Добірка наукової літератури з теми "Spectral distances"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Spectral distances".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Spectral distances"
Navarro, Silvana G., Romano L. M. Corradi, and Antonio Mampaso. "Distance determination to PNe using the extinction-distance method." Proceedings of the International Astronomical Union 7, S283 (July 2011): 460–61. http://dx.doi.org/10.1017/s1743921312011921.
Повний текст джерелаJovanović, Irena, and Zoran Stanić. "Spectral distances of graphs." Linear Algebra and its Applications 436, no. 5 (March 2012): 1425–35. http://dx.doi.org/10.1016/j.laa.2011.08.019.
Повний текст джерелаGu, Jiao, Bobo Hua, and Shiping Liu. "Spectral distances on graphs." Discrete Applied Mathematics 190-191 (August 2015): 56–74. http://dx.doi.org/10.1016/j.dam.2015.04.011.
Повний текст джерелаChelli, A., and G. Duvert. "Pseudo-photometric distances of 30 open clusters." Astronomy & Astrophysics 619 (November 2018): A132. http://dx.doi.org/10.1051/0004-6361/201833082.
Повний текст джерелаPollacco, D. L., and G. Ramsay. "Reddening Distances for Planetary Nebulae from Broad Band BVIc CCD Imaging." Symposium - International Astronomical Union 155 (1993): 180. http://dx.doi.org/10.1017/s0074180900170421.
Повний текст джерелаCvetkovic, Dragos. "Spectral recognition of graphs." Yugoslav Journal of Operations Research 22, no. 2 (2012): 145–61. http://dx.doi.org/10.2298/yjor120925025c.
Повний текст джерелаBronstein, Michael M., and Alexander M. Bronstein. "Shape Recognition with Spectral Distances." IEEE Transactions on Pattern Analysis and Machine Intelligence 33, no. 5 (May 2011): 1065–71. http://dx.doi.org/10.1109/tpami.2010.210.
Повний текст джерелаda Cunha Lima, A. T., I. C. da Cunha Lima, and M. P. de Almeida. "Analysis of turbulence power spectra and velocity correlations in a pipeline with obstructions." International Journal of Modern Physics C 28, no. 02 (February 2017): 1750019. http://dx.doi.org/10.1142/s012918311750019x.
Повний текст джерелаJovanovic, Irena, and Zoran Stanic. "Spectral distances of graphs based on their different matrix representations." Filomat 28, no. 4 (2014): 723–34. http://dx.doi.org/10.2298/fil1404723j.
Повний текст джерелаBaggio, Giacomo, Augusto Ferrante, and Rodolphe Sepulchre. "Conal Distances Between Rational Spectral Densities." IEEE Transactions on Automatic Control 64, no. 5 (May 2019): 1848–57. http://dx.doi.org/10.1109/tac.2018.2855114.
Повний текст джерелаДисертації з теми "Spectral distances"
Godbout, Martin. "Mesures de distances et de spectres résolus en distance en utilisant les battements hétérodynes entre peignes de fréquences." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/27451/27451.pdf.
Повний текст джерелаImran, Hafiz Ali. "Remote Sensing Tools for Monitoring Grassland Plant Leaf Traits and Biodiversity." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/329592.
Повний текст джерелаDeborah, Hilda. "Towards spectral mathematical morphology." Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT2328/document.
Повний текст джерелаProviding not only spatial information but also spectral measure as a function of wavelength, hyperspectral imaging boasts a much greater gain in accuracy than the traditional color imaging. And for this capability, hyperspectral imaging has been employed for quality control, inspection of materials in various fields. However, to fully exploit this potential, it is important to process the spectral data as a measure. This induces the need of metrology where accuracy, uncertainty, and bias are managed at every level of processing.Aiming at developing a metrological image processing framework for spectral data, we select to develop a nonlinear approach using the mathematical morphology framework and extended it to the spectral domain by means of a distance-based ordering relation. A novel spectral distance function and spectral ordering relation are proposed, in addition of a new analysis tools based on spectral differences. To ensure the validity of the spectral mathematical morphology framework, rigorous theoretical validation and metrological assessment are carried out at each development stages. So, protocols for quality assessment of spectral image processing tools are developed. These protocols consist of artificial datasets to validate completely the theoretical requirements, datasets with known characteristics to assess the robustness and stability, and datasets from real cases to proof the usefulness of the framework on applicative context. The application tasks themselves are within the cultural heritage domain, where the target images come from pigments and paintings
Hyperspektral avbildning muliggjør mye mer nøyaktige målinger enn tradisjonelle gråskala og fargebilder, gjennom både høy romlig og spektral oppløsning (funksjon av bølgelengde). På grunn av dette har hyperspektral avbildning blitt anvendt i økende grad ulike applikasjoner som kvalitetskontroll og inspeksjon av materialer. Men for å fullt ut utnytte sitt potensiale, er det viktig å være i stand til å behandle spektrale bildedata som målinger på en gyldig måte. Dette induserer behovet for metrologi, der nøyaktighet, usikkerhet og skjevhet blir adressert og kontrollert på alle nivå av bildebehandlingen.Med sikte på å utvikle et metrologisk rammeverk for spektral bildebehandling valgte vi en ikke-lineær metodikk basert på det etablerte matematisk morfologi-rammeverket. Vi har utvidet dette rammeverket til det spektrale domenet ved hjelp av en avstandsbasert sorteringsrelasjon. En ny spektral avstandsfunksjon og nye spektrale sorteringsrelasjoner ble foreslått, samt nye verktøy for spektral bildeanalyse basert på histogrammer av spektrale forskjeller.For å sikre gyldigheten av det nye spektrale rammeverket for matematisk morfologi, har vi utført en grundig teoretisk validering og metrologisk vurde-ring på hvert trinn i utviklingen. Dermed er og-så nye protokoller for kvalitetsvurdering av spektrale bildebehandlingsverktøy utviklet. Disse protokollene består av kunstige datasett for å validere de teoretiske måletekniske kravene, bildedatasett med kjente egenskaper for å vurdere robustheten og stabiliteten, og datasett fra reelle anvendelser for å bevise nytten av rammeverket i en anvendt sammenheng. De valgte anvendelsene er innenfor kulturminnefeltet, hvor de analyserte bildene er av pigmenter og malerier
Bertrand, Jérôme. "Pincement spectral en courbure positive." Paris 11, 2003. https://tel.archives-ouvertes.fr/tel-00008705.
Повний текст джерелаOn the set of compact Riemannian manifolds with positive Ricci curvature (normalized by Ric ≥ (n-1)g), the first eigenvalue of the Laplacian acting on functions reaches its minimum only for the round sphere. In this thesis, we characterize, using the Gromov-Hausdorff distance, Riemannian manifolds with positive Ricci curvature whose first eigenvalues are close to those of the round sphere. This property of minimality of the spectrum of the round sphere has been extended by a symmetrization principle, to the Dirichlet spectrum of the geodesic balls of the round sphere among the domains of Riemannian manifolds with positive curvature. We study the domains of Riemannian manifolds with positive Ricci curvature whose first Dirichlet eigenvalue is almost minimal. In particular, we show that a domain whose first Dirichlet eigenvalue is close to the one of a hemisphere is Gromov-Hausdorff close to a hemisphere of a sine warped product
Diego, Víctor. "On some spectral and combinatorial properties of distance-regular graphs and their generalizations." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461632.
Повний текст джерелаEn este documento presentamos el estudio realizado en Teoría de Grafos. En los primeros capítulos de la tesis estudiamos las distinetas piezas de información que se pueden obtener de un grafo: el espectro de su matriz de adyacencia, los números de preintersección, los polinomios predistancia o la cantidad media de caminos cerrados. Algunos de estas piezas de información son generalizaciones directas de los números de intersección o los pollinomios distancia definidos en los grafos distancia-regulares. Demostramos que las múltiples propiedades que tienen estas piezas de información en los grafos distancia-regulares se mantienen también en sus generalizaciones, pudiendo aplicar estas propiedades a todo tipo de grafos. Demostramos también que las ditintas piezas de información (ya sean de naturaleza algebraica o combinatoria) son equivalentes. Es decir, podemos obtener cada una de estas piezas en términos de cada una de las otras; probando así que las propiedades del grafo derivadas de cada una de estas piezas puede ser obtenida en términos de cada una de las otras. Dedicamos uno de los capítulos de la tesis a describir cuáles son los procesos específicos completos mediante los cuales obtener cada pieza de información en función de las otras. En esta tesis introducimos también los grafos distance mean-regular. Estos grafos son una generalización de los grafos distancia-regulares. En esta ocasión, al grafo se le exigen propiedades combinatorias y generalizamos las propiedades algebraicas de los grafos distancia-regulares. Generalizamos el espectro de un grafo para introducir el "pseudo-espectro" y generalizamos el álgebra de Bose-Mesner en distintas álgebras de matrices. El estudio de estas generalizaciones, así cómo su relación entre ellas nos proporciona propiedades combinatorias y algebraicas del grafo. En la parte final de la tesis estudiamos el problema isoperimétrico de vértices en el Grafo de Johnson J(n,m). Solucionamos el problema completamente para varios casos particulares: J(n,1), J(n,2) y J(2m-2,m), así como sus simétricos J(n,n-2) y J(2m+2,m). La solución para estos casos son los segmentos iniciales del orden colexicográfico. Este orden es también la solución para cardinales pequeños en todos los grafos de esta familia, así como para el comportamiento asimptótico de los parámetros n y m. Sin embargo, esta solución no es la solución óptima en todos cardinales de todos los grafos J(n,m). Demostramos y damos una familia infinita de contraejemplos para los cuales el segmento inicial de orden colexicográfico no es óptimo en términos del problema isoperimétrico de vértices
Taylor, Melinda Marie. "Analysis of Cepheid Spectra." Thesis, The University of Sydney, 1998. http://hdl.handle.net/2123/388.
Повний текст джерелаTaylor, Melinda Marie. "Analysis of Cepheid Spectra." University of Sydney, Physics, 1998. http://hdl.handle.net/2123/388.
Повний текст джерелаBertrand, Jerome. "Pincement spectral en courbure positive." Phd thesis, Université Paris Sud - Paris XI, 2003. http://tel.archives-ouvertes.fr/tel-00008705.
Повний текст джерелаHarrell, Dameon C. (Dameon Cartíer) 1976. "Effects of microphone type and distance upon the spectra of speech sounds." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80067.
Повний текст джерелаIncludes bibliographical references (leaf 71).
by Dameon C. Harrell.
S.B.and M.Eng.
Cerocchi, Filippo. "Dynamical and Spectral applications of Gromov-Hausdorff Theory." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM077/document.
Повний текст джерелаThis Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a technique which has been introduced by G. Besson, G. Courtois and S. Gallot in 1995, in order to solve the Minimal Entropy conjecture. In Chapter 1 we are interested in the more recent developments of this method, more precisely in the recent extension of the method to the case of manifolds having sectional curvature of variable sign. In Chapters 2 and 3 we shall present some new results whose proofs make use of the barycenter method. The Conjugacy Rigidity problem is the theme of Chapter 2. First we show a general result which provide a comparison between the large scale geometry of the Riemannian universal coverings of two compact manifolds whose geodesic flows are conjugates. Then we shall show how we can apply the latter result and the barycenter method in curvature of variable sign in order to give a new proof of the conjugacy rigidity of flat manifolds. In Chapter 3 we shall give a proof of a spectra comparison theorem for a compact Riemannian manifold which admits a Gromov-Hausdorff-approximation of non zero absolute degree on a fixed compact manifold (X,g') and which has volume almost smaller than the one of the reference manifold. The proof relies on the barycenter method in curvature of variable sign and on iterated Sobolev inequalities. We underline that it is an approximation result (and not just a convergence result) and that no curvature assumptions are made or inferred on (Y,g). The second part of the Thesis consists of a single chapter. In this chapter we prove a Margulis Lemma without curvature assumptions for Riemannian manifolds having decomposable 2-torsionless fundamental group. We shall give also a proof of a universal lower bound for the homotopy systole of compact Riemannian manifolds having bounded volume entropy and diameter, and decomposable torsionless fundamental group. As a consequence of the latter result we shall deduce a Precompactness and Finiteness theorem and a Volume estimate without curvature assumptions
Книги з теми "Spectral distances"
Patanè, Giuseppe. An Introduction to Laplacian Spectral Distances and Kernels. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-02593-8.
Повний текст джерелаHunt, M. J. Distance measures for speech recognition =: Les distances spectrales pour la reconnaissance de la parole. Ottawa: National Research Council Canada, 1989.
Знайти повний текст джерелаElliott, James L. New mysteries at Chiron: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1998.
Знайти повний текст джерелаPatane, Giuseppe. Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications. Morgan & Claypool Publishers, 2017.
Знайти повний текст джерелаPatanè, Giuseppe. Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications. Springer International Publishing AG, 2017.
Знайти повний текст джерелаPatanè, Giuseppe, and Brian A. Barsky. Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications. Morgan & Claypool Publishers, 2017.
Знайти повний текст джерелаDistance Education: Spectrum of Case Studies. Kogan Page Ltd, 1991.
Знайти повний текст джерелаEdmunds, D. E., and W. D. Evans. Essential Spectra of General Second-Order Differential Operators. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0010.
Повний текст джерелаGreyser, Naomi. “Spectres of Liberty” and the Archive. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190460983.003.0007.
Повний текст джерелаEland, John H. D., and Raimund Feifel. Mainly aliphatic molecules. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198788980.003.0007.
Повний текст джерелаЧастини книг з теми "Spectral distances"
Patanè, Giuseppe. "Discrete Spectral Distances." In An Introduction to Laplacian Spectral Distances and Kernels, 53–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-02593-8_4.
Повний текст джерелаBavaud, François. "Euclidean Distances, Soft and Spectral Clustering on Weighted Graphs." In Machine Learning and Knowledge Discovery in Databases, 103–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15880-3_13.
Повний текст джерелаPatanè, Giuseppe. "Conclusions." In An Introduction to Laplacian Spectral Distances and Kernels, 91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-02593-8_6.
Повний текст джерелаPatanè, Giuseppe. "Laplace-Beltrami Operator." In An Introduction to Laplacian Spectral Distances and Kernels, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-02593-8_1.
Повний текст джерелаPatanè, Giuseppe. "Heat and Wave Equations." In An Introduction to Laplacian Spectral Distances and Kernels, 11–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-02593-8_2.
Повний текст джерелаLiu, Rong, Hao Zhang, and Oliver van Kaick. "Spectral Sequencing Based on Graph Distance." In Geometric Modeling and Processing - GMP 2006, 630–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11802914_50.
Повний текст джерелаWang, Nian, Jun Tang, Jiang Zhang, Yi-Zheng Fan, and Dong Liang. "Spectral Edit Distance Method for Image Clustering." In Advances in Data and Web Management, 350–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72524-4_37.
Повний текст джерелаCivril, Ali, Malik Magdon-Ismail, and Eli Bocek-Rivele. "SDE: Graph Drawing Using Spectral Distance Embedding." In Graph Drawing, 512–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11618058_48.
Повний текст джерелаReames, Donald V. "High Energies and Radiation Effects." In Solar Energetic Particles, 135–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66402-2_6.
Повний текст джерелаMaeng, Hyunju, Shengcai Liao, Dongoh Kang, Seong-Whan Lee, and Anil K. Jain. "Nighttime Face Recognition at Long Distance: Cross-Distance and Cross-Spectral Matching." In Computer Vision – ACCV 2012, 708–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37444-9_55.
Повний текст джерелаТези доповідей конференцій з теми "Spectral distances"
Memoli, Facundo. "Spectral Gromov-Wasserstein distances for shape matching." In 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 2009. http://dx.doi.org/10.1109/iccvw.2009.5457690.
Повний текст джерелаMcKechnie, T. S., and Charles K. Carniglia. "Propagation of the spectral correlation function in a homogeneous medium." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.wp7.
Повний текст джерелаPatané, Giuseppe. "An introduction to laplacian spectral distances and kernels." In SIGGRAPH '17: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3084873.3084919.
Повний текст джерелаScragg, Carl A. "Spectral Analysis of Ship-Generated Waves in Finite-Depth Water." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28510.
Повний текст джерелаGamliel, Avshalom, and Govind P. Agrawal. "Correlation-induced spectral changes in homogeneous and inhomogeneous media." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tuv5.
Повний текст джерелаHlubina, Petr. "Measuring distances and displacements using dispersive white-light spectral interferometry." In Optical Metrology, edited by Wolfgang Osten, Malgorzata Kujawinska, and Katherine Creath. SPIE, 2003. http://dx.doi.org/10.1117/12.488763.
Повний текст джерелаRahman, Hala Abdul, Guy Carrault, Di Ge, Hassan Amoud, Jacques Prioux, Alexis Le Faucheur, and Remy Dumond. "Ambulatory physical activity representation and classification using spectral distances approach." In 2015 International Conference on Advances in Biomedical Engineering (ICABME). IEEE, 2015. http://dx.doi.org/10.1109/icabme.2015.7323253.
Повний текст джерелаMohs, Georg. "Ultra High Spectral Efficiency and Ultra High Capacity Transmission over Transoceanic Distances Using Nyquist Spectral Shaping." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acp.2013.af3e.5.
Повний текст джерелаMohs, Georg. "Ultra High Spectral Efficiency and Ultra High Capacity Transmission over Transoceanic Distances Using Nyquist Spectral Shaping." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acpc.2013.af3e.5.
Повний текст джерелаNicolalde, Daniel Patricio, and Jose Antonio Apolinario. "Evaluating digital audio authenticity with spectral distances and ENF phase change." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959859.
Повний текст джерелаЗвіти організацій з теми "Spectral distances"
White, H. P., W. Chen, and S G Leblanc. Satellite observations for detection of dust from mining activities in a caribou habitat, Northwest Territories and Nunavut. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330548.
Повний текст джерелаSi, Hongjun, Saburoh Midorikawa, and Tadahiro Kishida. Development of NGA-Sub Ground-Motion Model of 5%-Damped Pseudo-Spectral Acceleration Based on Database for Subduction Earthquakes in Japan. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, December 2020. http://dx.doi.org/10.55461/lien3652.
Повний текст джерелаZilberman, Mark. Shouldn’t Doppler 'De-boosting' be accounted for in calculations of intrinsic luminosity of Standard Candles? Intellectual Archive, September 2021. http://dx.doi.org/10.32370/iaj.2569.
Повний текст джерелаZilberman, Mark. “Doppler de-boosting” and the observation of “Standard candles” in cosmology. Intellectual Archive, July 2021. http://dx.doi.org/10.32370/iaj.2549.
Повний текст джерелаZilberman, Mark. PREPRINT. “Doppler de-boosting” and the observation of “Standard candles” in cosmology. Intellectual Archive, June 2021. http://dx.doi.org/10.32370/ia_2021_06_23.
Повний текст джерелаZilberman, Mark. "Doppler De-boosting" and the Observation of "Standard Candles" in Cosmology. Intellectual Archive, July 2021. http://dx.doi.org/10.32370/iaj.2552.
Повний текст джерелаAlchanatis, Victor, Stephen W. Searcy, Moshe Meron, W. Lee, G. Y. Li, and A. Ben Porath. Prediction of Nitrogen Stress Using Reflectance Techniques. United States Department of Agriculture, November 2001. http://dx.doi.org/10.32747/2001.7580664.bard.
Повний текст джерелаChapman, Martin C., G. A. Bollinger, and Matthew S. Sibol. Modeling Delay-Fired Explosion Spectra and Source Function Deconvolution at Regional Distances. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada260232.
Повний текст джерелаKeahava, N. Distance Metrics and Band Selection in Hyperspectral Processing with Applications to Material Identification and Spectral Libraries. Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada409023.
Повний текст джерелаAnderson, Gerald L., and Kalman Peleg. Precision Cropping by Remotely Sensed Prorotype Plots and Calibration in the Complex Domain. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7585193.bard.
Повний текст джерела