Добірка наукової літератури з теми "Solvable groups"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Solvable groups".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Solvable groups"

1

Albrecht, Ulrich. "The construction of $A$-solvable Abelian groups." Czechoslovak Mathematical Journal 44, no. 3 (1994): 413–30. http://dx.doi.org/10.21136/cmj.1994.128480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cherlin, Gregory L., and Ulrich Felgner. "Homogeneous Solvable Groups." Journal of the London Mathematical Society s2-44, no. 1 (August 1991): 102–20. http://dx.doi.org/10.1112/jlms/s2-44.1.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Atanasov, Risto, and Tuval Foguel. "Solitary Solvable Groups." Communications in Algebra 40, no. 6 (June 2012): 2130–39. http://dx.doi.org/10.1080/00927872.2011.574241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sarma, B. K. "Solvable fuzzy groups." Fuzzy Sets and Systems 106, no. 3 (September 1999): 463–67. http://dx.doi.org/10.1016/s0165-0114(97)00264-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ray, Suryansu. "Solvable fuzzy groups." Information Sciences 75, no. 1-2 (December 1993): 47–61. http://dx.doi.org/10.1016/0020-0255(93)90112-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, P. B., and T. S. Wu. "On solvable groups." Mathematische Annalen 276, no. 1 (March 1986): 43–51. http://dx.doi.org/10.1007/bf01450922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abobala, Mohammad, and Mehmet Celik. "Under Solvable Groups as a Novel Generalization of Solvable Groups." Galoitica: Journal of Mathematical Structures and Applications 2, no. 1 (2022): 14–20. http://dx.doi.org/10.54216/gjmsa.020102.

Повний текст джерела
Анотація:
The objective of this paper is to define a new generalization of solvable groups by using the concept of power maps which generalize the classical concept of powers (exponents). Also, it presents many elementary properties of this new generalization in terms of theorems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

GRUNEWALD, FRITZ, BORIS KUNYAVSKII, and EUGENE PLOTKIN. "CHARACTERIZATION OF SOLVABLE GROUPS AND SOLVABLE RADICAL." International Journal of Algebra and Computation 23, no. 05 (August 2013): 1011–62. http://dx.doi.org/10.1142/s0218196713300016.

Повний текст джерела
Анотація:
We give a survey of new characterizations of finite solvable groups and the solvable radical of an arbitrary finite group which were obtained over the past decade. We also discuss generalizations of these results to some classes of infinite groups and their analogues for Lie algebras. Some open problems are discussed as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ZARRIN, MOHAMMAD. "GROUPS WITH FEW SOLVABLE SUBGROUPS." Journal of Algebra and Its Applications 12, no. 06 (May 9, 2013): 1350011. http://dx.doi.org/10.1142/s0219498813500114.

Повний текст джерела
Анотація:
In this paper, we give some sufficient condition on the number of proper solvable subgroups of a group to be nilpotent or solvable. In fact, we show that every group with at most 5 (respectively, 58) proper solvable subgroups is nilpotent (respectively, solvable). Also these bounds cannot be improved.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khazal, R., and N. P. Mukherjee. "A note onp-solvable and solvable finite groups." International Journal of Mathematics and Mathematical Sciences 17, no. 4 (1994): 821–24. http://dx.doi.org/10.1155/s0161171294001158.

Повний текст джерела
Анотація:
The notion of normal index is utilized in proving necessary and sufficient conditions for a groupGto be respectively,p-solvable and solvable wherepis the largest prime divisor of|G|. These are used further in identifying the largest normalp-solvable and normal solvable subgroups, respectively, ofG.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Solvable groups"

1

Bissler, Mark W. "Character degree graphs of solvable groups." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1497368851849153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wetherell, Chris. "Subnormal structure of finite soluble groups." View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20020607.121248/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sale, Andrew W. "The length of conjugators in solvable groups and lattices of semisimple Lie groups." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:ea21dab2-2da1-406a-bd4f-5457ab02a011.

Повний текст джерела
Анотація:
The conjugacy length function of a group Γ determines, for a given a pair of conjugate elements u,v ∈ Γ, an upper bound for the shortest γ in Γ such that uγ = γv, relative to the lengths of u and v. This thesis focuses on estimating the conjugacy length function in certain finitely generated groups. We first look at a collection of solvable groups. We see how the lamplighter groups have a linear conjugacy length function; we find a cubic upper bound for free solvable groups; for solvable Baumslag--Solitar groups it is linear, while for a larger family of abelian-by-cyclic groups we get either a linear or exponential upper bound; also we show that for certain polycyclic metabelian groups it is at most exponential. We also investigate how taking a wreath product effects conjugacy length, as well as other group extensions. The Magnus embedding is an important tool in the study of free solvable groups. It embeds a free solvable group into a wreath product of a free abelian group and a free solvable group of shorter derived length. Within this thesis we show that the Magnus embedding is a quasi-isometric embedding. This result is not only used for obtaining an upper bound on the conjugacy length function of free solvable groups, but also for giving a lower bound for their Lp compression exponents. Conjugacy length is also studied between certain types of elements in lattices of higher-rank semisimple real Lie groups. In particular we obtain linear upper bounds for the length of a conjugator from the ambient Lie group within certain families of real hyperbolic elements and unipotent elements. For the former we use the geometry of the associated symmetric space, while for the latter algebraic techniques are employed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bleak, Collin. "Solvability in groups of piecewise-linear homeomorphisms of the unit interval." Diss., Online access via UMI:, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vershik, A. M., and Andreas Cap@esi ac at. "Geometry and Dynamics on the Free Solvable Groups." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi899.ps.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Roth, Calvin L. (Calvin Lee). "Example of solvable quantum groups and their representations." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Yong. "Orbits of the actions of finite solvable groups." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dugan, Carrie T. "Solvable Groups Whose Character Degree Graphs Have Diameter Three." Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1185299573.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vassileva, Svetla. "The word and conjugacy problems in classes of solvable groups." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66827.

Повний текст джерела
Анотація:
This thesis is a survey of certain algorithmic problems in group theory and their computational complexities. In particular, it consists of a detailed review of the decidability and complexity of the word and conjugacy problems in several classes of solvable groups, followed by two original results. The first result states that the Conjugacy Problem in wreath products which satisfy certain elementary conditions is decidable in polynomial time. It is largely based on work by Jane Matthews, published in 1969. The second result, based on ideas of Remeslennikov and Sokolov (1970), and Myasnikov, Roman'kov, Ushakov and Vershik (2008) gives a uniform polynomial time algorithm to decide the Conjugacy Problem in free solvable groups.
Cette thèse est une synthèse de certains problèmes algorithmiques dans la thèoriedes groupes et leur complexité computationnelle. Plus particulièrement, elle présenteune revue détaillée de la décidabilité et de la complexité des problèmes du mot et dela conjugaison dans plusieurs classes de groupes solubles, suivie de deux nouveauxrésultats. Le premier résultat énonce que le problème de la conjugaison dans lesproduits couronne qui satisfont certaines conditions élémentaires est décidable entemps polynomial. Elle part d'une publication de Jane Matthews (1969). Le deuxièmerésultat, basé sur des idées de Remeslennikov et Sokolov (1970) et de Myasnikov, Roman'kov,Ushakov et Vershik (2008), présente un algorithme en temps polynomial uniformepour décider le problème de conjugaison dans les groupes solubles libres.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sass, Catherine Bray. "Prime Character Degree Graphs of Solvable Groups having Diameter Three." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1398110266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Solvable groups"

1

Manz, Olaf. Representations of solvable groups. Cambridge: Cambridge University Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1936-, Hawkes Trevor O., ed. Finite soluble groups. Berlin: W. de Gruyter, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shunkov, V. P. O vlozhenii primarnykh ėlementov v gruppe. Novosibirsk: VO Nauka, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shunkov, V. P. Mp̳-gruppy. Moskva: "Nauka", 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

The primitive soluble permutation groups of degree less than 256. Berlin: Springer-Verlag, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Finite presentability of S-arithmetic groups: Compact presentability of solvable groups. Berlin: Springer-Verlag, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Words: Notes on verbal width in groups. Cambridge: Cambridge University Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bencsath, Katalin A. Lectures on Finitely Generated Solvable Groups. New York, NY: Springer New York, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bencsath, Katalin A., Marianna C. Bonanome, Margaret H. Dean, and Marcos Zyman. Lectures on Finitely Generated Solvable Groups. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5450-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fujiwara, Hidenori, and Jean Ludwig. Harmonic Analysis on Exponential Solvable Lie Groups. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55288-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Solvable groups"

1

Sury, B. "Solvable groups." In Texts and Readings in Mathematics, 63–74. Gurgaon: Hindustan Book Agency, 2003. http://dx.doi.org/10.1007/978-93-86279-19-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brzeziński, Juliusz. "Solvable Groups." In Springer Undergraduate Mathematics Series, 73–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72326-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Escofier, Jean-Pierre. "Solvable Groups." In Graduate Texts in Mathematics, 195–206. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0191-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Borel, Armand. "Solvable Groups." In Graduate Texts in Mathematics, 111–46. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0941-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ceccherini-Silberstein, Tullio, and Michele D’Adderio. "Solvable Groups." In Springer Monographs in Mathematics, 59–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88109-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Springer, T. A. "Solvable F-groups." In Linear Algebraic Groups, 238–51. Boston, MA: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4840-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kirillov, A. "Solvable Lie groups." In Graduate Studies in Mathematics, 109–34. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/gsm/064/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Myasnikov, Alexei, Vladimir Shpilrain, and Alexander Ushakov. "Free solvable groups." In Non-commutative Cryptography and Complexity of Group-theoretic Problems, 285–307. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/surv/177/19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

San Martin, Luiz A. B. "Solvable and Nilpotent Groups." In Lie Groups, 199–210. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Machì, Antonio. "Nilpotent Groups and Solvable Groups." In UNITEXT, 205–52. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2421-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Solvable groups"

1

RHEMTULLA, AKBAR, and HOWARD SMITH. "ON INFINITE SOLVABLE GROUPS." In Proceedings of the AMS Special Session. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814503723_0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Watrous, John. "Quantum algorithms for solvable groups." In the thirty-third annual ACM symposium. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/380752.380759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Luks, E. M. "Computing in solvable matrix groups." In Proceedings., 33rd Annual Symposium on Foundations of Computer Science. IEEE, 1992. http://dx.doi.org/10.1109/sfcs.1992.267813.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kahrobaei, Delaram. "Doubles of Residually Solvable Groups." In A Festschrift in Honor of Anthony Gaglione. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793416_0013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Eskin, Alex, and David Fisher. "Quasi-isometric Rigidity of Solvable Groups." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Xianhua. "On Some Results of Finite Solvable Groups." In The International Conference on Algebra 2010 - Advances in Algebraic Structures. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366311_0029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Omer, S. M. S., N. H. Sarmin, and A. Erfanian. "The orbit graph for some finite solvable groups." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ballesteros, A., A. Blasco, and F. Musso. "Lotka-Volterra systems as Poisson-Lie dynamics on solvable groups." In XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2012. http://dx.doi.org/10.1063/1.4733365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

BARBERIS, MARÍA LAURA. "HYPERCOMPLEX STRUCTURES ON SPECIAL CLASSES OF NILPOTENT AND SOLVABLE LIE GROUPS." In Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810038_0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Markon, Sandor. "A solvable simplified model for elevator group control studies." In 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE). IEEE, 2015. http://dx.doi.org/10.1109/gcce.2015.7398739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії