Добірка наукової літератури з теми "Sound analysi"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sound analysi".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Sound analysi"
MALINK, MARKO, and ANUBAV VASUDEVAN. "THE LOGIC OF LEIBNIZ’S GENERALES INQUISITIONES DE ANALYSI NOTIONUM ET VERITATUM." Review of Symbolic Logic 9, no. 4 (July 18, 2016): 686–751. http://dx.doi.org/10.1017/s1755020316000137.
Повний текст джерелаVladimir, Nikola, Ivan Lončar, Ivica Aničić, and Ivo Senjanović. "Prediction of Noise Performance of Ro-Ro Passenger Ship by the Hybrid Statistical Energy Analysi." Journal of Maritime & Transportation Science 2, Special edition 2 (April 2018): 29–45. http://dx.doi.org/10.18048/2018.00.29.
Повний текст джерелаLeddington, Jason P. "Sounds fully simplified." Analysis 79, no. 4 (November 12, 2018): 621–29. http://dx.doi.org/10.1093/analys/any075.
Повний текст джерелаZHAO, Huanqi, Kean CHEN, Liang YAN, Bing ZHOU, Jiangong ZHANG, Jun ZHANG, Yunyun DENG, Han LI, and Hao LI. "Suppression and analysis on annoyance of motor vehicle noise using water sound injection." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 40, no. 3 (June 2022): 560–67. http://dx.doi.org/10.1051/jnwpu/20224030560.
Повний текст джерелаYogatama, Adiprana. "Phonological Analysis of Indian Language." Register Journal 5, no. 1 (June 1, 2012): 1–16. http://dx.doi.org/10.18326/rgt.v5i1.1-16.
Повний текст джерелаYogatama, Adiprana. "Phonological Analysis of Indian Language." Register Journal 5, no. 1 (June 1, 2012): 1. http://dx.doi.org/10.18326/rgt.v5i1.249.
Повний текст джерелаTanigawa, Risako, Kohei Yatabe, and Yasuhiro Oikawa. "High-speed optical imaging and spatio-temporal analysis of sound sources of edge tone phenomena." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, no. 3 (February 1, 2023): 4286–91. http://dx.doi.org/10.3397/in_2022_0613.
Повний текст джерелаMartinek, Jozef, P. Klco, M. Vrabec, T. Zatko, M. Tatar, and M. Javorka. "Cough Sound Analysis." Acta Medica Martiniana 13, Supplement-1 (March 1, 2013): 15–20. http://dx.doi.org/10.2478/acm-2013-0002.
Повний текст джерелаLiu, Wu Chang, Hai Bin Wang, Jin Qun Liu, Yu Fang, and Zhu Qin Li. "A Heart Sound Acquisition and Analysis System." Advanced Materials Research 341-342 (September 2011): 504–8. http://dx.doi.org/10.4028/www.scientific.net/amr.341-342.504.
Повний текст джерелаHu, Qing Song, De Hui Chen, Wei Ding Wang, and Shou Yu Zhang. "Fish Sound Frequency Domain Analysis and Acoustic Spread Distance Experiment Research." Applied Mechanics and Materials 117-119 (October 2011): 716–20. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.716.
Повний текст джерелаДисертації з теми "Sound analysi"
DI, CROCE NICOLA. "Sonic acknowledgments. La territorialità delle politiche nella pratica dell'ascolto." Doctoral thesis, Università IUAV di Venezia, 2016. http://hdl.handle.net/11578/278716.
Повний текст джерелаLa ricerca si propone di indagare le possibili interazioni tra i campi della pianificazione territoriale, delle politiche pubbliche, e dei Sound Studies. L’obiettivo è esplicitare le connessioni tra ambiente sonoro e questioni urbane e territoriali attraverso la pratica dell’ascolto; tematizzare dunque le modalità di produzione di conoscenza per affrontare l’inquadramento di particolari “problemi” e l’elaborazione di possibili approcci alternativi di ricerca. Se l’attitudine è sicuramente progettuale, lo scopo dichiarato è analitico, propedeutico all’azione: al disegno di politiche come all’empowerment di comunità. L’ascolto assume quindi le caratteristiche di uno strumento di ricerca; se ne vogliono delineare le potenzialità, esplorare le tracce attraverso cui approcciare le questioni urbane e territoriali che pur “facendo problema” sembrano passare spesso “inosservate”, soprattutto su un piano istituzionale. Si è invitati a seguire un percorso inedito di lettura delle politiche pubbliche, che rimanda al superamento del problem solving e procede verso un’articolazione sonora del problem setting. Attraverso la lettura dell’ambiente sonoro si vuole infatti esplicitare i termini su cui si articola la produzione di conoscenza a supporto dell’azione; conoscenza che costituisce un aiuto essenziale per il processo decisionale, dunque per il disegno di politiche. Il suono, e l’ambiente acustico, intervengono come messaggeri di un modello interpretativo finora troppo poco praticato dalla pianificazione e dal policy design. Se il suono è il centro della ricerca, il suo potenziale evocativo e rappresentativo si esplicita e riverbera nella dimensione politica. Sono allora da introdurre e chiarire i cardini del discorso: definire il paesaggio sonoro, l’ambiente acustico, ed esplorare gli studi culturali che ne stanno decodificando i segnali, dunque il quadro percettivo consapevole e inconsapevole cui l’ascolto fa costantemente riferimento.
Liao, Wei-Hsiang. "Modelling and transformation of sound textures and environmental sounds." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066725/document.
Повний текст джерелаThe processing of environmental sounds has become an important topic in various areas. Environmental sounds are mostly constituted of a kind of sounds called sound textures. Sound textures are usually non-sinusoidal, noisy and stochastic. Several researches have stated that human recognizes sound textures with statistics that characterizing the envelopes of auditory critical bands. Existing synthesis algorithms can impose some statistical properties to a certain extent, but most of them are computational intensive. We propose a new analysis-synthesis framework that contains a statistical description that consists of perceptually important statistics and an efficient mechanism to adapt statistics in the time-frequency domain. The quality of resynthesised sound is at least as good as state-of-the-art but more efficient in terms of computation time. The statistic description is based on the STFT. If certain conditions are met, it can also adapt to other filter bank based time-frequency representations (TFR). The adaptation of statistics is achieved by using the connection between the statistics on TFR and the spectra of time-frequency domain coefficients. It is possible to adapt only a part of cross-correlation functions. This allows the synthesis process to focus on important statistics and ignore the irrelevant parts, which provides extra flexibility. The proposed algorithm has several perspectives. It could possibly be used to generate unseen sound textures from artificially created statistical descriptions. It could also serve as a basis for transformations like stretching or morphing. One could also expect to use the model to explore semantic control of sound textures
Chatterley, James J. "Sound Quality Analysis of Sewing Machines." BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/424.
Повний текст джерелаTERENZI, Alessandro. "Innovative Digital Signal Processing Methodologies for Identification and Analysis of Real Audio Systems." Doctoral thesis, Università Politecnica delle Marche, 2021. http://hdl.handle.net/11566/287822.
Повний текст джерелаMany real word audio systems exist, each has its own characteristics but almost all of them can be identified from the fact that they are able to generate or modify a sound. If a natural or artificial system can be defined as a sound system, then it is possible to apply the techniques of digital signal processing for the studying and the emulation of the system. In this thesis, innovative methodologies for digital signal processing applied to real audio systems will be discussed. In particular, three different audio systems will be considered: the world of vacuum-based non linear audio devices with particular attention to guitar and hi-fi amplifiers; the room acoustic environment and its effect on the sound propagation; and finally the sound emitted by honey bees in a beehive. Regarding the first system, innovative approaches for the identification of the Volterra series and Hammerstein models will be proposed, in particular an approach to overcome some limitation of Volterra series identification. The application of a sub-band structure to reduce the computational cost and increase the convergence speed of an adaptive Hammerstein model identification will be proposed as well. Finally, an innovative approach for the measurement of several distortion parameters using a single measure, exploiting a generalized Hammerstein model, will be presented. For the second system, the results of the application of a multi-point equalizer to two different situations will be exposed. In particular, in the first case, it will be shown how a multi-point equalization can be used not only to compensate the acoustical anomalies of a room, but also to improve the frequency response of vibrating transducers mounted on a rigid surface. The second contribution will show how a sub-band approach can be used to improve the computational cost and the speed of an adaptive algorithm for a multi-point and multi channel equalizer. At the end, the focus will be on a natural sound system, i.e., a honey bees colony. In this case, an innovative acquisition system for honey bees sound monitoring will be presented. Then, the approaches developed for sound analysis will be exposed and applied to the recorded sounds in two different situations. Finally, the obtained results, achieved with the application of classification algorithms, will be exposed. In the final part of the work some minor contributions still related to signal processing applied to real sound systems are presented. In particular, an implementation of an active noise control system is discussed, and two algorithms for digital effects where the former improves the sound performances of compact loudspeakers and the latter generates a stereophonic effect for electric guitars are exposed.
Satakopan, Hariram. "Time-Frequency Feature Extraction for Impact Sound Quality Analysis with Emphasis on Automobile Applications." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1299168649.
Повний текст джерелаLee, JungSuk. "Categorization and modeling of sound sources for sound analysis/synthesis." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116954.
Повний текст джерелаDans cette thèse, nous avons étudié plusieurs scéhmas d'analyse/synthèse dans le cadre des modèles source/filtre, avec un attention particulière portée sur la composante de source. Cette recherche améliore les méthodes ainsi que les outils fournis créateurs de sons, compositeurs et musiciens désirant analyser et synthétiser avec flexibilité des sons destinés aux jeux vidéos, au cinéma ou à la musique par ordinateur. Ces sons peuvent aller de sons abstraits et complexes à ceux provenant d'instruments de musique existants. En premier lieu, un schéma d'analyse-synthèse est introduit permettant la reproduction du son d'une balle en train de rouler. Ce schéma est fondé sur l'hypothèse que le son de ce roulement est généré par la concaténation de micro-contacts entre balle et surface, chacune d'elles possédant sa proper série de résonances. L'information relative aux temps de contact est extradite du son du roulement que l'on cherche à reproduire au moyen d'une procédure détectant le début du son afin de le segmenter. Les segments de son ainsi isolés sont supposés correspondre aux micro-contacts entre la balle et la surface. Ainsi un algorithme de prédiction linéaire est effectué par sous-bande, préalablement extraites afin de modéliser des résonances et des anti-résonances variants dans le temps. Les segments sont ensuite re-synthétisés, superposés et additionnés pour reproduire le son du roulement dans son entier. Cette approche d'analyse/synthèse "granulaire" est également appliquée à plusieurs sons de types environnementaux (pluie, feux d'artifice, marche, claquement) afin d'explorer plus avant l'influence du type de la source sur l'analyse/synthèse des sons. Le système proposé permet une analyse flexible de sons complexes et leur synthèse, avec la possibilité d'ajouter des modifications temporelles.Enfin, une approche novatrice pour extraire le signal d'excitation d'un son de corde pincée est présentée dans le contexte de schémas source/filtre sur une modèlisation physique. A cet effet, nous introduisons une méthode de type fenêtrage, et une méthode de filtrage inverse fondée sur le type de propagation selon laquelle l'onde se déplace le long de la corde. De plus, un modèle paramétrique de l'excitation par pincement ainsi qu'une méthode d'estimation de ces paramètres sont détaillés.
Price, M. A. "Sound propagation in woodland." Thesis, Open University, 1986. http://oro.open.ac.uk/56924/.
Повний текст джерелаDerton, Riccardo. "Door closing sound quality related to door sealing stiffness." Thesis, KTH, Marcus Wallenberg Laboratoriet MWL, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302275.
Повний текст джерелаDörrstängning är en återkommande händelse när ett fordon används, och ljudet bör därför ge ett positivt intryck och korrekt information till brukaren. Ett behagligt intryck är en viktig aspekt ur kundens perspektiv och kan vara ett var flera bidragande faktorer när beslut tas om att köpa eller inte köpa ett fordon. Den första kontakten mellan en potentiell kund och bilen sker vanligtvis i bilsalonger eller hos bilhandlare. Det första intrycket av fordonet kan vara visuellt, och dörren är ofta den första fysiska kontakten. Beroende på biltyp och fabrikat skiljer sig dörrarna åt när det kommer till massa, struktur och dimensioner. Dessutom kan det finnas skillnader i låssystem och dörrtätningskonstruktion såsom i både material och utformning. Stängningsljudet som uppstår när dörren slås igen är relaterat till alla dessa parametrar. Ett ljuds upplevda behaglighet i det beror på ljudets egenskaper, som beskrivs med hjälp av psykoakustik. Ljudstyrka, skärpa, råhet och tonalitet är viktiga auditiva parametrar för att objektivt beskriva detta komplexa intryck. Målet med bildörrar bör vara att generera ett dovt och mättat ljud, för att framkalla känslor av soliditet, robusthet och säkerhet. Å andra sidan kan, ett metalliskt, högfrekvent och skramligt ljud vara en källa till irritation och ge känslor av osäkerhet och låg kvalité.Syftet med detta arbete är att ge en övergripande beskrivning av dörrstängning och akustiken kring detta. I synnerhet utvärderades stängningsljudet i förhållande till dörrpackningarna och deras tätningsprestanda mätt över tiden. Tätningsprestanda analyserades i energi- och krafttermer. Dörrens stängningsrörelse studerades både som ett kvasistatiskt problem och som ett dynamiskt problem. Det förstnämnda är relaterat till dörrens låsningsförmåga, medan det sistnämnda är kopplat till smällar i dörren. Mätresultaten visade hur tätningsprestandan förändras över tiden. Gummits icke-linjära beteende har också utvärderats med ett ljudkvalitetsperspektiv. En spektralanalys genomfördes av ljudet från dörrstängningar och Wavelet-transformen visade sig vara den lösning som gav bäst kvalitet. Flera mätningar utfördes för att bedöma alla fastställda punkter och metoder infördes för analysen av tätningens styvhet och för den akustiska analysen. Den kraftiga transiensen i dörrstängningen kunde ses i resultaten. Styvhetsanalysen visade även hur den utvecklade metoden skulle kunna bidra till att justera fordonets end-of-line inställningar. Slutligen ingick benchmarking i projektet vilket möjliggjorde jämförelser med konkurrentbilar.
Servis, Dimitris C. "Sound transmission at pipe joints." Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/782.
Повний текст джерелаSong, Guanghan. "Effect of sound in videos on gaze : contribution to audio-visual saliency modelling." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENT013/document.
Повний текст джерелаHumans receive large quantity of information from the environment with sight and hearing. To help us to react rapidly and properly, there exist mechanisms in the brain to bias attention towards particular regions, namely the salient regions. This attentional bias is not only influenced by vision, but also influenced by audio-visual interaction. According to existing literature, the visual attention can be studied towards eye movements, however the sound effect on eye movement in videos is little known. The aim of this thesis is to investigate the influence of sound in videos on eye movement and to propose an audio-visual saliency model to predict salient regions in videos more accurately. For this purpose, we designed a first audio-visual experiment of eye tracking. We created a database of short video excerpts selected from various films. These excerpts were viewed by participants either with their original soundtrack (AV condition), or without soundtrack (V condition). We analyzed the difference of eye positions between participants with AV and V conditions. The results show that there does exist an effect of sound on eye movement and the effect is greater for the on-screen speech class. Then, we designed a second audio-visual experiment with thirteen classes of sound. Through comparing the difference of eye positions between participants with AV and V conditions, we conclude that the effect of sound is different depending on the type of sound, and the classes with human voice (i.e. speech, singer, human noise and singers classes) have the greatest effect. More precisely, sound source significantly attracted eye position only when the sound was human voice. Moreover, participants with AV condition had a shorter average duration of fixation than with V condition. Finally, we proposed a preliminary audio-visual saliency model based on the findings of the above experiments. In this model, two fusion strategies of audio and visual information were described: one for speech sound class, and one for musical instrument sound class. The audio-visual fusion strategies defined in the model improves its predictability with AV condition
Книги з теми "Sound analysi"
Beauchamp, James W. Analysis, synthesis, and perception of musical sounds: The sound of music. New York: Springer, 2010.
Знайти повний текст джерелаTohyama, M. Waveform analysis of sound. Tokyo: Springer, 2015.
Знайти повний текст джерелаTohyama, Mikio. Waveform Analysis of Sound. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54424-1.
Повний текст джерелаForeman, John E. K. Sound Analysis and Noise Control. Boston, MA: Springer US, 1991.
Знайти повний текст джерелаForeman, John E. K. Sound Analysis and Noise Control. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6677-5.
Повний текст джерелаSound analysis and noise control. New York: Van Nostrand Reinhold, 1990.
Знайти повний текст джерелаIvey, Donald. Sound pleasure: A prelude to active listening. 2nd ed. New York: Schirmer Books, 1985.
Знайти повний текст джерелаHenrichsen, Peter Juel. Linguistic theory and raw sound. Frederiksberg: Samfundslitteratur, 2009.
Знайти повний текст джерелаSueur, Jérôme. Sound Analysis and Synthesis with R. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77647-7.
Повний текст джерелаChuang, Ming-Fei. Interactive tools for sound signal analysis. Monterey, Calif: Naval Postgraduate School, 1997.
Знайти повний текст джерелаЧастини книг з теми "Sound analysi"
Osborn, Brad. "Sound Analysis." In Interpreting Music Video, 31–48. New York: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003037576-4.
Повний текст джерелаHardman, Kristi. "The continua of sound qualities for Tanya Tagaq's katajjaq sounds." In Trends in World Music Analysis, 85–99. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003033080-6.
Повний текст джерелаForeman, John E. K. "Sound Fields." In Sound Analysis and Noise Control, 81–109. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6677-5_4.
Повний текст джерелаSabil, AbdelKebir, and Sandrine Launois. "Tracheal Sound Analysis." In Advances in the Diagnosis and Treatment of Sleep Apnea, 265–80. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06413-5_16.
Повний текст джерелаPavan, Gianni, Gregory Budney, Holger Klinck, Hervé Glotin, Dena J. Clink, and Jeanette A. Thomas. "History of Sound Recording and Analysis Equipment." In Exploring Animal Behavior Through Sound: Volume 1, 1–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_1.
Повний текст джерелаForeman, John E. K. "Basics of Sound." In Sound Analysis and Noise Control, 1–15. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6677-5_1.
Повний текст джерелаXie, Bosun. "Basic principles and analysis of multichannel surround sound." In Spatial Sound, 125–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003081500-3.
Повний текст джерелаSueur, Jérôme. "What Is Sound?" In Sound Analysis and Synthesis with R, 7–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77647-7_2.
Повний текст джерелаSueur, Jérôme. "Playing with Sound." In Sound Analysis and Synthesis with R, 81–110. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77647-7_4.
Повний текст джерелаXie, Bosun. "Physical analysis of multichannel sound field recording and reconstruction." In Spatial Sound, 349–437. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003081500-9.
Повний текст джерелаТези доповідей конференцій з теми "Sound analysi"
Paul, V. S., and P. A. Nelson. "MATRIX ANALYSIS OF NEURAL NETWORK ARCHITECTURES FOR AUDIO SIGNAL CLASSIFICATION." In REPRODUCED SOUND 2020. Institute of Acoustics, 2020. http://dx.doi.org/10.25144/13374.
Повний текст джерелаPaul, V. S., and P. A. Nelson. "MATRIX ANALYSIS OF NEURAL NETWORK ARCHITECTURES FOR AUDIO SIGNAL CLASSIFICATION." In REPRODUCED SOUND 2020. Institute of Acoustics, 2020. http://dx.doi.org/10.25144/13374.
Повний текст джерелаLove, J., and D. Gilfillan. "ON THE VIABILITY OF THE ENERGY-TIME CURVE (ETC) IN ELECTRO-ACOUSTICS MEASUREMENT AND ANALYSIS." In REPRODUCED SOUND 2020. Institute of Acoustics, 2020. http://dx.doi.org/10.25144/13371.
Повний текст джерелаLove, J., and D. Gilfillan. "ON THE VIABILITY OF THE ENERGY-TIME CURVE (ETC) IN ELECTRO-ACOUSTICS MEASUREMENT AND ANALYSIS." In REPRODUCED SOUND 2020. Institute of Acoustics, 2020. http://dx.doi.org/10.25144/13371.
Повний текст джерелаPetiot, Jean-François, Bjørn G. Kristensen, and Anja M. Maier. "How Should an Electric Vehicle Sound? User and Expert Perception." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12535.
Повний текст джерелаAlsaif, Saif Abdulmohsen, and Tameem Saud Alothman. "Predict Drilling Equipment Failure Using AI-Based Sound Waive Analysis Methodology." In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/31828-ms.
Повний текст джерелаMatsumoto, Hiroki, Kohshi Nishida, and Ken-ichi Saitoh. "Characteristics of Aerodynamic Sound Sources Generated by Coiled Wires in a Uniform Air Flow." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33408.
Повний текст джерелаLiu, Hai, Yanyi Zhang, Dong Hao, Yong Chen, Xiang Ji, and Changyin Wei. "Objective Evaluation of FCV Interior Sound Quality During Acceleration." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87011.
Повний текст джерелаWall Emerson, Robert, Dae Shik Kim, Koorosh Naghshineh, and Kyle Myers. "Blind Pedestrians and Quieter Vehicles: How Adding Artificial Sounds Impacts Travel Decisions." In ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ncad2012-0221.
Повний текст джерелаHuang, Yuzhun, Miaodi Hu, and Jun Zhang. "User Emotional Experience Assessment Method of Product's Intentional Sound." In 8th International Conference on Human Interaction and Emerging Technologies. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002750.
Повний текст джерелаЗвіти організацій з теми "Sound analysi"
Black, Paul E., and Athos Ribiero. SATE V Ockham Sound Analysis Criteria. National Institute of Standards and Technology, March 2016. http://dx.doi.org/10.6028/nist.ir.8113.
Повний текст джерелаBlack, Paul E., and Kanwardeep Singh Walia. SATE VI Ockham Sound Analysis Criteria. National Institute of Standards and Technology, May 2020. http://dx.doi.org/10.6028/nist.ir.8304.
Повний текст джерелаMatsumoto, Hiroyuki, Hisami Ohishi, and Shinji Yamakawa. Sound Analysis of Vehicle by Higher Order Spectra. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0024.
Повний текст джерелаWatkins, William A., Mary A. Daher, Nancy A. DiMarzio, and Gina Reppucci. Distinctions in Sound Patterns of Calls by Killer Whales (Orcinus Orca) from Analysis of Computed Sound Features. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada341030.
Повний текст джерелаImada, Naoki, Takehiro Bando, and Ichiro Hagiwara. The Sound Radiation Optimization Analysis of an Oil Pan. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0167.
Повний текст джерелаGilkey, Robert H. Pattern Analysis Based Models of Masking by Spatially Separated Sound Sources. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada253036.
Повний текст джерелаBrandenberger, Jill M., Carolynn R. Suslick, and Robert K. Johnston. Biological Sampling and Analysis in Sinclair and Dyes Inlets, Washington: Chemical Analyses for 2007 Puget Sound Biota Study. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/947480.
Повний текст джерелаRicketts, B. D. Basin analysis, Eureka Sound Group, Axel Heiberg and Ellesmere islands, Canadian Arctic Archipelago. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/194814.
Повний текст джерелаSakamoto, Ichiro, Takeharu Tanaka, Naoyuki Katsura, Yoshiaki Fujikawa, and Susumu Kogawa. Analysis of Tire/Road Noise Radiation Characteristics Under Acceleration Conditions by Sound Intensity. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0175.
Повний текст джерелаImanishi, Yoshitomo, Tomomi Hasegawa, Takashi Mitsuhashi, and Shinji Koyano. Analysis of Sound Field in a Car by Boundary Element Method and Measurement. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0348.
Повний текст джерела