Добірка наукової літератури з теми "Spherical coordinate"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spherical coordinate".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Spherical coordinate"

1

Lei, Kin, Dongxu Qi, and Xiaolin Tian. "A New Coordinate System for Constructing Spherical Grid Systems." Applied Sciences 10, no. 2 (January 16, 2020): 655. http://dx.doi.org/10.3390/app10020655.

Повний текст джерела
Анотація:
In astronomy, physics, climate modeling, geoscience, planetary science, and many other disciplines, the mass of data often comes from spherical sampling. Therefore, establishing an efficient and distortion-free representation of spherical data is essential. This paper introduces a novel spherical (global) coordinate system that is free of singularity. Contrary to classical coordinates, such as Cartesian or spherical polar systems, the proposed coordinate system is naturally defined on the spherical surface. The basic idea of this coordinate system originated from the classical planar barycentric coordinates that describe the positions of points on a plane concerning the vertices of a given planar triangle; analogously, spherical area coordinates (SACs) describe the positions of points on a sphere concerning the vertices of a given spherical triangle. In particular, the global coordinate system is obtained by decomposing the globe into several identical triangular regions, constructing local coordinates for each region, and then combining them. Once the SACs have been established, the coordinate isolines form a new class of global grid systems. This kind of grid system has some useful properties: the grid cells exhaustively cover the globe without overlapping and have the same shape, and the grid system has a congruent hierarchical structure and simple relationship with traditional coordinates. These beneficial characteristics are suitable for organizing, representing, and analyzing spatial data.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

POVSTENKO, Yuriy. "Solutions to Diffusion-Wave Equation in a Body with a Spherical Cavity under Dirichlet Boundary Condition." An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 1, no. 1 (June 27, 2011): 3–16. http://dx.doi.org/10.11121/ijocta.01.2011.0035.

Повний текст джерела
Анотація:
Solutions to time-fractional diffusion-wave equation with a source term in spherical coordinates are obtained for an infinite medium with a spherical cavity. The solutions are found using the Laplace transform with respect to time t, the finite Fourier transform with respect to the angular coordinate Ï•, the Legendre transform with respect to the spatial coordinate μ, and the Weber transform of the order n+1/2 with respect to the radial coordinate r. In the central symmetric case with one spatial coordinate r the obtained resultscoincide with those studied earlier.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Swaszek, P. "Uniform Spherical Coordinate Quantization of Spherically Symmetric Sources." IEEE Transactions on Communications 33, no. 6 (June 1985): 518–21. http://dx.doi.org/10.1109/tcom.1985.1096333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Jinwook, Sung-Hee Lee, and Frank C. Park. "Kinematic and dynamic modeling of spherical joints using exponential coordinates." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, no. 10 (November 24, 2013): 1777–85. http://dx.doi.org/10.1177/0954406213511365.

Повний текст джерела
Анотація:
Traditional Euler angle-based methods for the kinematic and dynamic modeling of spherical joints involve highly complicated formulas that are numerically sensitive, with complex bookkeeping near local coordinate singularities. In this regard, exponential coordinates are known to possess several advantages over Euler angle representations. This paper presents several new exponential coordinate-based formulas and computational procedures that are particularly useful in the modeling of mechanisms containing spherical joints. Computationally robust procedures are derived for evaluating the forward and inverse formulas for the angular velocity and angular acceleration in terms of exponential coordinates. We show that these formulas simplify the parametrization of joint range limits for spherical joints, and lead to more compact equations in the forward and inverse dynamic analysis of mechanisms containing spherical joints.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dil, Emre, and Talha Zafer. "Transformation Groups for a Schwarzschild-Type Geometry in f(R) Gravity." Journal of Gravity 2016 (November 2, 2016): 1–8. http://dx.doi.org/10.1155/2016/7636493.

Повний текст джерела
Анотація:
We know that the Lorentz transformations are special relativistic coordinate transformations between inertial frames. What happens if we would like to find the coordinate transformations between noninertial reference frames? Noninertial frames are known to be accelerated frames with respect to an inertial frame. Therefore these should be considered in the framework of general relativity or its modified versions. We assume that the inertial frames are flat space-times and noninertial frames are curved space-times; then we investigate the deformation and coordinate transformation groups between a flat space-time and a curved space-time which is curved by a Schwarzschild-type black hole, in the framework of f(R) gravity. We firstly study the deformation transformation groups by relating the metrics of the flat and curved space-times in spherical coordinates; after the deformation transformations we concentrate on the coordinate transformations. Later on, we investigate the same deformation and coordinate transformations in Cartesian coordinates. Finally we obtain two different sets of transformation groups for the spherical and Cartesian coordinates.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vodolazov, Rodion, Valery Chapursky, and Andrey Filatov. "To the question of coordinate system choice within composition of the spatial generalized MIMO radar ambiguity function." ITM Web of Conferences 30 (2019): 15014. http://dx.doi.org/10.1051/itmconf/20193015014.

Повний текст джерела
Анотація:
The issue of the choice of spatial coordinate system which is suitable to physical sense of the radar concept is explored on the basis of the derivation of spatial generalized ambiguity function for MIMO antenna system and of its cross-section analysis. The comparison results of generalized ambiguity function cross-sections for two dimensional target coordinates in Cartesian, spherical and modified spherical coordinate systems are given for orthogonal LFM waveforms radiated by the elements of linear MIMO antenna system transmit. This proves the desirable choice between coordinate systems with regard of physical sense of the current task.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vetter, Philipp, Susan J. Goodbody, and Daniel M. Wolpert. "Evidence for an Eye-Centered Spherical Representation of the Visuomotor Map." Journal of Neurophysiology 81, no. 2 (February 1, 1999): 935–39. http://dx.doi.org/10.1152/jn.1999.81.2.935.

Повний текст джерела
Анотація:
Evidence for an eye-centered spherical representation of the visuomotor map. During visually guided movement, visual coordinates of target location must be transformed into coordinates appropriate for movement. To investigate the representation of this visuomotor coordinate transformation, we examined changes in pointing behavior induced by a local visuomotor remapping. The visual feedback of finger position was limited to one location within the workspace, at which a discrepancy was introduced between the actual and visually perceived finger position. This remapping induced a change in pointing that extended over the entire workspace and was best captured by a spherical coordinate system centered near the eyes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Iofa, Mikhail Z. "Kodama-Schwarzschild versus Gaussian Normal Coordinates Picture of Thin Shells." Advances in High Energy Physics 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/5632734.

Повний текст джерела
Анотація:
Geometry of the spacetime with a spherical shell embedded in it is studied in two coordinate systems: Kodama-Schwarzschild coordinates and Gaussian normal coordinates. We find explicit coordinate transformation between the Kodama-Schwarzschild and Gaussian normal coordinate systems. We show that projections of the metrics on the surface swept by the shell in the 4D spacetime in both cases are identical. In the general case of time-dependent metrics we calculate extrinsic curvatures of the shell in both coordinate systems and show that the results are identical. Applications to the Israel junction conditions are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Medvedev, P. A., and M. V. Novgorodskaya. "Development of mathematical model Gauss – Kruger coordinate system for calculating planimetric rectangular coordinates using geodesic coordinates." Geodesy and Cartography 926, no. 8 (September 20, 2017): 10–19. http://dx.doi.org/10.22389/0016-7126-2017-926-8-10-19.

Повний текст джерела
Анотація:
Algorithms with improved convergence for the calculation of rectangular coordinates in the Gauss – Kruger coordinate system according to the parameters of any ellipsoid were designed. The approach of definition the spherical components in the classic series defined variables x, y, represented by the difference between the degrees of longitude l, followed by the replacement of their sums by formulas of spherical trigonometry. For definition of the amounts of spherical components of the relevant decompositions patterns of transverse-cylindrical sphere plane projection in the condition of the initial data equality on the ellipsoid and sphere radius N were used. Analysis of othertransformation methods of classical expansions in series, used in derivation of both logarithmical and non-logarithmical working formulas is carried outfor comparison with developed algorithms. The technique of algorithms development with usage of hyperbolic tangent function, applied by L. Kruger, Yu. Karelin, A. Schödlbauer is considered and their analysis is carried out. Advantages of Krasovskii – Isotov formulas for six-degree strips are pointed out. The usage of the spherical function sin τ in the expansion made it possible not only to obtain a rapidly convergent series, but also to represent the spherical part of the solution of the problem with the help of trigonometric identities in different types. It is proved that derived for the calculation algorithms with the proposed estimates of their accuracy, are optimal in removing points from the central meridian to l ≤ 6°. For the difference of longitudes l > 6°, the expansions of the unknown quantities into Fourier series should be applied. An example of the calculation of coordinates in the system SK-2011 is given. Theoretical studies have been carried out and shortened formulas with a reliability estimate for the determination of coordinates in the area l ≤ 3° have been proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zaki, Ahmad, Syafruddin Side, and N. Nurhaeda. "Solusi Persamaan Laplace pada Koordinat Bola." Journal of Mathematics, Computations, and Statistics 2, no. 1 (May 12, 2020): 82. http://dx.doi.org/10.35580/jmathcos.v2i1.12462.

Повний текст джерела
Анотація:
Penelitian ini mengkaji mengenai persamaan Laplace pada koordinat bola dan menerapkan metode pemisahan variabel dalam menentukan solusi persamaan Laplace Persamaan Laplace merupakan salah satu jenis persamaan diferensial parsial yang banyak digunakan untuk memodelkan permasalahan dalam bidang sains. Bentuk umum persamaan Laplace pada dimensi tiga dimana adalah fungsi skalar dengan menggunakan metode pemisahan variable diperoleh persamaan Laplace dimensi tiga pada koordinat bola. Hasil penelitian ini mendapatkan penyelesaian persamaan Laplace pada koordinat bola dalam bentuk variabel terpisah dengan tidak menggunakan nilai batas. Hubungan koordinat kartesian dan koordinat bola pada persamaan Laplace dapat ditentukan dalam persamaan Laplace dan memperoleh solusi dengan menggunakan koordinat bola.Kata Kunci: Koordinat Bola, Pemisahan Variabel, dan Persamaan Laplace. This study examines Laplace equations on spherical coordinates and applies variable separation methods in determining Laplace equation solutions Laplace equations are one type of partial differential equation that is widely used to model problems in the field of science. The general form of the Laplace equation in the third dimension in which u is a scalar function using the separation method of the variable is obtained by the third dimension Laplace equation on spherical coordinates. The result of this research get solution of Laplace equation on spherical coordinate in the form of separate variable by not using boundary value. The relationship of cartesian coordinates and spherical coordinates to the Laplace equation can be determined in the Laplace equation and obtain solutions using spherical coordinates.Keywords: Spherical Coordinat Variabel Separation, and Laplace Equation.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Spherical coordinate"

1

Garrett, Travis Marshall Evans Charles Ross. "Simulating binary inspirals in a corotating spherical coordinate system." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,1112.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of North Carolina at Chapel Hill, 2007.
Title from electronic title page (viewed Mar. 27, 2008). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics and Astronomy." Discipline: Physics and Astronomy; Department/School: Physics and Astronomy.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Perez, Alex C. "Applications of Relative Motion Models Using Curvilinear Coordinate Frames." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/5529.

Повний текст джерела
Анотація:
A new angles-only initial relative orbit determination (IROD) algorithm is derived using three line-of-sight observations. This algorithm accomplishes this by taking a Singular Value Decomposition of a 6x6 matrix to arrive at an approximate initial relative orbit determination solution. This involves the approximate solution of 6 polynomial equations in 6 unknowns. An iterative improvement algorithm is also derived that provides the exact solution, to numerical precision, of the 6 polynomial equations in 6 unknowns. The initial relative orbit algorithm is also expanded for more than three line-of-sight observations with an iterative improvement algorithm for more than three line-of-sight observations. The algorithm is tested for a range of relative motion cases in low earth orbit and geosynchronous orbit, with and without the inclusion of J2 perturbations and with camera measurement errors. The performance of the IROD algorithm is evaluated for these cases and show that the tool is most accurate at low inclinations and eccentricities. Results are also presented that show the importance of including J2 perturbations when modelling the relative orbital motion for accurate IROD estimates. This research was funded in part by the Air Force Research Lab, Albuquerque, NM.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Matthews, Karyn. "A spherical coordinate tidal model of the Great Australian Bight using a new coastal boundary representation /." Title page, contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phm4391.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bao, Wentao. "A Simulation and Optimization Study of Spherical Perfectly Matched Layers." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494166698903702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Estrada, Marroquín Paolo Tito. "Magnetohydrodynamics of rotating plasma under satationary equilibrium in spherical coordinates." reponame:Repositório Institucional da UFPR, 2016. http://hdl.handle.net/1884/44084.

Повний текст джерела
Анотація:
Orientador: Prof. Dr. Ricardo Luiz Viana
Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Física. Defesa: Curitiba, 24/05/2016
Inclui referências : f. 77-79
Resumo: Foi derivada uma equação de equilíbrio estacionário MHD de plasmas em rotação na direcção azimutal, no caso de um sistema de coordenadas esféricas, describindo o plasma como um fluido,e considerando a entropia como uma quantidade de superfície. A equação obtida é resolvida utilizando uma abordagem analítica e numérica para os perfis escolhidos das funções de corrente e de pressão em termos da função de fluxo. Gráficos foram feitos da solução obtida por este método. A rotação afecta apenas alguns componentes do campo magnético, da densidade decorrente, a corrente de fluxo poloidal, assim como a função de fluxo também é afectada pela rotação. palavras-chave: mhd. plasma. rotação. equilíbrio. estacionário
Abstract: An equation for MHD stationary equilibrium of rotating plasmas in the azimuthal direction is derived in the case of an spherical coordinate system, with a plasma description of a fluid, considered the entropy is a surface quantity. The equation obtained is solved using both an analytical and a semi-numerical approach for chosen profiles for the current and the pressure functions in terms of the flux function. Plots were made of the solution obtained by this method. The rotation affects only some components of the magnetic field and the current density, the flux function is also affected by the rotation. Keywords: mhd. plasma. rotation. equilibrium. stationary.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Breckenridge, Richard P. "Localization of multiple broadband targets in spherical coordinates via adaptive beamforming and non-linear estimation." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hemingway, Douglas J., and Isamu Matsuyama. "Isostatic equilibrium in spherical coordinates and implications for crustal thickness on the Moon, Mars, Enceladus, and elsewhere." AMER GEOPHYSICAL UNION, 2017. http://hdl.handle.net/10150/625778.

Повний текст джерела
Анотація:
Isostatic equilibrium is commonly defined as the state achieved when there are no lateral gradients in hydrostatic pressure, and thus no lateral flow, at depth within the lower viscosity mantle that underlies a planetary body's outer crust. In a constant-gravity Cartesian framework, this definition is equivalent to the requirement that columns of equal width contain equal masses. Here we show, however, that this equivalence breaks down when the spherical geometry of the problem is taken into account. Imposing the "equal masses" requirement in a spherical geometry, as is commonly done in the literature, leads to significant lateral pressure gradients along internal equipotential surfaces and thus corresponds to a state of disequilibrium. Compared with the "equal pressures" model we present here, the equal masses model always overestimates the compensation depth-by similar to 27% in the case of the lunar highlands and by nearly a factor of 2 in the case of Enceladus. Plain Language Summary "Isostasy" is the principle that, just as an iceberg floats on the water, crustal rocks effectively float on the underlying higher density mantle, which behaves essentially like a fluid on geologic timescales. Although there are subtle inconsistencies among the various ways isostasy can be defined, they have not been historically problematic for bodies like the Earth, where the crust is thin compared with the overall radius. When the thickness of the crust is a nonnegligible fraction of a planetary body's radius, however, it becomes important to take the spherical geometry into account. In this case, the inconsistencies in the definitions can lead to significant discrepancies. Here we argue that one of the most commonly used approaches, which requires equal width columns to contain equal masses, always results in overestimating the crustal thickness. In particular, we suggest that the lunar and Martian highlands crustal thickness may have been overestimated by similar to 27% and similar to 10%, respectively, and that the ice shell thickness for Saturn's small icy moon Enceladus may have been overestimated by nearly a factor of 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Almestiri, Saleh Mohamed. "The Dual of SU(2) in the Analysis of Spatial Linkages, SU(2) in the Synthesis of Spherical Linkages, and Isotropic Coordinates in Planar Linkage Singularity Trace Generation." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1524241477831728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stålberg, Martin. "Reconstruction of trees from 3D point clouds." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316833.

Повний текст джерела
Анотація:
The geometrical structure of a tree can consist of thousands, even millions, of branches, twigs and leaves in complex arrangements. The structure contains a lot of useful information and can be used for example to assess a tree's health or calculate parameters such as total wood volume or branch size distribution. Because of the complexity, capturing the structure of an entire tree used to be nearly impossible, but the increased availability and quality of particularly digital cameras and Light Detection and Ranging (LIDAR) instruments is making it increasingly possible. A set of digital images of a tree, or a point cloud of a tree from a LIDAR scan, contains a lot of data, but the information about the tree structure has to be extracted from this data through analysis. This work presents a method of reconstructing 3D models of trees from point clouds. The model is constructed from cylindrical segments which are added one by one. Bayesian inference is used to determine how to optimize the parameters of model segment candidates and whether or not to accept them as part of the model. A Hough transform for finding cylinders in point clouds is presented, and used as a heuristic to guide the proposals of model segment candidates. Previous related works have mainly focused on high density point clouds of sparse trees, whereas the objective of this work was to analyze low resolution point clouds of dense almond trees. The method is evaluated on artificial and real datasets and works rather well on high quality data, but performs poorly on low resolution data with gaps and occlusions.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Törnros, Martin. "Interactive visualization of space weather data." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-101986.

Повний текст джерела
Анотація:
This work serves to present the background, approach, and selected results for the initial master thesis and prototyping phase of Open Space, a joint visualization software development project by National Aeronautics and Space Administration (NASA), Linköping University (LiU) and the American Museum of Natural History (AMNH). The thesis report provides a theoretical introduction to heliophysics, modeling of space weather events, volumetric rendering, and an understanding of how these relate in the bigger scope of Open Space. A set of visualization tools that are currently used at NASA and AMNH are presented and discussed. These tools are used to visualize global heliosphere models, both for scientific studies and for public presentations, and are mainly making use of geometric rendering techniques. The paper will, in detail, describe a new approach to visualize the science models with volumetric rendering to better represent the volumetric structure of the data. Custom processors have been developed for the open source volumetric rendering engine Voreen, to load and visualize science models provided by the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center (GSFC). Selected parts of the code are presented by C++ code examples. To best represent models that are defined in non-Cartesian space, a new approach to volumetric rendering is presented and discussed. Compared to the traditional approach of transforming such models to Cartesian space, this new approach performs no such model transformations, and thus minimizes the amount of empty voxels and introduces less interpolation artifacts. Final results are presented as rendered images and are discussed from a scientific visualization perspective, taking into account the physics representation, potential rendering artifacts, and the rendering performance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Spherical coordinate"

1

Mueller, Ivan Istvan. Reference coordinate systems: An update. Columbus, Ohio: Ohio State University Research Foundation, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Y. S. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems. Marshall Space Flight Center, Ala: Marshall Space Flight Center, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zingg, D. W. A method of smooth bivariate interpolation for data given on a generalized curvilinear grid. [S.l.]: [s.n.], 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nerney, Steven. Analytic solutions of the vector Burgers' equation. [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

H, Carpenter Mark, and Institute for Computer Applications in Science and Engineering., eds. High order finite difference methods, multidimensional linear problems and curvilinear coordinates. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Breckenridge, Richard P. Localization of multiple broadband targets in spherical coordinates via adaptive beamforming and non-linear estimation. Monterey, Calif: Naval Postgraduate School, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

G, Ramirez, Pei K. C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

G, Ramirez, Pei K. C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

G, Ramirez, Pei K. C, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Discrete-layer piezoelectric plate and shell models for active tip-clearance control. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

N, Tiwari S., and Langley Research Center, eds. Numerical solutions of Navier-Stokes equations for a Butler wing: Progress report for the period ending August 31, 1985. Norfolk, Va: Old Dominion University Research Foundation, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Spherical coordinate"

1

Jain, Anita, and Kavita Khare. "3D CORDIC Algorithm Based Cartesian to Spherical Coordinate Converter." In Communications in Computer and Information Science, 337–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-42024-5_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Huang, Cheng-Chih, Ya-Wen Yang, Chen-Ming Fan, and Jen-Tse Wang. "A Spherical Coordinate Based Fragile Watermarking Scheme for 3D Models." In Recent Trends in Applied Artificial Intelligence, 566–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38577-3_58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lehsan, Kittikawin, and Jakramate Bootkrajang. "Predicting Physical Activities from Accelerometer Readings in Spherical Coordinate System." In Lecture Notes in Computer Science, 36–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68935-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Shibo, Ruinan Liu, Linshan Shen, and Asad Masood Khattak. "STKE: Temporal Knowledge Graph Embedding in the Spherical Coordinate System." In Advances in Artificial Intelligence and Security, 292–305. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06767-9_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Remazeilles, Anthony, Miguel Prada, and Irati Rasines. "Appropriate Spherical Coordinate Model for Trocar Port Constraint in Robotic Surgery." In ROBOT 2017: Third Iberian Robotics Conference, 353–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70833-1_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grzymisch, Jonathan, Walter Fichter, Massimo Casasco, and Damiana Losa. "A Spherical Coordinate Parametrization for an In-Orbit Bearings-Only Navigation Filter." In Advances in Aerospace Guidance, Navigation and Control, 215–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38253-6_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jalid, Abdelilah, Mohammed Oubrek, and Abdelouahab Salih. "Evaluation of the Form Error of Partial Spherical Part on Coordinate Measuring Machine." In Lecture Notes in Mechanical Engineering, 269–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62199-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Davydov, Alexandr, and Tatiana Zlydneva. "On Numerical Modeling of the Young’s Experiment with Two Sources of Single-Photon Spherical Coordinate Wave Functions." In Mathematics and its Applications in New Computer Systems, 327–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97020-8_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sarkar, Sudhangshu, Pallav Dutta, Aniruddha Chandra, and Anilesh Dey. "Study the Effect of Cognitive Stress on HRV Signal Using 3D Phase Space Plot in Spherical Coordinate System." In Computational Advancement in Communication Circuits and Systems, 227–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8687-9_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bojarevičs, V., J. A. Freibergs, E. I. Shilova, and E. V. Shcherbinin. "Solutions in spherical coordinates." In Electrically Induced Vortical Flows, 62–119. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1163-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Spherical coordinate"

1

Zheng, Fengde, and Chunyu Yang. "Latent fingerprint match using Minutia Spherical Coordinate Code." In 2015 International Conference on Biometrics (ICB). IEEE, 2015. http://dx.doi.org/10.1109/icb.2015.7139061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

R. J. Cooper, G. "Euler Deconvolution in Cylindrical and Spherical Coordinate Systems." In 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20148286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guo, Xing, Yu Zhang, Lei Gong, and Yanyong Zhang. "3D Object Detection on Voxels in Spherical Coordinate System." In 2021 7th International Conference on Big Data Computing and Communications (BigCom). IEEE, 2021. http://dx.doi.org/10.1109/bigcom53800.2021.00020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shao Tao, A. L. Ananda, and Mun Choon Chan. "Spherical Coordinate Routing for 3D wireless ad-hoc and sensor networks." In 2008 33rd IEEE Conference on Local Computer Networks (LCN 2008). IEEE, 2008. http://dx.doi.org/10.1109/lcn.2008.4664163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chang, Yi-Ching, Jen-Tse Wang, Yung-Tsang Chang, and Shyr-Shen Yu. "An Error-Detecting Code Based Fragile Watermarking Scheme in Spherical Coordinate System." In 2016 International Symposium on Computer, Consumer and Control (IS3C). IEEE, 2016. http://dx.doi.org/10.1109/is3c.2016.82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hess, Doren W. "Spherical modal filtering of antenna patterns augmented by translation of coordinate origin." In 2011 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2011. http://dx.doi.org/10.1109/aps.2011.5996615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kim, Yu-na, and Dong-gyu Sim. "Vignetting and Illumination Compensation for Omni-Directional Image Generation on Spherical Coordinate." In 16th International Conference on Artificial Reality and Telexistence--Workshops (ICAT'06). IEEE, 2006. http://dx.doi.org/10.1109/icat.2006.142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xue, Feng, Dongliang Wei, Zhi Wang, Tong Li, Yue Hu, and Hongyi Huang. "Grid searching method in spherical coordinate for PD location in a substation." In 2018 Condition Monitoring and Diagnosis (CMD). IEEE, 2018. http://dx.doi.org/10.1109/cmd.2018.8535972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ahn, Jeong-Hwan, and Yo-Sung Ho. "Adaptive optimal quantization for 3D mesh representation in the spherical coordinate system." In Electronic Imaging '99, edited by Kiyoharu Aizawa, Robert L. Stevenson, and Ya-Qin Zhang. SPIE, 1998. http://dx.doi.org/10.1117/12.334709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Jinhang, Kuo Liu, Lu Wang, and Hongxing Zheng. "Spherical Convolution Matched Layer in Cartesian Coordinate System for the FDTD Solver." In 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2020. http://dx.doi.org/10.1109/iceict51264.2020.9334303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Spherical coordinate"

1

Savant, Gaurav, Rutherford Berger, Corey Trahan, and Gary Brown. Theory, formulation, and implementation of the Cartesian and spherical coordinate two-dimensional depth-averaged module of the Adaptive Hydraulics (AdH) finite element numerical code. Engineer Research and Development Center (U.S.), June 2020. http://dx.doi.org/10.21079/11681/36993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Laeuter, Matthias, Francis X. Giraldo, Doerthe Handorf, and Klaus Dethloff. A Discontinuous Galerkin Method for the Shallow Water Equations in Spherical Triangular Coordinates. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada486030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії