii, Olena Rybalchenko, and Svitlana Bilashenko. Development and Using of a Virtual Laboratory to Study the Graph Algorithms for Bachelors of Software Engineering. [б. в.], November 2020. http://dx.doi.org/10.31812/123456789/4462.
Повний текст джерела