Добірка наукової літератури з теми "Spectroscopie du bruit de spin"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spectroscopie du bruit de spin".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Spectroscopie du bruit de spin"
MIKI, Hideho, Tamio KAMIDATE, Hiroto WATANABE, Mamoru TAMURA, and Isao YAMAZAKI. "Electron spin resonance spectroscopie method for the identification animal meats." Analytical Sciences 6, no. 3 (1990): 459–60. http://dx.doi.org/10.2116/analsci.6.459.
Повний текст джерелаYu, Wei, Zunlue Zhu, Chuncai Cheng, and Deheng Shi. "A theoretical investigation of the S2+ cation in the gas phase." Canadian Journal of Chemistry 92, no. 11 (November 2014): 1041–52. http://dx.doi.org/10.1139/cjc-2014-0255.
Повний текст джерелаNiu, Xiang Hong, Wen Wen Shan, Shuai Wang та De Heng Shi. "Accurate spectroscopic calculations on the X2Σ +, A2Π, and 22Σ + electronic states of the BeAr+ cation including spin-orbit coupling". Canadian Journal of Chemistry 92, № 5 (травень 2014): 397–405. http://dx.doi.org/10.1139/cjc-2014-0031.
Повний текст джерелаLongeville, S. "La spectroscopie neutronique à écho de spin à champ nul ou par résonance." Le Journal de Physique IV 10, PR1 (January 2000): Pr1–59—Pr1–75. http://dx.doi.org/10.1051/jp4:2000105.
Повний текст джерелаVasilyev, Oleg A., and Viktor G. Solomonik. "FIRST-PRINCIPLES SIMULATION OF THE CERIUM TRIFLUORIDE INFRARED SPECTRUM BEYOND THE BORN–OPPENHEIMER APPROXIMATION." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 61, no. 3 (February 27, 2018): 31. http://dx.doi.org/10.6060/tcct.20186103.5636.
Повний текст джерелаOrsal, B., R. Alabedra, M. Valenza, G. Lecoy, J. Meslage та C. Boisrobert. "Les photodiodes à avalanche Hg0,4Cd0,6Te à λ = 1,55 μm. Bruit près de la résonance due au couplage spin-orbite". Revue de Physique Appliquée 22, № 4 (1987): 227–33. http://dx.doi.org/10.1051/rphysap:01987002204022700.
Повний текст джерелаHou, Qiu-Yu, Hao-Yi Guan, Yu-Lu Huang, Shi-Lin Chen, Ming Yang, and Ming-Jie Wan. "Electronic structures and transition properties of AsH<sup>+</sup> cation." Acta Physica Sinica 71, no. 21 (2022): 213101. http://dx.doi.org/10.7498/aps.71.20221104.
Повний текст джерелаSmirnov, Alexander N., and Victor G. Solomonik. "A route to high-accuracy ab initio description of electronic excited states in high-spin lanthanide-containing species: A case study of GdO." Journal of Chemical Physics 159, no. 16 (October 25, 2023). http://dx.doi.org/10.1063/5.0173916.
Повний текст джерелаCui, Qi, Xiaohu He, Weiqi Zhou, Xuanbing Qiu, Guqing Guo, Ting Gong, and Chuanliang Li. "Spectroscopic properties of the low-lying states of the HeH radical." Canadian Journal of Chemistry, April 25, 2022. http://dx.doi.org/10.1139/cjc-2022-0022.
Повний текст джерелаHopster, H. "Spin Polarized Electron Spectroscopies of 3d and 4f Systems." MRS Proceedings 313 (1993). http://dx.doi.org/10.1557/proc-313-565.
Повний текст джерелаДисертації з теми "Spectroscopie du bruit de spin"
Abbas, Chahine. "Optical spectroscopy of indirect excitons and electron spins in semiconductor nanostructures." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS049.
Повний текст джерелаThis work provides an optical study of spin dynamics in two different systems: electrons gas in n-doped CdTe thin layers, and indirect excitons in asymmetric GaAs coupled quantum wells. Time and polar resolved photoluminescence and pump-probe spectroscopy allowed the determination of both the lifetime and the relaxation time of indirect excitons.The global behaviour of the dedicated biased sample has been described, major technical constraints have been pointed out and optimal working conditions have been identified. In photoluminescence, we obtained a lifetime of 15 ns and a spin relaxation time of 5 ns. Pump-probe spectroscopy with an exceptional delay range shown that longer characteristic times could be obtained increasing the delay between two laser pulses.An other optical method has been used to study electrons in CdTe thin layers. Spin noise spectroscopy has recently emerged as an ideal tool to study dynamics of spin systems through their spontaneous fluctuations which are encoded in the polarisation state of a laser beam by means of Faraday rotation. Common spin noise setups provide only temporal fluctuations, spatial information being lost averaging the signal on the laser spot. Here, we demonstrate the first implementation of a spin noise setup providing both spatial and temporal spin correlations thanks to a wave vector selectivity of the scattered light. This gave us the opportunity to measure both the spin relaxation time and the spin diffusion coefficient. This complete vision of the spin dynamics in CdTe has been compared to our understanding of spin physics in GaAs. Against all odds, this knowledge seems not to be directly transposable from GaAs to CdTe
Gundín, Martínez Manuel. "Spin Noise Spectroscopy of single spins using single detected photons." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP054.
Повний текст джерелаQuantum emitters capable of high-fidelity and high-rate operation are the cornerstone of photonic quantum technologies, which require increasing precision in the manipulation of single qubits. Emitters that can host a spin are particularly interesting for quantum communication networks and quantum computation, as they exploit the key resource of spin-photon entanglement. In this context, self-assembled semiconductor quantum dots (QDs) have become promising candidates for spin-photon interfaces due to their exceptional optical properties. Nevertheless, short spin coherence times strongly limit the potential of this platform. Better strategies to mitigate the environmental fluctuations and decouple the spin from them are required to improve its performance. In this regard, Spin Noise Spectroscopy (SNS) has become a key technique to obtain information from spin environments in atomic and solid-state systems via the measurement of polarimetric signals such as Faraday polarization rotation. However, the low signal imprinted by a single spin has limited most SNS implementations to spin ensembles. In this manuscript, we introduce a novel SNS technique based on the measurement of single spins via the detection of single photons. We demonstrate spin noise measurements in the ultrafast regime above the 10 GHz level, breaching traditional bandwidth limitations with unprecedented sensitivity. Our approach relies on the cavity-enhanced spin-photon interaction, increasing several orders of magnitude polarimetric signals from a single spin. Spin-dependent polarization rotations of the photons reflected from the interface of up to π are observed, allowing for the mapping of spin fluctuations into polarization fluctuations and the efficient optical detection of spin noise mechanisms. Crucially, the SNS signal is mapped into single photons. As a result, correlations can be directly calculated between single photon detection events, rather than extracted from averaged intensity measurements, dramatically improving the detection bandwidth. Ultimately, the temporal resolution is only limited by the temporal jitter of single-photon detectors. In this manuscript, we introduce this novel SNS approach for the study of noise mechanisms of electron and hole spins in a QD. We measure signals ranging from a few MHz to tens of GHz correlating single-photon detection events. In parallel, we develop the theoretical tools to identify and characterize the main spin decoherence mechanisms in this system. The measured correlation functions are compared with simulations that compute the density matrix of the system conditional to the detection of a photon. The SNS signals are found to fit well with the numerical model, describing non-trivial spin dynamics that cannot be reproduced by phenomenological Lorentzian fits of the spin noise spectra. Ultimately, this technique is aimed at probing the noise mechanisms of spin systems, not limited to QDs, to develop more efficient mitigation strategies and decoupling sequences that improve their performance. This work is also the starting point for fundamental studies quantitatively addressing the quantum back-action induced on single spins by photon detection
Neveu, Pascal. "Propagation de lumière dans l'hélium métastable : stockage, amplification, fluctuations et bruit quantique." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN044/document.
Повний текст джерелаA quantum state of light is characterized by its statistics of number of photons. These statistics can change in the presence of coherent phenomena. This PhD focuses both experimentally and theoretically on the propagation of quantum states within a room temperature vapor of metastable helium. First, we show that ultranarrow coherent population oscillations allow to efficiently store a specific quadrature of a light wave. Nevertheless, this protocol cannot be use to store the two quadratures of a light field. Indeed, the propagation conditions deteriorates its statistical properties, forbidding its use for quantum application. Secondly, we show that it is possible to generate twomode squeezed states of light in that system. High amplification can be achieved (9 dB), exploiting the strong nonlinearities enabled by coherent population trapping of a transition, and because of the energy level structure. Finally, we study atomic spin noise transfer to light polarization noise via Faraday effect. These fluctuations, probed by spin noise spectroscopy, show original behaviors that may be useful in another systems
Liu, Shikang. "Spin noise spectroscopy in metatable helium." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASP051.
Повний текст джерелаThis PhD thesis mainly addresses the spin noise spectroscopy of metastable helium.We report for the first time the measurement of spontaneous spin noise of metastable helium atom ensemble using non-invasive spin noise spectroscopy.We utilize an off-resonant laser to investigate the random fluctuations of the Zeeman states of the ground level of metastable helium with a mild magnetic field of approximately 1 Gauss. Moreover, we examine the changes in the spectral pattern when the probe approaches the resonance.We investigate the two main types of polarization noise of the probe, namely Faraday rotation noise and ellipticity noise. To replicate the experimental spin noise signal qualitatively and quantitatively, we construct a simulation model that performs well even near resonance.After the investigation of simpler level structure of metastable helium transition line, we extend spin noise spectroscopy to the transition lines with more complicated structures.Our simulation results are consistent with the experimental findings, which are distinct from those obtained using the simpler level structure. To explain the SNS pattern's characteristics near different transition lines, we have developed a comprehensive theoretical model based on the superposition states theory.We then investigate the correlation between Faraday rotation noise and ellipticity noise. Using the eight noise modes of spin-1, we are able to explain the correlation under different conditions. Additionally, we study the effect of magnetic field noise on the SNS pattern. The magnetic field noise is found to alter the noise spectra pattern, and the eight noise modes theory is able to well explain this phenomenon well.This PhD work mainly serves as proof of principle. The simple level structure of metastable helium provids an ideal model to study the phenomenon of spin noise spectroscopy in spin-1 systems. These findings provide a new perspective to understand SNS and the characterization of spin-1 systems, which can aid further research in this area
Karr, Jean-Philippe. "Optique quantique dans les microcavités semi-conductrices. Spectroscopie de l'ion moléculaire H2+." Habilitation à diriger des recherches, Université d'Evry-Val d'Essonne, 2008. http://tel.archives-ouvertes.fr/tel-00347825.
Повний текст джерелаJ'aborde dans la deuxième partie mes activités théorique et expérimentale autour de la spectroscopie de l'ion H2+. Le but de l'expérience, qui a débuté en 2003 à l'université d'Evry, est de mesurer la fréquence d'une transition vibrationnelle à deux photons sans effet Doppler, et de la comparer à des prédictions théoriques précises pour en déduire une nouvelle détermination du rapport mp/me. Je décris les progrès des calculs de haute précision sur l'ion H2+ (niveaux d'énergie non relativistes, structure hyperfine), ainsi que le dispositif expérimental mis en place et les perspectives de l'expérience.
Volyanskiy, Kirill. "Etudes spectrales du bruit de phase dans les oscillateurs opto-électroniques micro-ondes à ligne à retard." Phd thesis, Université de Franche-Comté, 2009. http://tel.archives-ouvertes.fr/tel-00392571.
Повний текст джерелаPasquet, Guillaume. "Conception, réalisation et mise en oeuvre d'un microsystème pour la micro spectroscopie par résonance magnétique nucléaire." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00611547.
Повний текст джерелаBouchiat, Hélène. "Transition verre de spin : comportement critique et bruit magnétique." Paris 11, 1986. http://www.theses.fr/1986PA112055.
Повний текст джерелаThis thesis is devoted to two different problems concerning the spin-glass transition. 1. The first part concerns the study of the critical behavior of the nonlinear magnetization, which is related to the spin-glass-order-parameter singularity at the transition temperature. Our results in the AgMn, CuMn, AgMn Au and CuMn Au spin-glass systems support the existence of a phase transition for which we determine the critical exponents, whose values are different from the mean-field ones. We discuss and investigate the influence of the regular terms and anisotropy on the critical behavior. The study of the non-linear magnetization below Tg suggests that it remains singular near H = 0 over the whole law-temperature phase. Preliminary results in the YEr system raise the question of the coexistence of a spin-glass-like order with long-range antiferromagnetic order. 2. The second part concerns an investigation of the spin-glass dynamics, by studying the magnetic fluctuations without any exciting field. The noise power spectrum is found to vary like 1/f over at least 5 decades of frequency. Its comparison with susceptibility measurements shows the applicability of the linear-response and fluctuation-dissipation theorem to spin glasses when time-correlation functions and response functions are measured when the system is prepared under the same conditions for the two experiments. Aging effects are also investigated
Bouchiat, Hélène. "Transition verre de spin comportement critique et bruit magnétique." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37596281w.
Повний текст джерелаVartabi, Kashanian Samir. "Spectroscopie de bruit avec de grands nuages d'atomes froids." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4059/document.
Повний текст джерелаIn this thesis, I present some measurements of fluctuations of light after interaction with a cloud oflaser-cooled rubidium atoms. These measurements can provide useful information on the sourceitself as well as on the medium in which light propagates. I address a particular configuration inwhich intensity noise are measured on a laser beam transmitted through the atomic cloud. Thisgeometry is relevant to investigate different properties, such as the atomic motion. However, in ourexperiment the intrinsic noise of the incident laser has an important contribution to the detected noisespectrum. This technical noise may be hard to distinguish from the signal under study and a goodunderstanding of this process is thus essential.Experimentally, the intensity noise spectra show a different behavior for low and high Fourierfrequencies. Whereas one recovers the "standard" frequency to intensity conversion at lowfrequencies, due to the atomic resonance as a frequency discriminator, some differences appear athigh frequencies. We show that a mean-field approach, which corresponds to describing the atomiccloud by a dielectric susceptibility, is sufficient to explain the observations. Using this model, thenoise spectra allow to extract some quantitative information on the laser noise as well as on theatomic sample. This is known as noise spectroscopy.The perspective of this thesis aims at applying noise measurement to obtain complementarysignatures of the cold-atom random laser by studying the temporal coherence of the emitted light.The manuscript therefore outlines a review on random laser phenomena with a focus on cold-atomrandom lasers and its coherence properties
Книги з теми "Spectroscopie du bruit de spin"
Hagen, Wilfred Raymond. Biomolecular EPR spectroscopy. Boca Raton: Taylor & Francis, 2008.
Знайти повний текст джерела1939-, Ohya-Nishiguchi H., and Packer Lester, eds. Bioradicals detected by ESR spectroscopy. Basel: Birkhäuser, 1995.
Знайти повний текст джерелаJ, Rhodes Christopher, ed. Toxicology of the human environment: The critical role of free radicals. London: Taylor & Francis, 2000.
Знайти повний текст джерелаWehrli, F. W. Interpretation of carbon-13 NMR spectra. 2nd ed. Chichester: Wiley, 1988.
Знайти повний текст джерелаKruk, Danuta. Understanding Spin Dynamics. Jenny Stanford Publishing, 2015.
Знайти повний текст джерелаKruk, Danuta. Understanding Spin Dynamics. Jenny Stanford Publishing, 2015.
Знайти повний текст джерелаUnderstanding Spin Dynamics. Taylor & Francis Group, 2015.
Знайти повний текст джерелаBox, Harold C. Radiation Effects: ESR and ENDOR Analysis. Elsevier Science & Technology Books, 2013.
Знайти повний текст джерелаHagen, Wilfred Raymond. Biomolecular Epr Spectroscopy. Taylor & Francis Group, 2020.
Знайти повний текст джерелаHagen, Wilfred Raymond. Biomolecular EPR Spectroscopy. Taylor & Francis Group, 2009.
Знайти повний текст джерелаЧастини книг з теми "Spectroscopie du bruit de spin"
"5. Relaxation de spin." In La spectroscopie à Résonance Magnétique Nucléaire, 75–96. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2368-0-007.
Повний текст джерела"5. Relaxation de spin." In La spectroscopie à Résonance Magnétique Nucléaire, 75–96. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2368-0.c007.
Повний текст джерела"Annexe 5 - Notion de densité de spin." In La spectroscopie de résonance paramagnétique électronique, 321–28. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0914-1-016.
Повний текст джерела"Annexe 5 - Notion de densité de spin." In La spectroscopie de résonance paramagnétique électronique, 321–28. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0914-1.c016.
Повний текст джерела"Chapitre 5 - Intensité du spectre, saturation, relaxation spin-réseau." In La spectroscopie de résonance paramagnétique électronique, 125–60. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0914-1-007.
Повний текст джерела"Chapitre 5 - Intensité du spectre, saturation, relaxation spin-réseau." In La spectroscopie de résonance paramagnétique électronique, 125–60. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0914-1.c007.
Повний текст джерела"Chapitre 3 - Introduction au formalisme de l’espace des états de spin L’opérateur hamiltonien." In La spectroscopie de résonance paramagnétique électronique, 51–82. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0914-1-005.
Повний текст джерела"Chapitre 3 - Introduction au formalisme de l’espace des états de spin L’opérateur hamiltonien." In La spectroscopie de résonance paramagnétique électronique, 51–82. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0914-1.c005.
Повний текст джерела"Annexe 6 - Exemple de calcul du temps de relaxation spin-réseau T1 : le processus direct." In La spectroscopie de résonance paramagnétique électronique, 329–32. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0914-1-017.
Повний текст джерела"Annexe 6 - Exemple de calcul du temps de relaxation spin-réseau T1 : le processus direct." In La spectroscopie de résonance paramagnétique électronique, 329–32. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0914-1.c017.
Повний текст джерела