Добірка наукової літератури з теми "Spin Injector"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spin Injector".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Spin Injector"

1

Chen, Zhigao, Baigeng Wang, D. Y. Xing, and Jian Wang. "A spin injector." Applied Physics Letters 85, no. 13 (September 27, 2004): 2553–55. http://dx.doi.org/10.1063/1.1793335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tao, Bingshan, Philippe Barate, Xavier Devaux, Pierre Renucci, Julien Frougier, Abdelhak Djeffal, Shiheng Liang, et al. "Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence." Nanoscale 10, no. 21 (2018): 10213–20. http://dx.doi.org/10.1039/c8nr02250j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

WANG, Y., A. P. LIU, J. BAO, X. G. XU, and Y. JIANG. "SPIN INJECTION INTO TWO-DIMENSIONAL ELECTRON GAS THROUGH A SPIN-FILTERING INJECTOR." Modern Physics Letters B 22, no. 16 (June 30, 2008): 1535–45. http://dx.doi.org/10.1142/s0217984908016273.

Повний текст джерела
Анотація:
In this paper, large spin polarization and magnetoconductance in a ferromagnet (FM)/ferromagnetic insulator (FI)/two-dimensional electron gas (2DEG)/non-magnetic insulator (I)/FM hybrid structure are theoretically predicted by introducing a spin-filtering injector. In the framework of coherent tunneling model, the electron transmission probability, spin polarization and magnetoconductance in the hybrid structure all oscillate with the electron density within the 2DEG channel. A complete single-mode spin injection would be realized by designing a well-defined geometry to adjust the competition between the spin-dependent tunneling of the conductive electrons and spin-filtering effect of the FI barrier.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chi, Feng, Xiao-Ning Dai, and Lian-Liang Sun. "A quantum dot spin injector with spin bias." Applied Physics Letters 96, no. 8 (February 22, 2010): 082102. http://dx.doi.org/10.1063/1.3327807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ariki, Taisei, Tatsuya Nomura, Kohei Ohnishi, and Takashi Kimura. "Effective modulation of spin accumulation using a ferromagnetic/nonmagnetic bilayer spin channel." Journal of Physics D: Applied Physics 55, no. 9 (November 18, 2021): 095302. http://dx.doi.org/10.1088/1361-6463/ac34aa.

Повний текст джерела
Анотація:
Abstract A lateral spin valve consisting of highly spin-polarized CoFeAl electrodes with a CoFeAl/Cu bilayer spin channel has been developed. Despite a large spin absorption into the CoFeAl capping channel layer, an efficient spin injection and detection using the CoFeAl electrodes enable us to observe a clear spin valve signal. We demonstrate that the nonlocal spin accumulation signal is significantly modulated depending on the relative angle of the magnetizations between the spin injector and absorber. The observed modulation phenomena is explained by the longitudinal and transverse spin absorption effects into the CoFeAl channel layer with the spin resistance model.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ved M. V., Dorokhin M. V., Lesnikov V. P., Kudrin A. V., Demina P. B., Zdoroveyshchev A. V., and Danilov Yu. A. "Circularly polarized electroluminescence at room temperature in heterostructures based on GaAs:Fe diluted magnetic semiconductor." Technical Physics Letters 48, no. 13 (2022): 76. http://dx.doi.org/10.21883/tpl.2022.13.53370.18836.

Повний текст джерела
Анотація:
In this work, we demonstrate the possibility of using a diluted magnetic semiconductor GaAs:Fe as a ferromagnetic injector in a spin light-emitting diode based on a GaAs/InGaAs quantum well heterostructure. It is shown that in such a device it is possible to observe partially circularly polarized electroluminescence at room temperature. Keywords: spin light-emitting diodes, diluted magnetic semiconductors, A3B5 semiconductors, spin injection.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Giazotto, F., and F. S. Bergeret. "Quantum interference hybrid spin-current injector." Applied Physics Letters 102, no. 16 (April 22, 2013): 162406. http://dx.doi.org/10.1063/1.4802953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Salis, G., R. Wang, X. Jiang, R. M. Shelby, S. S. P. Parkin, S. R. Bank, and J. S. Harris. "Temperature independence of the spin-injection efficiency of a MgO-based tunnel spin injector." Applied Physics Letters 87, no. 26 (December 26, 2005): 262503. http://dx.doi.org/10.1063/1.2149369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zholud, A., and S. Urazhdin. "Microwave generation by spin Hall nanooscillators with nanopatterned spin injector." Applied Physics Letters 105, no. 11 (September 15, 2014): 112404. http://dx.doi.org/10.1063/1.4896023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zozoulenko, I. V., and M. Evaldsson. "Quantum antidot as a controllable spin injector and spin filter." Applied Physics Letters 85, no. 15 (October 11, 2004): 3136–38. http://dx.doi.org/10.1063/1.1804249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Spin Injector"

1

Van, Veenhuizen Marc Julien. "Investigation of the tunneling emitter bipolar transistor as spin-injector into silicon." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63011.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 185-196).
In this thesis is discussed the tunneling emitter bipolar transistor as a possible spin-injector into silicon. The transistor has a metallic emitter which as a spin-injector will be a ferromagnet. Spin-polarized electrons from the ferromagnet tunnel directly into the conduction band of the base of the transistor and are subsequently swept into the collector. The tunneling emitter bipolar transistor as a spin-injector allows for large spin-polarized currents and naturally overcomes the conductivity mismatch and Schottky barrier formation. In this work, the various aspects of the transistor are analyzed. The transfer of spin-polarization across the base-collector junction is simulated. The oxide MgO is considered as a tunnel barrier for the transistor. Electron spin resonance is proposed as a measurement technique to probe the spin-polarization injected into the collector. The fabrication of the transistors is discussed and the importance of the tunnel barrier for the device operation is fully analyzed. The observation of negative differential transconductance in the transistor is explained. A number of side- or unrelated studies are presented as well. A study on scattered and secondary electrons in e-beam evaporation is described. Spin-orbit coupling induced spin-interference of ring-structures is proposed as a spin-detector. A new measurement technique to probe bias dependent magnetic noise in magnetic tunnel junctions is proposed. Also, an IV fitting program that can extract the relative importance of the tunnel and Schottky barrier is discussed and employed to fit the base-emitter IV characteristics of the transistor. The development of several fabrication and experimental tools is described as well.
by Marc Julien van Veenhuizen.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gao, Xue. "Injection de spin dans les semiconducteurs et les matériaux organiques." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0059/document.

Повний текст джерела
Анотація:
La spintronique utilisant des matériaux semi-conducteurs est un sujet de recherche très actif. Elle permet de combiner le potentiel des semi-conducteurs avec le potentiel des matériaux magnétiques. Le GaN pourrait être un bon candidat pour des applications en spintronique car le temps de relaxation de spin est très long. La spintronique organique est également un domaine de recherche en plein essor en raison de la longue durée de vie de spin des porteurs de charge ainsi que de leur coût relativement bas, de leur flexibilité et de leur diversité chimique. Dans un premier temps, nous montrerons que la polarisation circulaire de la lumière émise par une LED contenant une couche unique de points quantiques InAs / GaAs (QD) InAs / GaAs dopés p peut atteindre environ 18% sans champ magnétique extérieur. Une corrélation claire est établie entre le degré de polarisation de la lumière émise et l’aimantation perpendiculaire de l’injecteur. La polarisation atteint un maximum pour une polarisation appliquée de 2.5 V à 10 K, ce qui correspond à un courant injecté de 6 µA. En outre, nous observons un comportement remarquable de la polarisation pour un température comprise entre 60K et 80K. L’évolution de la polarisation en fonction de la température est discutée à la lumière de la compétition entre le temps de vie de recombinaison radiative τr et le temps de relaxation de spin τs. De plus, nous avons développé un injecteur de spin présentant une anisotropie magnétique perpendiculaire sur GaN. Nous avons d’abord optimisé la croissance de MgO pour différentes températures du substrat. Nous avons ensuite étudié la croissance de Fe puis de Co sur MgO/GaN. L’injecteur de spin Co(0001)/MgO(111) a été retenu car celui-ci permet d’obtenir un anisotropie magnétique perpendiculaire. De plus, les calculs ab initio ont également montré que l’interface Co/MgO(111) présente une grande anisotropie magnétique. Finalement, nous étudions les MFTJ basés sur une barrière de PVDF organique dopée avec des nano-particules de Fe3O4. Nous avons fabriqué avec succès une multicouche de La0.6Sr0.4MnO3/PVDF:Fe3O4/Co, dans laquelle la barrière organique en poly (fluorure de vinylidène) (PVDF) a été dopée avec des nanoparticules ferromagnétiques de Fe3O4. En modifiant la polarisation du PVDF, l’effet tunnel dans la jonction multiferroïque peut être commuté via la partie LSMO/PVDF/Co (polarisation positive) ou via la partie Fe3O4/PVDF/Co (polarisation négative). Cela correspond à une inversion de la magnétorésistance à effet tunnel (TMR) de + 10% à -50%, respectivement. Notre étude montre que les jonctions tunnel multiferroïques organiques dopées avec des particules magnétiques pourraient créer de nouvelles fonctionnalités en jouant sur l’interaction du magnétisme des nanoparticules avec la ferroélectricité de la barrière organique
Spintronics with semiconductors is very attractive as it can combine the potential of semiconductors with the potential of the magnetic materials. GaN has a long spin relaxation time, which could be of potential interest for spintronics applications. Organic spintronics is also very appealing because of the long spin lifetime of charge carriers in addition to their relatively low cost, flexibility, and chemical diversity. In this thesis, we investigate spin injection in spin LEDs containing either InAs/GaAs quantum dots or InGaN/GaN quantum wells. Moreover, we further study spin polarized transport in organic multiferroic tunnel junctions (OMFTJs). Firstly, we will show that the circular polarization of the light emitted by a LED containing a single layer of p-doped InAs/GaAs quantum dots (QDs) can reach about 18% under zero applied magnetic field. A clear correlation is established between the polarization degree of the emitted light and the perpendicular magnetization of the injector layer. The polarization reaches a maximum for an applied bias of 2.5V at 10K, which corresponds to an injected current of 6 µA. Also, we report a remarkable behavior of the polarization in the temperature region 60-80K. The interpretation of the bias and temperature dependence of the polarization is discussed in light of the competition between radiative recombination time τr and the spin relaxation time τs. In addition, significant efforts have been devoted to developing a perpendicular spin injector on GaN based materials to achieve spin injection without applying a magnetic field. Firstly, the growth of MgO has been investigated at various growth temperatures. Then, we studied the growth of either Fe or Co on MgO/GaN. In contrast to Fe/MgO, the Co/MgO spin injector yields a clear perpendicular magnetic anisotropy. In addition, ab-initio calculations have been performed to understand the origin of the perpendicular magnetic anisotropy at the Co/MgO(111) interface. Finally, we investigate multiferroic tunnel junctions (MFTJs) based on organic PVDF barriers doped with Fe3O4 nano particles. The organic MFTJs have recently attracted much attention since they can combine advantages of spintronics, organic and ferroelectric electronics. We report on the successful fabrication of La0.6Sr0.4MnO3/PVDF:Fe3O4/Co OMFTJ, where the poly(vinylidene fluoride) (PVDF) organic barrier has been doped with ferromagnetic Fe3O4 nanoparticles. By changing the polarization of the ferroelectric PVDF, the tunneling process in OMFTJ can be switched either through the LSMO/PVDF/Co part (positive polarization) or through the Fe3O4/PVDF/Co part (negative polarization). This corresponds to a reversal of tunneling magnetoresistance (TMR) from +10% to -50%, respectively. Our study shows that the doping of OMFTJs with magnetic nanoparticles can create new functionalities of organic spintronic devices by the interplay of nanoparticle magnetism with the ferroelectricity of the organic barrier
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gao, Xue. "Injection de spin dans les semiconducteurs et les matériaux organiques." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0059.

Повний текст джерела
Анотація:
La spintronique utilisant des matériaux semi-conducteurs est un sujet de recherche très actif. Elle permet de combiner le potentiel des semi-conducteurs avec le potentiel des matériaux magnétiques. Le GaN pourrait être un bon candidat pour des applications en spintronique car le temps de relaxation de spin est très long. La spintronique organique est également un domaine de recherche en plein essor en raison de la longue durée de vie de spin des porteurs de charge ainsi que de leur coût relativement bas, de leur flexibilité et de leur diversité chimique. Dans un premier temps, nous montrerons que la polarisation circulaire de la lumière émise par une LED contenant une couche unique de points quantiques InAs / GaAs (QD) InAs / GaAs dopés p peut atteindre environ 18% sans champ magnétique extérieur. Une corrélation claire est établie entre le degré de polarisation de la lumière émise et l’aimantation perpendiculaire de l’injecteur. La polarisation atteint un maximum pour une polarisation appliquée de 2.5 V à 10 K, ce qui correspond à un courant injecté de 6 µA. En outre, nous observons un comportement remarquable de la polarisation pour un température comprise entre 60K et 80K. L’évolution de la polarisation en fonction de la température est discutée à la lumière de la compétition entre le temps de vie de recombinaison radiative τr et le temps de relaxation de spin τs. De plus, nous avons développé un injecteur de spin présentant une anisotropie magnétique perpendiculaire sur GaN. Nous avons d’abord optimisé la croissance de MgO pour différentes températures du substrat. Nous avons ensuite étudié la croissance de Fe puis de Co sur MgO/GaN. L’injecteur de spin Co(0001)/MgO(111) a été retenu car celui-ci permet d’obtenir un anisotropie magnétique perpendiculaire. De plus, les calculs ab initio ont également montré que l’interface Co/MgO(111) présente une grande anisotropie magnétique. Finalement, nous étudions les MFTJ basés sur une barrière de PVDF organique dopée avec des nano-particules de Fe3O4. Nous avons fabriqué avec succès une multicouche de La0.6Sr0.4MnO3/PVDF:Fe3O4/Co, dans laquelle la barrière organique en poly (fluorure de vinylidène) (PVDF) a été dopée avec des nanoparticules ferromagnétiques de Fe3O4. En modifiant la polarisation du PVDF, l’effet tunnel dans la jonction multiferroïque peut être commuté via la partie LSMO/PVDF/Co (polarisation positive) ou via la partie Fe3O4/PVDF/Co (polarisation négative). Cela correspond à une inversion de la magnétorésistance à effet tunnel (TMR) de + 10% à -50%, respectivement. Notre étude montre que les jonctions tunnel multiferroïques organiques dopées avec des particules magnétiques pourraient créer de nouvelles fonctionnalités en jouant sur l’interaction du magnétisme des nanoparticules avec la ferroélectricité de la barrière organique
Spintronics with semiconductors is very attractive as it can combine the potential of semiconductors with the potential of the magnetic materials. GaN has a long spin relaxation time, which could be of potential interest for spintronics applications. Organic spintronics is also very appealing because of the long spin lifetime of charge carriers in addition to their relatively low cost, flexibility, and chemical diversity. In this thesis, we investigate spin injection in spin LEDs containing either InAs/GaAs quantum dots or InGaN/GaN quantum wells. Moreover, we further study spin polarized transport in organic multiferroic tunnel junctions (OMFTJs). Firstly, we will show that the circular polarization of the light emitted by a LED containing a single layer of p-doped InAs/GaAs quantum dots (QDs) can reach about 18% under zero applied magnetic field. A clear correlation is established between the polarization degree of the emitted light and the perpendicular magnetization of the injector layer. The polarization reaches a maximum for an applied bias of 2.5V at 10K, which corresponds to an injected current of 6 µA. Also, we report a remarkable behavior of the polarization in the temperature region 60-80K. The interpretation of the bias and temperature dependence of the polarization is discussed in light of the competition between radiative recombination time τr and the spin relaxation time τs. In addition, significant efforts have been devoted to developing a perpendicular spin injector on GaN based materials to achieve spin injection without applying a magnetic field. Firstly, the growth of MgO has been investigated at various growth temperatures. Then, we studied the growth of either Fe or Co on MgO/GaN. In contrast to Fe/MgO, the Co/MgO spin injector yields a clear perpendicular magnetic anisotropy. In addition, ab-initio calculations have been performed to understand the origin of the perpendicular magnetic anisotropy at the Co/MgO(111) interface. Finally, we investigate multiferroic tunnel junctions (MFTJs) based on organic PVDF barriers doped with Fe3O4 nano particles. The organic MFTJs have recently attracted much attention since they can combine advantages of spintronics, organic and ferroelectric electronics. We report on the successful fabrication of La0.6Sr0.4MnO3/PVDF:Fe3O4/Co OMFTJ, where the poly(vinylidene fluoride) (PVDF) organic barrier has been doped with ferromagnetic Fe3O4 nanoparticles. By changing the polarization of the ferroelectric PVDF, the tunneling process in OMFTJ can be switched either through the LSMO/PVDF/Co part (positive polarization) or through the Fe3O4/PVDF/Co part (negative polarization). This corresponds to a reversal of tunneling magnetoresistance (TMR) from +10% to -50%, respectively. Our study shows that the doping of OMFTJs with magnetic nanoparticles can create new functionalities of organic spintronic devices by the interplay of nanoparticle magnetism with the ferroelectricity of the organic barrier
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhou, Ziqi. "Optical and Electrical Properties of Two-Dimensional Materials." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0141.

Повний текст джерела
Анотація:
Les semi-conducteurs bidimensionnels possèdent de nombreuses propriétés fonctionnelles intéressantes telles qu’électriques, optiques, magnétiques, thermiques etc., qui permettent des applications potentielles notamment dans les dispositifs optoélectroniques ultraminces, transparents et hautement intégrés. La synthèse de nouveaux matériaux bidimensionnels et l’exploration de leurs performances optimales, ainsi que le développement de leurs applications font l’objet d’une intense activité de recherche dans le domaine des matériaux. Cette thèse s’inscrit dans la recherche de nouveaux matériaux bidimensionnels. Un premier axe vise à injecter un courant polarisé en spin dans une structure semi-conductrice bidimensionnelle à base de MoS₂ en vue de contrôler la polarisation de l’émission optique. L’objectif est ici d’élaborer une couche ferromagnétique de CoFeB à aimantation perpendiculaire capable d’injecter des électrons polarisés sans champ magnétique, et sur une grande surface. L’obtention de tels émetteurs optique polarisés doit s’accompagner du développement de photodétecteurs de lumière polarisée à base de matériaux bidimensionnels. C’est l’objet des deux autres axes de cette thèse dans lesquels la photo-détection basée sur les nouveaux semi-conducteur GeAs et des alliages d’éléments des groupes IV-VI tels que SnS et ZnSnS est étudiée. Concernant l’injecteur de spin, on s’intéresse à la fabrication des structures Ta/CoFeB/MgO ayant une large anisotropie magnétique perpendiculairement à l’axe de croissance. Un point important est la réalisation d’un dépôt homogène couvrant toute la surface de la monocouche de MoS₂ sous-jacente, constituant l’émetteur de lumière. En optimisant l’épaisseur de la couche de CoFeB et la température du recuit, on obtient une grande énergie d’anisotropie magnétique perpendiculaire valant 0.975 mJ/m². Par l’analyse des propriétés structurales et chimiques de l’hétérostructure, il est montré que l’insertion de MgO entre le métal ferromagnétique et le matériau bidimensionnel peut efficacement bloquer la diffusion des atomes du ferromagnétique. Il est également montré que la couche de Ta joue un rôle critique « d’absorption » des atomes de B de la couche de CoFeB ce qui induit l’aimantation perpendiculaire. D’après les calculs ab initio, l’épaisseur de MgO peut être ajustée pour modifier la structure de bande de MoS₂, allant d’un gap indirect avec pour une couche de MgO de 7 monocouches (MCs) à un gap direct pour une couche de MgO de 3 MCs. L’effet de proximité introduite par le Fe conduit à une modification de la bande de valence au point Γ pour 3 MCs, alors que celle-ci est négligeable pour 7 MCs. Afin d’obtenir un photodétecteur sensible à la polarisation, on s’intéresse à des cristaux ayant une structure anisotrope. La nature anisotrope intra-planaire du cristal IV-V de GeAs est investiguée par spectrométrie d’absorption résolue en polarisation entre 400 et 2000 nm. Les échantillons nanométriques bidimensionnels obtenus de GeAs démontrent bien un dichroïsme linéaire et une photo-détection sensible à la polarisation. Les ratios dichroïques obtenus par des mesures de photocourant atteignent des valeurs élevées de Ipmax/Ipmin ~ 1.49 à 520 nm et de Ipmax/Ipmin ~ 4.4 à 830 nm. Les cartographies de photo-courant suggèrent que la dépendance du courant avec la polarisation trouve son origine majoritairement aux interfaces électrode/GeAs qui présentent un caractère de type Schottky. Des alliages à base d’éléments des groupes IV-VI tels que SnS et ZnSnS ont également été caractérisés. Il est démontré que SnS présente une mobilité des porteurs valant 37,75 cm²•V⁻¹•S⁻¹ et une photo-réponse de 310,5 A/W. En raison de l’absorption optique anisotrope, le photo-courant est dépendant de la direction de polarisation de la lumière incidente, émise à 808 nm. L’absorption optique en bord d’absorption présente une sensibilité à la polarisation avec le plus haut ratio dichroïque atteint valant 3,06 à 862 nm. [...]
Two-dimensional (2D) semiconductor materials exhibit overwhelming electrical, optical, magnetic, thermal and other advantages, which enables their great potential applications in ultra-thin, transparent and highly integrated optoelectronic devices. Searching new two-dimensional materials and exploring their optimal performance, as well as expanding the practical application of two-dimensional materials have been the cores of the researches of two-dimensional materials. This thesis focuses on the vertical magnetic control of the CoFeB film on a large-area single-layer MoS₂ film, which could expand the potential of two-dimensional materials in spin optical detectors, the Polarized Photodetection (anisotropy) based on noval two-dimensional semiconductor GeAs, and the optical characterizations of group IV-VI compounds like SnS and ZnSnS alloys. This paper introduces them in detail through the following three parts: 1. We research the fabrication of the Ta/CoFeB/MgO structures with large perpendicular magnetic anisotropies (PMA) on the full coverage MoS₂ monolayers. By optimizing the thickness of the CoFeB layer and the annealing temperature, a large perpendicular interface anisotropy energy of 0.975 mJ/m² has been obtained at the CoFeB/MgO interface. By analyzing the structural and the chemical properties of the heterostructure, it is found that the insertion of MgO between the ferromagnetic metal (FM) and the 2D material can effectively block the diffusion of the FM atoms into the 2D material, and that the Ta layer plays a critical role to efficiently absorb B atoms from the CoFeB layer to establish the PMA. From the results of ab initio calculations, the MgO thickness can be tuned to modify the MoS₂ band structure, from an indirect bandgap with 7 MLs MgO layers to a direct bandgap with 3 MLs MgO layers. The proximity effect induced by Fe results in a splitting of 10 meV in the valence band at the Γ point of the 3MLs MgO structure while it is negligible for the 7MLs MgO structure. 2. we research the anisotropic optical characterization of a group IV-V compound, Germanium Arsenic (GeAs), with anisotropic monoclinic structure. The in-plane anisotropic optical nature of GeAs crystal is further investigated by the polarization-resolved absorption spectroscopy (400-2000 nm) and the polarization-sensitive photodetectors. In the visible-to-near-infrared range, the 2D GeAs nanoflakes demonstrate the distinct perpendicular optical reversal with an angle of 75~80 degrees on both of the linear dichroism and the polarization-sensitive photodetection. Obvious anisotropic features and the high dichroic ratio of Ipmax/Ipmin ~ 1.49 at 520 nm and Ipmax/Ipmin ~ 4.4 at 830 nm are measured by the polarization-sensitive photodetection. The polarization-dependent photocurrent mapping implied that the polarized photocurrent mainly occurred at the Schottky photodiodes at the electrode/GeAs interface. 3. We research optical characterizations of group-IV-VI compounds like SnS and ZnSnS alloys. SnS nanosheets exhibit carrier mobility of 37.75 cm²·V⁻¹·s⁻¹, photoresponsivity of 310.5 A/W and external quantum efficiency of 8.56×104% at 450 nm. Optical absorption around the absorption edge presents obvious polarization sensitivity with the highest optical absorption dichroic ratio of 3.06 at 862 nm. Due to the anisotropic optical absorption, the polarized photocurrent appears upon the periodic change affected by the polarized direction of the incident light at 808 nm. The ZnSnS alloys combine the advantageous optical parameters of SnS and ZnS₂, which belong to the direct band structure of n-type 2D semiconductors. The carrier mobility of the alloy is 65 cm² V⁻¹ S⁻¹ and the on/off ratio under white-LED illumination is as high as 51
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aziz, A. "Spin injection into semiconductors." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596232.

Повний текст джерела
Анотація:
This thesis describes the studies of the spin polarized current transport across Schottky barriers. Partially spin polarized electrons (~50%) are optically excited using circularly polarized light in GaAs. Under forward bias, these electrons are detected by a ferromagnetic (FM) layer at the FM/Semiconductor (Sc) interface using the spin split density of states at the Fermi-level in the FM. On average, a 3% change in the helicity dependent photo-current is observed. This confirms that about 6% of the spin polarized electrons, excited in the GaAs layer, transport into the FM across the FM/Sc interface without loosing their spin coherence. It is observed that the efficiency of the spin polarized electron transport across the Schottky barrier increases with increasing forward bias. Photo-current measurements are also performed for different excitation energies. An unusual resonant peak in the photo-current is observed at an excitation energy 20 meV below the band gap. We associate this peak with the modulation of the Schottky barrier. Barrier modulation is due to the neutralization of the ionized donor states when electrons are photo-excited to the empty donor states in the depletion region. Our results indicate that the efficiency of the spin polarized current transport increases at this resonant peak. We explain this increase by the decrease in the spin flip scattering due to ionized impurities. One of the possible routes to study room temperature spin polarized current transport across the semiconductor is by investigating the magneto-resistive properties of the devices, where a very thin semiconductor layer is sandwiched between ferromagnetic metallic layers. In this thesis two processing techniques which can be used to sandwich a thin GaAs layer between metallic electrodes are presented. Using these techniques a GaAs layer less than 100 nm thin is sandwiched between permalloy films. These techniques can potentially be used to sandwich even thinner GaAs layers between metals.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mooser, Sebastian Thomas. "Spin injection, spin transport and spin-charge conversion in organic semiconductors." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lin, Ran. "Organic spintronic devices utilizing spin-injection, spin-tunneling and spin-dependent transport." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/5015.

Повний текст джерела
Анотація:
Spintronics, also known as spin electronics, or magnetoelectronics, refers to the study of the role that electron and (less frequently) nuclear spins play in solid state physics, and a group of devices that specifically exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge. As a principal type of spintronic device, a spin-valve is a device that uses ferromagnetic electrodes to polarize and analyze the electronic spins. The electrical resistance of the device depends sensitively on the relative magnetization of its two ferromagnetic electrodes, a phenomenon referred to as Giant Magnetoresistance (GMR). Having been successfully applied in the field of data storage, GMR also shows potential for future logic devices. Organic semiconductors possess many advantages in electronic device applications. Therefore, using organic semiconductors in spintronics is very interesting and promising, in part, because of their exceptionally long spin-decoherence times. This thesis concerns itself with the scientific study of magnetic field and spin effects in organic spin valves (OSV) and organic light emitting diodes (OLED). Three projects were finished, achieving a better understanding of the transportation of charge and spin carriers inside organic films, and paving the way to enhancing the spin diffusion length and the organic magnetoresistance (OMAR) effect. Firstly, C60 films were used as the spin-transport layer of OSV devices, because of its low hyperfine coupling and high mobility, which prior work suggested to be beneficial. Subsequently we studied the spin injection and transport properties by measuring the devices' magnetoresistance (MR) response at various biasing voltages, V, temperatures, T and different C60 film thickness. But we do not observe a significantly increased spin-diffusion length compared to OSV devices based on other organic semiconductors. We propose conductivity mismatch as a likely cause of the loss of spin-valve signal with increasing C60 layer thickness. There exists some disagreement in the scientific literature regarding whether OSV operate in the so-called tunneling regime or the so-called injection regime. To shed light on this question, we fabricated spin-valve devices made of organic semiconductor thin films of rubrene sandwiched between ferromagnetic cobalt and iron electrodes. Current-voltage (I-V) characteristics in Co/AlOx/rubrene/Fe junctions with a rubrene layer thickness, d, ranging from 5-50 nm, were measured, and we found two different modes of conductivity. The first mode, tunneling, occurs in relatively thin junctions, d < 15 nm, and decays exponentially with increasing rubrene thickness. We determined the tunneling decay length to be 1 nm. The tunneling mode is also characterized by a weak temperature dependence and a nearly parabolic differential conductance. The second mode, injection followed by hopping, occurs in relatively thick devices, d ≥ 15 nm, and can be identified by strongly temperature dependent, highly non-linear I-V traces that are similar to those commonly measured in organic injection devices such as OLEDs. We observed MR in devices with a rubrene thickness of 5 nm and 10 nm. Those devices are clearly in the tunneling regime. For the 15 nm device, for which the tunneling current is just barely measurable we could not observe MR. In the third project, we show that the performance of both OMAR and OSV devices very sensitively depends on whether the metallic layers are deposited by thermal evaporation or electron-beam evaporation. A strongly reduced spin diffusion length and an enhanced OMAR response can be achieved in devices fabricated by electron-beam evaporation. Then we showed that the difference must be attributed to the generation of traps resulting from the exposure of the organic layer to X-ray bremsstrahlung that is generated during the e-beam evaporation process. We also used the thermally stimulated current technique (TSC) to characterize these traps.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Garzon, Samir Y. "Spin injection and detection in copper spin valve structures." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2192.

Повний текст джерела
Анотація:
Thesis (Ph. D.) -- University of Maryland, College Park, 2005.
Thesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dash, Saroj Prasad. "Towards spin injection into silicon." Stuttgart Max-Planck-Institut für Metallforschung, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Severac, Childerick Henri Louis. "Spin injection into high temperature superconductor." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Spin Injector"

1

Jane, Ireland. Spin-injection into grain boundary junctions. Birmingham: University of Birmingham, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Atlas of spine injection. Philadelphia, PA: W.B. Saunders, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kimura, T., and Y. Otani. Magnetization switching due to nonlocal spin injection. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0021.

Повний текст джерела
Анотація:
This chapter discusses and presents a schematic illustration of nonlocal spin injection. In this case, the spin-polarized electrons are injected from the ferromagnet and are extracted from the left-hand side of the nonmagnet. This results in the accumulation of nonequilibrium spins in the vicinity of the F/N junctions. Since the electrochemical potential on the left-hand side is lower than that underneath the F/N junction, the electron flows by the electric field. On the right-hand side, although there is no electric field, the diffusion process from the nonequilibrium into the equilibrium state induces the motion of the electrons. Since the excess up-spin electrons exist underneath the F/N junction, the up-spin electrons diffuse into the right-hand side. On the other hand, the deficiency of the down-spin electrons induces the incoming flow of the down-spin electrons opposite to the motion of the up-spin electron.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wunderlich, J., K. Olejník, L. P. Zârbo, V. P. Amin, J. Sinova, and T. Jungwirth. Spin-injection Hall effect. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0016.

Повний текст джерела
Анотація:
This chapter discusses the Spin-injection Hall effect (SiHE), another member of the spin-dependent Hall effects that is closely related to the anomalous Hall effect (AHE), the spin Hall effect (SHE), and the inverse spin Hall effect (iSHE). The microscopic origins responsible for the appearance of spin-dependent Hall effects are due to the spin-orbit (SO) coupling-related asymmetrical deflections of spin carriers. Depending on the relative strength of the SO coupling compared to the energy-level broadening of the quasi-particle states due to disorder scattering, scattering-related extrinsic mechanisms or intrinsic band structure-related deflection dominate the spin-dependent Hall response. Both the iSHE and the SiHE require spin injection into a nonmagnetic system. Similar to the AHE, a spin-polarized charge current flows in the case of the SiHE and the SO coupling generates the spin-dependent Hall signal.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Suzuki, Y. Spin torque in uniform magnetization. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0020.

Повний текст джерела
Анотація:
This chapter discusses the effects of a spin current injected into a uniformly magnetized ferromagnetic cell. The junction consists of two ferromagnetic layers separated by a nonmagnetic metal interlayer or insulating barrier layer. With a nonmagnetic metal interlayer, the junction is called a giant magnetoresistive nanopillar, and with an insulating barrier layer a magnetic-tunnel junction. When charge current is passed through this device, the electrons are first spin polarized by the fixed layer and spin-polarized current is then injected into the free layer through the nonmagnetic interlayer. This spin current interacts with the spins in the host material by an exchange interaction and exerts a torque. If the exerted torque is large enough, magnetization in the free layer is reversed or continuous precession is excited.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Endres, Bernhard. Spin Injection into Gaas. Universitatsverlag Regensburg GmbH, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Glazov, M. M. Interaction of Spins with Light. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0006.

Повний текст джерела
Анотація:
This chapter presents the details of the optical manipulation of electron spin states. It also addresses manifestations of the electron and nuclear spin dynamics in optical response of semiconductor nanostructures via spin-Faraday and -Kerr effects. Coupling of spins with light provides the most efficient method of nonmagnetic spin manipulation. The main aim of this chapter is to provide the theoretical grounds for optical spin injection, ultrafast spin control, and readout of spin states by means of circularly and linearly polarized light pulses. The Faraday and Kerr effects induced by the electron and nuclear spin polarization are analyzed both by means of a macroscopic, semi-phenomenological approach and by using the microscopic quantum mechanical model. Theoretical analysis is supported by experimental data.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Spin Injection and Transport in Magnetoelectronics. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-08-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fiorani, Dino, and P. Vincenzini. Spin Injection and Transport in Magnetoelectronics. Trans Tech Publications, Limited, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Renfrew, Donald. Atlas of Spine Injection. Saunders, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Spin Injector"

1

Borukhovich, Arnold S., and Alexey V. Troshin. "Creating a High-Temperature Spin Injector and a Spin-Wave Transistor Based on EuO." In Europium Monoxide, 163–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76741-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Johnson, M. "Spin Injection." In Springer Series in Solid-State Sciences, 279–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78820-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Johnson, Mark. "Spin Injection." In Springer Series in Solid-State Sciences, 329–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65436-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Buhrman, Robert A. "Spin Injection, Spin Transport and Spin Transfer." In Spin Electronics, 35–48. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0532-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hai, Pham Nam, Le Duc Anh, Daisuke Sakaki, Masaaki Tanaka, Matthias Althammer, Eva-maria Karrer-müller, Sebastian T. B. Goennenwein, et al. "Nanosession: Spin Injection and Transport." In Frontiers in Electronic Materials, 301–9. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527667703.ch50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Legat, M. "Lumbar Epidural Injection." In Minimally Invasive Spine Intervention, 125–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-63814-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Legat, M. "Cervical Epidural Injection." In Minimally Invasive Spine Intervention, 117–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-63814-9_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ohmori, C., S. Hiramatsu, and T. Nakamura. "An Intense Polarized Beam by a Laser Ionization Injection." In High Energy Spin Physics, 124–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76661-9_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shin, Sang-Ha. "Epidural Steroid Injection." In Transforaminal Endoscopy for Lumbar Spine, 305–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8971-1_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wulfhorst, Jeannette, Andreas Vogel, Nils Kuhlmann, Ulrich Merkt, and Guido Meier. "Spin Injection and Detection in Spin Valves with Integrated Tunnel Barriers." In Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, 327–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10553-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Spin Injector"

1

Lu, Y., S. Liang, T. Zhang, P. Barate, J. Frougier, P. Renucci, B. Xu, et al. "Spin light emitting diode with CoFeB/MgO spin injector." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zozoulenko, I. V. "Quantum antidot as a controllable spin injector and spin filter." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Poltoratska, Y., R. Barday, U. Bonnes, M. Brunken, C. Eckardt, R. Eichhorn, J. Enders, et al. "Status Report of the New Darmstadt Polarized Electron Injector." In SPIN PHYSICS: 18th International Spin Physics Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3215801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saito, H., J. C. Le Breton, V. Zayets, Y. Mineno, S. Yuasa, and K. Ando. "Spin injection into GaAs from Fe/GaOx Tunnel Injector." In 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.f-8-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Avrutin, V., Ü. Özgür, J. Xie, Y. Fu, F. Yun, H. Morkoç, and V. I. Litvinov. "Gd-implanted GaN as a candidate for spin injector." In Integrated Optoelectronic Devices 2006, edited by Cole W. Litton, James G. Grote, Hadis Morkoc, and Anupam Madhukar. SPIE, 2006. http://dx.doi.org/10.1117/12.646951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

HILLERT, W., M. GOWIN, and B. NEFF. "A NEW INJECTOR FOR POLARIZED ELECTRONS AT ELSA." In Proceedings of the Symposium of the Gerasimov-Drell-Hearn Sum Rule and the Nucleon Spin Structure in the Resonance Region. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811448_0033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rajendram Soundararajan, Preethi, Daniel Durox, Antoine Renaud, and Sébastien Candel. "Azimuthal Instabilities of an Annular Combustor With Different Swirling Injectors." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82281.

Повний текст джерела
Анотація:
Abstract Experiments are carried out on the laboratory-scale MICCA-Spray annular combustor to examine the effects of swirlers on combustion instabilities. This system comprises sixteen spray-swirl injectors and gives rise to instabilities coupled by azimuthal modes. Five types of swirlers producing clockwise rotation and varying in swirl numbers and pressure drops are considered. These swirlers can be broadly categorized into two groups, lower-swirl, and higher-swirl groups, based on their swirl numbers. An arrangement where clockwise and counterclockwise swirlers alternate is also studied. Experiments are performed systematically with liquid heptane at five levels of thermal power and six equivalence ratios. Results reveal that none of the swirlers in the lower-swirl category exhibit instability in the operating region considered, whereas the higher-swirl units feature strong azimuthal instabilities that trace an overall limit cycle envelope with a few short and random bursts. Among the higher-swirl group, a higher pressure drop swirler is associated with a broader instability map. This shows that the transition to instability mainly depends on the swirl number through its effect on the flame structure and that the pressure drop adds to further variations in amplitude and frequency of oscillation. The spin ratio time series indicate that the modes are of mixed type, and that its distribution depends on the operating condition. On specifically comparing the spin ratio distribution between a full set of clockwise rotating swirlers (CR) and a configuration where clockwise and counterclockwise rotating swirlers (CCR) are alternatively placed, it is found that there is no definite statistical preference for spin ratio linked to the effect of bulk swirl. In some cases, however, the CCR configuration promotes a broader distribution of spin ratios centered around the standing mode (s = 0) while the CR setup favors azimuthal modes spinning in the counterclockwise direction. An attempt is made to interpret the occurrence of instabilities by making use of flame describing functions (FDFs) measured in a single-injector combustor. It is found that the FDFs corresponding to the two swirler categories (lower swirl and higher swirl) are relatively distinct. The observed behavior is tentatively interpreted using an instability analysis in which the injector and upstream plenum are represented by an impedance which shifts the band of instability. The unstable behavior is then linked to the relative position of the FDF phase with respect to the instability band in the frequency range corresponding to the expected azimuthal mode frequency. The phase and gain of the FDF notably depend on the swirl number and it is possible to distinguish, for the present configuration, a category of low swirl number injectors inducing stable operation and another category of high swirl number units leading to oscillations.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jiang, X. "Efficient spin injection using tunnel injectors." In Proceedings. 2005 International Conference on MEMS, NANO and Smart Systems. IEEE, 2005. http://dx.doi.org/10.1109/icmens.2005.46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Uemura, Tetsuya, Takafumi Akiho, Yuya Ebina, and Masafumi Yamamoto. "Coherent manipulation of nuclear spins using spin injection from a half-metallic spin source." In SPIE Nanoscience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2238793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Asshoff, Pablo, Gunter Wüst, Andreas Merz, Heinz Kalt, Michael Hetterich, Jisoon Ihm, and Hyeonsik Cheong. "Polarizing nuclear spins in quantum dots by injection of a spin-polarized current." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Spin Injector"

1

Ranjbar, Vahid H., M. Blaskiewicz, F. Meot, C. Montag, and S. Tepikian. Spin Resonance Free Electron Ring Injector. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1436273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hu, Bin. Spin Injection and its Effects on Lasing Action in Conjugated Polymers. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada524321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tsoupas, N., T. Roser, and A. Luccio. Stable Spin Direction of a Polarized Proton Beam at the Injection Point of RHIC. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/1149804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baah, Prince. Implementing Epoxy Injection in Concrete Overlaid Bridge Decks. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317588.

Повний текст джерела
Анотація:
Concrete overlays have proven to be an effective maintenance treatment as they slow de-icing chemical and water penetration into the original deck surface. Typically, due to vibration, structural flexibility, and weak bond between the concrete overlay and deck concrete potentially due to poor construction, de-bonding develops at the boundary between the original deck and overlay. This de-bonding creates voids, providing reservoir for chloride laden water to fill after it penetrates cracks in the surface. Displacing this liquid solution and filling these cracks with epoxy helps reduce freeze/thaw cycling and reduces spalling. The epoxy material protects the bridge deck from moisture and helps support the overlay and prevent it from failing under traffic loads. This leads to an extension of the asset life span and life cycle cost benefit increase. Overall, the bridge infrastructure performance improves significantly with greater mobility and less traffic interruptions due to repairs to bridges on our roadway infrastructures. Epoxy injection helps extends the service life of bridge decks and reduces the need for emergency bridge deck patching and as a result improves safety of road users. Epoxy injection has been added to INDOT’s Maintenance Work Performance Standards during the course of this study.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xiang, Kemeng, Huiming Hou, and Ming Zhou. The efficacy of Cerus and Cucumis Polypeptide injection combined with Bisphosphonates on postmenopausal women with osteoporosis:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2022. http://dx.doi.org/10.37766/inplasy2022.5.0067.

Повний текст джерела
Анотація:
Review question / Objective: The aim of this review is to evaluate the effectiveness of Cerus and Cucumis Polypeptide injection combined with Bisphosphonates for postmenopausal osteoporosis. Condition being studied: Postmenopausal osteoporosis (PMOP) is a disorder of bone metabolism caused by estrogen deficiency in women after menopause, which manifests clinically as pain, spinal deformities and even fragility fractures, affecting the quality of life of patients and possibly shortening their life span. Bisphosphonates are commonly used to control and delay the progression of the disease, improve the patient's symptoms and reduce the incidence of fragility fractures. However, single drugs are still lacking in controlling the progression of the disease, and the combination of drugs is the clinical priority.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії