Добірка наукової літератури з теми "Solids with microstructure"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Solids with microstructure".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Solids with microstructure"

1

Mo, Jingyi, Enyu Guo, D. McCartney, David Eastwood, Julian Bent, Gerard Van Dalen, Peter Schuetz, Peter Rockett, and Peter Lee. "Time-Resolved Tomographic Quantification of the Microstructural Evolution of Ice Cream." Materials 11, no. 10 (October 19, 2018): 2031. http://dx.doi.org/10.3390/ma11102031.

Повний текст джерела
Анотація:
Ice cream is a complex multi-phase colloidal soft-solid and its three-dimensional microstructure plays a critical role in determining the oral sensory experience or mouthfeel. Using in-line phase contrast synchrotron X-ray tomography, we capture the rapid evolution of the ice cream microstructure during heat shock conditions in situ and operando, on a time scale of minutes. The further evolution of the ice cream microstructure during storage and abuse was captured using ex situ tomography on a time scale of days. The morphology of the ice crystals and unfrozen matrix during these thermal cycles was quantified as an indicator for the texture and oral sensory perception. Our results reveal that the coarsening is due to both Ostwald ripening and physical agglomeration, enhancing our understanding of the microstructural evolution of ice cream during both manufacturing and storage. The microstructural evolution of this complex material was quantified, providing new insights into the behavior of soft-solids and semi-solids, including many foodstuffs, and invaluable data to both inform and validate models of their processing.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zak, Michail. "Post-Instability Behavior of Solids." Transactions of the Canadian Society for Mechanical Engineering 9, no. 4 (December 1985): 200–209. http://dx.doi.org/10.1139/tcsme-1985-0027.

Повний текст джерела
Анотація:
The necessity of model reformulation in elasticity results from the failure of hyperbolicity of the governing equations of motion for classical models. The reformulation is based upon the introduction of additional kinematical microstructures in the form of multivalued displacement and velocity field (or fractal functions) which arc generated by the mechanism of the instability. The small scale motions describing this microstructure interact with the original large scale motion and restore the hyperbolicity of new governing equations of motion. The applications of the reformulated models to the problem of vibrational control and impact energy absorption are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mrzygłód, B., P. Matusiewicz, A. Tchórz, and I. Olejarczyk-Wożeńska. "Quantitative Analysis of Ductile Iron Microstructure – A Comparison of Selected Methods for Assessment." Archives of Foundry Engineering 13, no. 3 (September 1, 2013): 59–63. http://dx.doi.org/10.2478/afe-2013-0060.

Повний текст джерела
Анотація:
Abstract Stereological description of dispersed microstructure is not an easy task and remains the subject of continuous research. In its practical aspect, a correct stereological description of this type of structure is essential for the analysis of processes of coagulation and spheroidisation, or for studies of relationships between structure and properties. One of the most frequently used methods for an estimation of the density Nv and size distribution of particles is the Scheil - Schwartz - Saltykov method. In this article, the authors present selected methods for quantitative assessment of ductile iron microstructure, i.e. the Scheil - Schwartz - Saltykov method, which allows a quantitative description of three-dimensional sets of solids using measurements and counts performed on two-dimensional cross-sections of these sets (microsections) and quantitative description of three-dimensional sets of solids by X-ray computed microtomography, which is an interesting alternative for structural studies compared to traditional methods of microstructure imaging since, as a result, the analysis provides a three-dimensional imaging of microstructures examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pastrone, F. "Waves in solids with vectorial microstructure." Proceedings of the Estonian Academy of Sciences. Physics. Mathematics 52, no. 1 (2003): 21. http://dx.doi.org/10.3176/phys.math.2003.1.03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Krajcinovic, D., and R. IIankamban. "Mechanics of Solids with Defective Microstructure*." Journal of Structural Mechanics 13, no. 3-4 (January 1985): 267–82. http://dx.doi.org/10.1080/03601218508907501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meyer, K., and D. Schultze. "Thermal analysis and microstructure of solids and solid state reactions." Fresenius' Journal of Analytical Chemistry 349, no. 1-3 (1994): 84–90. http://dx.doi.org/10.1007/bf00323228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Yuan Dong, and Yi Hui Yin. "Integrated Design of Micro Configuration and Macro Arrangement with Scale-Coupled Effect for Maximum the Fundamental Frequency." Advanced Materials Research 146-147 (October 2010): 1154–58. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1154.

Повний текст джерела
Анотація:
It is well known that structural behaviors of composite solids are determined by topology of microstructures of different sizes. In this paper a concurrent topology optimization method for integrated design of materials and structures with periodical microstructure was presented. The microstructures were assumed to be uniform in macro scale and heterogeneous in micro scale and the optimization object was to maximize the material fundamental frequency. Design variables for structure and material microstructures were defined, independently. RAMP (Rational Approximation ofMaterial Properties) was adopted to ensure clear topologies in both macro and micro scales. Design variables for structure and material microstructures were integrated into one system by using the super-element method. Influences of Representative Volume Element sizes, the microstructure configuration and macro arrangement are investigated. Numerical experiments validate the proposed method which can be used as an innovative design concept for the lightweight structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pedregal, Pablo. "Laminates and microstructure." European Journal of Applied Mathematics 4, no. 2 (June 1993): 121–49. http://dx.doi.org/10.1017/s0956792500001030.

Повний текст джерела
Анотація:
This paper deals with the mathematical characterization of microstructure in elastic solids. We formulate our ideas in terms of rank-one convexity and identify the set of probability measures for which Jensen's inequality for this type of functions holds. This is the set of laminates. We also introduce generalized convex hulls of sets of matrices and investigate their structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ieşan, D. "Binary Mixtures of Elastic Solids with Microstructure." Mathematics and Mechanics of Solids 14, no. 6 (March 11, 2008): 564–86. http://dx.doi.org/10.1177/1081286507087323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abromeit, C., H. Trinkaus, and H. Wollenberger. "Mechanisms of microstructural pattern formation in irradiated solids." Canadian Journal of Physics 68, no. 9 (September 1, 1990): 778–84. http://dx.doi.org/10.1139/p90-113.

Повний текст джерела
Анотація:
Metals and alloys under irradiation with energetic particles such as electrons, neutrons, or ions are open dissipative systems far from thermodynamic equilibrium. The continuous production, diffusion, and annihilation of point defects result in microstructural changes in the irradiated materials. Under proper conditions, self-organization of the microstructure is experimentally observed. Examples are the void lattice, periodic concentration fluctuations of dislocation loops, and irradiation-induced homogeneous precipitation in undersaturated alloys. The theoretical description rests on a coupling of the point defects with the microstructure by nonlinear reactions. In general, a complicated reaction scheme has to be investigated. In practice, however, a simplified reaction model is applicable from which the minimum requirements for self-organization can be derived by using a linear stability analysis. In a special case of the reaction scheme it is possible to evaluate exact stationary solutions of the appropriate diffusion-reaction equations. They show the stabilizing effect of the annihilation of the point defects by recombination and at neutral sinks against pattern formation. A stability diagram for irradiation-induced periodic structures is developed that gives the temperature and displacement range where self-organization of loop arrangement is possible, and that is in good accordance with the experimental results.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Solids with microstructure"

1

Sengul, Yasemin. "Well-posedness of dynamics of microstructure in solids." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533878.

Повний текст джерела
Анотація:
In this thesis, the problem of well-posedness of nonlinear viscoelasticity under the assumptions allowing for phase transformations in solids is considered. In one space dimension we prove existence and uniqueness of the solutions for the quasistatic version of the model using approximating sequences corresponding to the case when initial data takes finitely many values. This special case also provides upper and lower bounds for the solutions which are interesting in their own rights. We also show equivalence of the existence theory we develop with that of gradient flows when the stored-energy function is assumed to be -convex. Asymptotic behaviour of the solutions as time goes to infinity is then investigated and stabilization results are obtained by means of a new argument. Finally, we look at the problem from the viewpoint of curves of maximal slope and follow a time-discretization approach. We introduce a three-dimensional method based on composition of time-increments, as a result of which we are able to deal with the physical requirement of frame-indifference. In order to test this method and distinguish the difficulties for possible generalizations, we look at the problem in a convex setting. At the end we are able to obtain convergence of the minimization scheme as time step goes to zero.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stone, Cora Emma. "Neutron studies of amorphous solids." Thesis, University of Reading, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Koumatos, Konstantinos. "The formation of microstructure in shape-memory alloys." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:1089932b-d36e-4414-b128-6f7bcfe9cdf3.

Повний текст джерела
Анотація:
The application of techniques from nonlinear analysis to materials science has seen great developments in the recent years and it has really been a driving force for substantial mathematical research in the area of partial differential equations and the multi-dimensional calculus of variations. This thesis has been motivated by two recent and remarkable experimental observations of H. Seiner in shape-memory alloys which we attempt to interpret mathematically. Much of the work is original and has given rise to deep problems in the calculus of variations. Firstly, we study the formation of non-classical austenite-martensite interfaces. Ball & Carstensen (1997, 1999) theoretically investigated the possibility of the occurrence of such interfaces and studied the cubic-to-tetragonal case extensively. In this thesis, we present an analysis of non-classical austenite-martensite interfaces recently observed by Seiner et al.~in a single crystal of a CuAlNi shape-memory alloy, undergoing a cubic-to-orthorhombic transition. We show that these can be described by the general nonlinear elasticity model and we make some predictions regarding the admissible volume fractions of the martensitic variants involved, as well as the habit plane normals. Interestingly, in the above experimental observations, the interface between the austenite and the martensitic configuration is never exactly planar, but rather slightly curved, resulting from the pattern of martensite not being exactly homogeneous. However, it is not clear how one can reconstruct the inhomogeneous configuration as a stress-free microstructure and, instead, a theoretical approach is followed. In this approach, a general method is provided for the construction of a compatible curved austenite-martensite interface and, by exploiting the structure of quasiconvex hulls, the existence of curved interfaces is shown in two and three dimensions. As far as the author is aware of, this is the first construction of such a curved austenite-martensite interface. Secondly, we study the nucleation of austenite in a single crystal of a CuAlNi shape-memory alloy consisting of a single variant of stabilized 2H martensite. The nucleation process is induced by localized heating and it is observed that, regardless of where the localized heating is applied, the nucleation points are always located at one of the corners of the sample - a rectangular parallelepiped in the austenite. Using a simplified nonlinear elasticity model, we propose an explanation for the location of the nucleation points by showing that the martensite is a local minimizer of the energy with respect to localized variations in the interior, on faces and edges of the sample, but not at some corners, where a localized microstructure can lower the energy. The result for the interior, faces and edges is established by showing that the free-energy function satisfies a set of quasiconvexity conditions at the stabilized variant throughout the specimen, provided this is suitably cut. The proofs of quasiconvexity are based on a rigidity argument and are specific to the change of symmetry in the phase transformation. To the best of the author's knowledge, quasiconvexity conditions at edges and corners have not been considered before.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Svanadze, Maia [Verfasser], Ingo [Akademischer Betreuer] Witt, Stan [Akademischer Betreuer] Chiriţă, David [Akademischer Betreuer] Gordeziani, and Nugzar [Akademischer Betreuer] Shavlakadze. "Non-classical problems for viscoelastic solids with microstructure / Maia Svanadze. Betreuer: Ingo Witt. Gutachter: Stan Chirita ; David Gordeziani ; Nugzar Shavlakadze." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1077362382/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chenchiah, Isaac Vikram Bhattacharya Kaushik. "Energy-minimizing microstructures in multiphase elastic solids /." Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-05252004-131315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kazaryan, Andrei. "Modeling of microstructural evolution in solids /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486398195327308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ruddock, Guy James. "Martensitic microstructures." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Johnson, D. R. "The microstructure of all-solid-state batteries." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Papillon, Anthony. "Frittage de composites Cu-Cr pour l'élaboration de matériaux de contact d'ampoules à vide." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI099.

Повний текст джерела
Анотація:
Les composites Cu-Cr sont couramment utilisés comme matériaux de contact électrique pour ampoules à vide des disjoncteurs de moyenne tension. Pourtant très répandu, le frittage en phase solide de ces matériaux a été relativement peu étudié. L’optimisation du procédé passe par la compréhension des mécanismes de frittage. Cette étude est focalisée sur deux aspects importants du frittage : les processus d’oxydo-réduction liés aux oxydes de surfaces des poudres et la compétition entre mécanismes de densification et de gonflement au cours du frittage.L’oxydo-réduction a été étudiée par analyse thermogravimétrique couplée à différentes techniques de spectroscopie d’abord sur les matériaux purs puis sur les composites. Des analyses des interfaces par des coupes réalisées au FIB ont permis de préciser la localisation de l’oxyde dans les matériaux frittés. Un transfert d’oxygène a lieu entre les poudres de cuivre et de chrome. L’intensité de ce transfert dépend de la nature réductrice de l’atmosphère utilisée.La densification a été analysée par dilatométrie sur les matériaux purs et sur les composites. Ces analyses ont été appuyées par des observations microstructurales, notamment par tomographie des rayons X. L’effet des paramètres du procédé (atmosphère, vitesse de chauffage, poudres…) a été étudié. Les résultats montrent le lien entre la désoxydation des poudres de cuivre et le frittage. Un phénomène de gonflement du cuivre seul s’explique par le dégazage du cuivre à haute température lors de la fermeture des pores. Ce gonflement n’a pas lieu dans les composites Cu-Cr car le chrome retarde la fermeture des pores et piège les gaz émis par le cuivre en formant l’oxyde Cr2O3. L’atmosphère de frittage, la morphologie et la taille des poudres de chrome influent sur la densification. Le frittage sous vide permet de réduire la porosité. Une morphologie sphérique des particules de chrome limite l’effet inhibiteur de celui-ci sur la densification. Pour de faibles tailles de particules, le chrome participe à la densification, ce qui permet de mieux densifier le matériau. Ces résultats ouvrent des voies d’optimisation du procédé de frittage des matériaux.Les matériaux élaborés ont été testés dans leurs conditions d’utilisation, c'est-à-dire lors de coupures sur court-circuit en ampoule à vide. Ces essais ont montré l’intérêt de réduire la quantité d’oxyde de chrome et ont permis de déterminer l’effet des impuretés rencontrées usuellement sur les poudres de cuivre et de chrome
Cu-Cr composites are commonly used as contact materials for medium voltage circuit breakers vacuum bottles. Solid state sintering process of Cu-Cr composites is widespread but has been relatively little studied. Optimizing the process requires understanding the sintering mechanisms. This study was focused on two important aspects of sintering: the redox reactions associated to oxides on the powder surface and the competition between densification and swelling mechanisms during sintering.The redox reactions were studied by thermogravimetric analysis coupled to various spectroscopic techniques, first on isolated Cu and Cr, then on Cu-Cr composites. Interfaces analyses obtained by FIB clarified the location of the oxide inside the sintered materials. Oxygen transfer takes place between copper and chromium powders. This phenomenon strongly depends on the reducing character of the sintering atmosphere.Densification was analyzed by dilatometry on Cu, Cr and Cu-Cr composites. This analysis was supported by microstructural observations, including X-ray tomography .The effect of process parameters (atmosphere, heating rate, powders ...) was studied. The results show the relationship between sintering and copper oxide reduction. The swelling phenomenon of copper compacts is explained by high temperature degassing of copper during pore closure. This swelling does not occur in Cu-Cr composites as chromium delays pore closing and entraps the gases released by copper. Sintering atmosphere, chromium morphology and chromium particle size affect densification. Vacuum sintering reduces porosity. Chromium particles with spherical shape limit its inhibiting effect on densification. For small particle sizes, chromium participates to densification, leading to better densification of the material. These results open the route for optimizing the sintering of Cu-Cr composites.Cu-Cr composites were tested for short circuit performance in vacuum interrupters. The result of these tests showed the importance of reducing the chromium oxide amount. The effect of impurities commonly encountered on the powders copper and chromium powders was also determined
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jday, Rawen. "Caractérisation microstructurale du graphite sphéroïdal formé lors de la solidification et à l'état solide." Thesis, Toulouse, INPT, 2017. http://www.theses.fr/2017INPT0077/document.

Повний текст джерела
Анотація:
Les fontes à graphite sphéroïdal sont aujourd’hui très largement utilisées en raison de leurs bonnes propriétés mécaniques. La forme sphéroïdale du graphite est obtenue le plus souvent par l’ajout de magnésium ou de cérium lors de l’élaboration des fontes. Le graphite sphéroïdal peut être obtenu par graphitisation à l'état solide des fontes totalement ou partiellement solidifiées dans le système métastable. L’objectif de ce travail est d’étudier l’effet du traitement de graphitisation à l’état solide sur la croissance du graphite nodulaire d’une fonte à paroi mince qui présente une structure truitée à l'état brut de coulée. Cette fonte a été étudiée par microscopie optique, microscopies électronique à balayage et en transmission, spectroscopie Raman et spectroscopie de perte d'énergie des électrons. Des traitements thermiques assurant une graphitisation totale et partielle pour décomposer la cémentite formée à la solidification en graphite et en austénite ont été réalisés. Les nodules deviennent plus nombreux et leur taille augmente en fonction du temps de graphitisation. La microstructure après traitement thermique est composée de nodules de graphite et de ferrite. La spectroscopie Raman a été utilisée pour caractériser les nodules de graphite d’échantillons ayant été entièrement graphitisés à différentes températures dans le domaine austénitique. L’analyse par spectroscopie Raman ne montre aucune différence significative entre les spectres Raman enregistrés sur le graphite formé lors de la solidification et à l’état solide. Les caractérisations microstructurales par microscopie électronique en transmission montrent que le graphite à l’état brut de coulée présente une structure caractérisée par une zone interne où le graphite est désorienté. Une déformation mécanique due à la contraction lors de la solidification métastable induit la formation de cette zone. Cette zone disparaît par recristallisation après traitement de graphitisation totale pour former à la fin des secteurs coniques rayonnant à partir du germe et se développant vers la périphérie. Les résultats de ces travaux ont permis une meilleure compréhension de la structure de graphite nodulaire à l’état solide et montre aussi que le mécanisme de croissance du graphite nodulaire est le même lors de la solidification et de la transformation à l'état solide
Spheroidal graphite iron castings are today widely used because of their good mechanical properties. The spheroidal shape of graphite is most often obtained by the addition of magnesium or cerium during the casting process. Spheroidal graphite can be formed at the solid-state by graphitization of cast irons which solidified partly or totally in the metastable system. The purpose of this work is to study the effect of solid-state graphitization treatment on the growth of nodular graphite of a thin wall casting which has a mottled structure at the as-cast state. This cast iron was studied using optical microscopy, scanning and transmission electron microscopy, Raman spectroscopy and electron energy loss spectroscopy. Heat treatments ensuring a total and partial graphitization to decompose the cementite formed at the solidification in graphite and austenite were realized. The nodules become more numerous and their size increases according to the time of graphitization. The microstructure after heat treatment is composed of graphite nodules and ferrite. Raman spectroscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. The results show no significant difference between Raman spectra recorded on these various samples, suggesting graphite grows with the same mechanism during either solidification or hightemperature (so-called first stage) graphitization. Transmission electron microscopy characterizations show that nodules in the as-cast material presents a multi-fold structure characterized by an inner zone where graphite is misoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well crystallized sectors radiating from the nucleus. These observations suggest that the misoriented zone appears because of mechanical deformation when the liquid contracts during its solidification. During heat-treatment, this zone disappears by recrystallization. The results of the present work lead to a better understanding of the nodular graphite structure in the solid state and also show that nodular graphite growth mechanism is the same during solidification and solid-state transformation
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Solids with microstructure"

1

Wave processes in solids with microstructure. River Edge, NJ: World Scientific, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Erofeyev, Vladimir I. Wave processes in solids with microstructure. Singapore: World Scientific, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Saczuk, Jan. Mechanics of solids with microstructure modelled by Finslerian geometry. Gdańsk: Wydawn. Instytutu Maszyn Przepływowych Polskiej Akademii Nauk, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pastrone, Franco, and J. F. Ganghoffer. Mechanics of microstructured solids 2: Cellular materials, fibre reinforced solids and soft tissues. Berlin: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ristig, Manfred L., and Klaus A. Gernoth, eds. Particle Scattering, X-Ray Diffraction, and Microstructure of Solids and Liquids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45881-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hallett, Paul David. Fracture mechanics of soil and agglomerated solids in relation to microstructure. Birmingham: University of Birmingham, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

NATO, Advanced Research Workshop on Band Structure Engineering in Semiconductor Microstructures (1988 Il Ciocco Italy). Band structure engineering in semiconductor microstructures. New York: Plenum Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vary, Alex. Concepts for interrelating ultrasonic attentuation, microstructure, and fracture toughness in polycrystalline solids. [Washington, D.C.]: NASA, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nazarov, V. E. Nonlinear acoustic waves in micro-inhomogeneous solids. Hoboken, NJ: John Wiley & Sons Inc., 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

International Conference on Diffusion in Solids and Liquids (2nd 2006 Aveiro, Portugal). Diffusion in solids and liquids: heat transfer - microstructure and properties: 2nd international conference on diffusion in solids and liquids, mass transfer - heat transfer - microstructure and properties DSL-2006, 26-28 July 2006, University of Aveiro, Portugal. Zurich: Trans Tech Publications Ltd., 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Solids with microstructure"

1

Berezovski, Arkadi, Jüri Engelbrecht, and Gérard A. Maugin. "One-Dimensional Microstructure Dynamics." In Mechanics of Microstructured Solids, 21–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00911-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Berezovski, Arkadi, and Mihhail Berezovski. "Thermoelastic Waves in Microstructured Solids." In Continuous Media with Microstructure 2, 137–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28241-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Axelrad, D. R. "Stochastic Analysis of Structural Changes in Solids." In Constitutive Laws and Microstructure, 77–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83303-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Enz, Charles P. "Localization of Waves due to Disorder in Solids." In Constitutive Laws and Microstructure, 115–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83303-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mills, Michael, and Glenn Daehn. "Dislocation-Mediated Time-Dependent Deformation in Crystalline Solids." In Computational Methods for Microstructure-Property Relationships, 311–61. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-0643-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Berezovski, Arkadi, Jüri Engelbrecht, and Mihhail Berezovski. "Dispersive Wave Equations for Solids with Microstructure." In Springer Proceedings in Physics, 699–705. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2069-5_94.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karihaloo, B. L., and J. Wang. "Effective Moduli of Concentrated Particulate Solids." In IUTAM Symposium on Microstructure-Property Interactions in Composite Materials, 153–64. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0059-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Charmet, J. C., D. Vallet, and M. Barquins. "Surface and Bulk Properties in Adherence of Elastic-Viscoelastic Solids." In Microstructure and Microtribology of Polymer Surfaces, 42–65. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-2000-0741.ch003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kagunya, W., and W. Jones. "The Microstructure of Layered Double Hydroxides Modified by Controlled Anion Intercalation." In Multifunctional Mesoporous Inorganic Solids, 217–24. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8139-4_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nemat-Nasser, S. "Overall Stresses and Strains in Solids with Microstructure." In Modelling Small Deformations of Polycrystals, 41–64. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4181-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Solids with microstructure"

1

"Investigation on Microstructure and Mechanical Properties of AA 2017A FSW Joints." In Experimental Mechanics of Solids. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900215-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Khraishi, Tariq A., Lincan Yan, and Yu-Lin Shen. "Modelling Strengthening Mechanisms in Solids Using Dislocation Dynamics." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43180.

Повний текст джерела
Анотація:
The mechanical properties of crystalline solids are inherently a function of their microstructure which in turn is governed by processing of the material. Although advances in understanding the structure-property relationships have been achieved, more basic research to expand the knowledge base is certainly needed. Recent work on exploring the strengthening effect of particles and grain-boundaries in a crystalline solid, using the fundamental approach of dislocation dynamics, is presented. Whenever appropriate, comparisons to experimental findings or theoretical models are made. The work demonstrates the power and limitations of such simulation methodology. In particular some basic physics of the interaction between dislocations and these microstructural features are revealed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alkhader, M., and M. Vural. "Effect of Microstructure in Cellular Solids: Bending vs. Stretch Dominated Topologies." In 2007 3rd International Conference on Recent Advances in Space Technologies. IEEE, 2007. http://dx.doi.org/10.1109/rast.2007.4283965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

KARLIS, G. F., S. V. TSINOPOULOS, and D. POLYZOS. "A BEM SOLUTION OF THE BOUSSINESQUE PROBLEM IN SOLIDS WITH MICROSTRUCTURE." In Proceedings of the Seventh International Workshop. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773197_0019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Belyaev, Alexander K., and Vladimir A. Polyanskiy. "Some approaches to harmonic wave propagation in elastic solids with random microstructure." In 2018 Days on Diffraction (DD). IEEE, 2018. http://dx.doi.org/10.1109/dd.2018.8553491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, H. H., and C. T. Sun. "Metamaterials With Tunable Stop Bands." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67480.

Повний текст джерела
Анотація:
Metamaterials are materials with manmade microstructures. Recently, researchers have looked at a class of metamaterials whose microstructures contain internal degrees of freedom that are different from those of the macro-medium. These metamaterials exhibit unusual dynamic behavior and if modeled as homogeneous solids then their effective mass densities would become negative in certain frequency range. Specifically, a new stop band in the vicinity of the local resonance frequency of the internal mass in the microstructure would result. In this paper, a one dimensional metamaterial is employed to investigate the meaning of the negative mass density in the material and the energy flow in and out of the microstructure. In addition, numerical solutions are used to illustrate the phenomenon.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ba, Fahai, Cuihua Gan, and Gang Yu. "Cow-eye microstructure evolution of laser pulse processed for ductile iron." In Optical Technology and Image Processing fo rFluids and solids Diagnostics 2002, edited by Gong Xin Shen, Soyoung S. Cha, Fu-Pen Chiang, and Carolyn R. Mercer. SPIE, 2003. http://dx.doi.org/10.1117/12.509913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shi, Jianxu, and Roger G. Ghanem. "Stochastic Modeling of Cracked Solids and the Related Size Effects." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28070.

Повний текст джерела
Анотація:
This paper examines the crack size effect of homogenization and microstructure on the materials. It is proposed that the size of the microstructure should not only affect the mean response of the material, which would correspond to the conventional deterministic concept of material size effect, but should also affect its whole probabilistic structure. As an example, a non-stationary stochastic tensor field is characterized as an equivalent continuum model of a solid medium with a random distribution of micro-cracks. The crack size dependence of the variance and covariance functions of the tensor field is verified and fitted to a proposed functional form. Once the correlation structure is determined, the corresponding stochastic field can be synthesized and standard computational algorithms can then be used to predict the behavior of the material.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ORTEGA, R. J., J. VERGARA, S. PALACIOS, E. AZCOITI, K. V. RAO, and V. MADURGA. "MICROSTRUCTURE AND MORPHOLOGY OF Cu-Co GRANULAR THIN FILMS EXHIBITING ANISOTROPIC GIANT MAGNETORESISTANCE." In Proceedings of the Fifth International Workshop on Non-Crystalline Solids. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447225_0070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lasinski, M., J. Pekny, and J. Sinclair Curtis. "DEM Simulations of Particle Clustering at High Solids Concentrations (Keynote)." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77279.

Повний текст джерела
Анотація:
One limitation of two-fluid computational fluid dynamics models for gas-particle flow is the inability of these models to properly describe the effects of particle-particle interactions in the case of large St at high solids concentrations. Discrete element methods (DEM) present an opportunity to study such interactions. In gas-particle flows with higher solids loadings, particle-particle interactions give rise to particle clustering and/or microstructure formation. In this paper we show how DEM can be used to determine not only the particle-phase stress (required for gas-particle two-fluid CFD models) in the case of particle clustering, but also how DEM can be used to determine the nature, size and composition of the observed microstructure. Specifically, we investigate, using a computationally efficient DEM simulation, the dependence of particle-phase stress in systems with high solids concentration on the solids coefficient of restitution (0.6 to 0.9) and solids volume fraction (0.05 to 0.3). We investigate both monodisperse and bidisperse particle systems. We show how a widening of the particle size distribution reduces the particle-phase stress and inhibits the formation of particle clusters. We also show in our bidisperse simulations how smaller particles (yet still inertia-dominated) are more evenly distributed throughout the system. Finally, we highlight the dependence of the particle-phase stress on the domain size of the simulation and emphasize that a sufficiently large domain size is necessary to accurately describe the clusters which form at higher particle concentrations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Solids with microstructure"

1

Triantafyllidis, N. Instability and Failure in Ductile Solids with Regular Microstructures. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada418191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dr. Hamid Garmestani and Dr. Stephen Herring. Microstructure Sensitive Design and Processing in Solid Oxide Electrolyzer Cell. Office of Scientific and Technical Information (OSTI), June 2009. http://dx.doi.org/10.2172/962649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tschopp, Mark A., Kris A. Darling, and Mark A. Atwater. Surpassing the Theoretical Limit of Porosity in Conventional Solid-State Foaming: Microstructure Characterization of Length Scales in a Copper Metal Foam. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada612840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kassen, Aaron Gregory. Exploration of Alnico Permanent Magnet Microstructure and Processing for Near Final Shape Magnets with Solid-State Grain Alignment for Improved Properties. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1593366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gerhardt, Rosario A. Resistivity-Microstructure Relationships in Nickel Base Superalloys Used in Gas Turbine Engines for Power Generation and as Interconnects in Solid Oxide Fuel Cells. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1167045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, C. T., Lee M. Klynn, and Jay D. Thompson. Monitoring Microstructural Evolution and Crack Formation in a Solid Propellant under Incremental Strain Condition- Using Digital Radiography X-Ray Techniques. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada423473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії