Добірка наукової літератури з теми "SOLID STATE LIGHTING (SSL)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "SOLID STATE LIGHTING (SSL)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "SOLID STATE LIGHTING (SSL)"
Sun, Ching-Cherng, Shih-Hsin Ma, and Quang-Khoi Nguyen. "Advanced LED Solid-State Lighting Optics." Crystals 10, no. 9 (August 27, 2020): 758. http://dx.doi.org/10.3390/cryst10090758.
Повний текст джерелаSIMONS, KENNETH L., and SUSAN WALSH SANDERSON. "GLOBAL TECHNOLOGY DEVELOPMENT IN SOLID STATE LIGHTING." International Journal of High Speed Electronics and Systems 20, no. 02 (June 2011): 359–82. http://dx.doi.org/10.1142/s0129156411006647.
Повний текст джерелаDutta, Dimple P., and A. K. Tyagi. "Inorganic Phosphor Materials for Solid State White Light Generation." Solid State Phenomena 155 (May 2009): 113–43. http://dx.doi.org/10.4028/www.scientific.net/ssp.155.113.
Повний текст джерелаSo, Franky, Junji Kido, and Paul Burrows. "Organic Light-Emitting Devices for Solid-State Lighting." MRS Bulletin 33, no. 7 (July 2008): 663–69. http://dx.doi.org/10.1557/mrs2008.137.
Повний текст джерелаHe, Ziqian, Caicai Zhang, Yajie Dong, and Shin-Tson Wu. "Emerging Perovskite Nanocrystals-Enhanced Solid-State Lighting and Liquid-Crystal Displays." Crystals 9, no. 2 (January 22, 2019): 59. http://dx.doi.org/10.3390/cryst9020059.
Повний текст джерелаJin, Mei-Yue. "A Technology Diffusion Model Based on Technology Policy: The Case of Solid-State Lighting Technology Diffusion in the U.S." Journal of the Korea Academia-Industrial cooperation Society 12, no. 6 (June 30, 2011): 2522–27. http://dx.doi.org/10.5762/kais.2011.12.6.2522.
Повний текст джерелаChoi, Jihun, Shanmugasundaram Kanagaraj, and Youngson Choe. "Utilization of novel phenanthrene–imidazole-based ionic small molecules for blue light-emitting electrochemical cells." Journal of Materials Chemistry C 8, no. 13 (2020): 4580–87. http://dx.doi.org/10.1039/c9tc05767f.
Повний текст джерелаTiwari, Sanjay, and Jatinder V. Yakhmi. "Recent Advances in Luminescent Nanomaterials for Solid State Lighting Applications." Defect and Diffusion Forum 361 (January 2015): 15–68. http://dx.doi.org/10.4028/www.scientific.net/ddf.361.15.
Повний текст джерелаJägerbrand, Annika. "New Framework of Sustainable Indicators for Outdoor LED (Light Emitting Diodes) Lighting and SSL (Solid State Lighting)." Sustainability 7, no. 1 (January 19, 2015): 1028–63. http://dx.doi.org/10.3390/su7011028.
Повний текст джерелаChen, Fan, Muhammad Nadeem Akram, and Xuyuan Chen. "Influence of Mn2+ and Eu3+ Concentration on Photoluminescence and Thermal Stability Properties in Eu3+-Activated ZnMoO4 Red Phosphor Materials." Micromachines 14, no. 8 (August 15, 2023): 1605. http://dx.doi.org/10.3390/mi14081605.
Повний текст джерелаДисертації з теми "SOLID STATE LIGHTING (SSL)"
Li, Nola. "GaN on ZnO: a new approach to solid state lighting." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33840.
Повний текст джерелаDi, Mauro Salvatore. "Analysis of Solid State Lighting and comparison with Cold Fluorescent Lamp technology." Doctoral thesis, Università di Catania, 2014. http://hdl.handle.net/10761/1483.
Повний текст джерелаKAUR, HARPREET. "OPTIMIZATION OF LUMINESCENT FEATURES IN MULTICOLOR EMITTING RARE EARTH DOPED ALKALINE EARTH VANADATE PHOSPHOR FOR SOLID STATE LIGHTING APPLICATIONS." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18694.
Повний текст джерелаAldrich, Matthew (Matthew Henry). "Dynamic solid state lighting." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/58000.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 142-148).
Energy conservation concerns will mandate near-future environments to regulate themselves to accommodate occupants' objectives and best tend to their comfort while minimizing energy consumption. Accordingly, smart energy management will be a needed and motivating application area of evolving Cyber-Physical Systems, as user state, behavior and context are measured, inferred, and leveraged across a variety of domains, environments, sensors, and actuators to dynamically mitigate energy usage while attaining implicit and explicit user goals. In this work, the focus in on the efficient control of a LED-based lighting network. This thesis presents a first-of-its-kind pentachromatic LED-based lighting network that is capable of adjusting its spectral output in response to ambient conditions and the user's preferences. The control of the intensity is formulated as a nonlinear optimization problem and the mathematics governing sensed illuminance, color, and corresponding control (feedback and adjustment) are formally defined. The prototype adjustable light source is capable of maintaining an average color rendering index greater than 92 (nearly the quality of daylight) across a broad adjustable range (2800 K - 10,000 K) and offers two modes of control, one of which is an energy efficient mode that reduces the total power consumption by 20%. The lighting network is capable of measuring the illuminance and color temperature at a surface and adjusting its output with an overall update rate of 11 Hz (limited by the MATLAB kernel). The sensor node features an optical suite of sensors with a dynamic range of 10000 : 1 lx (rms error: 2 lx). The sensor node measures the color temperature of daylight within ±500 K (kelvin). Device testing and validation were performed in a series of experiments in which the radiant power was collected using a radiometrically calibrated spectrometer with an expanded uncertainty (k = 2) of 14% and validated against a model derived by measuring the individual spectra of the system using custom MATLAB tools. A digital multimeter measured the current in the experiments. The work concludes by estimating the energy savings based on the measured optical and electrical data. In environments with moderate ambient lighting, the networked control reduces power consumption by 44% with an additional 5-10% possible with spectral optimization.
by Matthew Aldrich.
S.M.
Freitas, Vânia Patrícia Castro Teixeira. "Organic-inorganic hybrids for green photonics." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17325.
Повний текст джерелаThe presente work aims to synthesize new bridge silsesquioxanes organic-inorganic hybrid materials, and characterize the local structure and photoluminescence properties overlooking potential applications in the area of green photonics, namely, in solid-state lighting and luminescent solar concentrators. In this context, three distinct families of materials based on six precursors which differ in their structural organization were synthesized, i.e. precursors with structure: 1) linear where the organic component is based on malonamide group, P2-m and P4-m; 2) linear which has been added an aromatic ring whose organic part is based on amide and/or thioamida, P(UU), P(UT) and P(TT) and 3) branched which the organic component is based on amide group, t-UPTES (5000). Two organic-inorganic hybrids (M2-m e M4-m) which results from hydrolysis and condensation of the precursors P2-m e P4-m were synthetized. The role of the presence of one or two malonamide groups was studied in terms of local structure and photoluminescence properties. Three organic-inorganic hybrids H(UU), H(UT) and H(TT) based on P(UU), P(UT) and P(TT) were synthesized and structurally characterized aiming to study the role of the hydrogen bond in the self-assembling of these materials. The presence of different types of hydrogen bonds (bifurcated, linear and cyclic) induces different conformations which affect the physical properties (mechanical and optical) of the materials. Hybrids based on t-UPTES(5000) precursor were synthesized based on different synthesis strategies. Changing the concentration of HCl and water content as well as the synthesis in a controlled environment allowed the improvement of the optical properties of this system, in particular, the absolute emission quantum yield and the absorption coefficient. In addition, it were studied the recombination mechanisms responsible for the emission through the comparison between the corresponding photoluminescence properties of the organic and inorganic models. Finally, due to the structural simplicity of the precursors P2-m and P4-m, these were doped with Eu3+. The local structure of the corresponding hybrids shows local coordination between the ion and the host. Efficient materials concerning the absolute emission quantum yield values motivated the development of luminescent solar concentrators with a maximum absolute emission quantum yield of 0.600.06 and optical conversion efficiency in the absorption spectral region (300-380 nm) of 12.3%.
O presente trabalho propõe sintetizar novos materiais híbridos orgânicos-inorgânicos do tipo silsesquioxanos em ponte e caracterizar a sua estrutura e propriedades de fotoluminescência com vista a potenciais aplicações na área da fotónica sustentável, nomeadamente, iluminação de estado sólido e concentradores solares luminescentes. Neste âmbito, foram sintetizadas três famílias distintas de materiais baseados em seis precursores que diferem na sua organização estrutural, ou seja, precursores com estrutura: 1) linear onde a componente orgânica é baseada no grupo malonamida, P2-m e P4-m; 2) linear onde foi adicionado um anel aromático cuja componente orgânica é baseada em amida e/ou thioamida, P(UU), P(UT) e P(TT), e 3) tri-ramificada onde a componente orgânica é baseada no grupo amida, t-UPTES(5000). Dois híbridos orgânicos-inorgânicos (M2-m e M4-m) que resultam da hidrólise e condensação dos precursores P2-m e P4-m foram sintetizados. O papel da presença de um ou dois grupos malonamida foi estudado em termos de estrutura local e propriedades de fotoluminescência. Três híbridos orgânicos-inorganicos, H(UU), H(UT) e H(TT), baseados, respetivamente, em P(UU), P(UT) e P(TT), foram sintetizados e caracterizados estruturalmente com o objetivo de estudar o papel das ligações de hidrogénio na auto-organização destes materiais. A presença de diferentes tipos de ligações de hidrogénio (bifurcada, linear e cíclica) induz diferentes tipos de configurações que têm influência nas propriedades físicas (mecânicas e óticas) dos materiais. Híbridos baseados no precursor t-UPTES(5000) foram sintetizados tendo em conta diferentes estratégias de síntese. A variação da concentração de HCl e quantidade de água bem como a síntese em ambiente controlado permitiram melhorar as propriedades óticas deste sistema nomeadamente, o rendimento quântico absoluto e o coeficiente de absorção. Foram também discutidos, os mecanismos de recombinação responsáveis pela emissão através da comparação das propriedades de fotoluminescência observadas nos correspondentes modelos orgânicos e inorgânicos. Finalmente, devido à simplicidade estrutural os precursores P2-m e P4-m, estes foram dopados com Eu3+. A estrutura local dos correspondentes híbridos mostra coordenação local entre o ião e a matriz. Materiais eficientes do ponto de vista de rendimento quântico absoluto motivaram o desenvolvimento de concentradores solares luminescentes que apresentam rendimento quântico absoluto máximo de 0.600.06 e eficiência ótica de conversão na região espetral de absorção (300-380 nm) de 12.3 %.
Jama, Mariel Grace. "Semiconductor composites for solid-state lighting." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0207/document.
Повний текст джерелаLuminescent organic phases that are embedded in a conductive inorganicmatrix is proposed in this study for the active layer of a hybrid light-emitting diode. Inthis composite, the organic dye acts as the radiative recombination site for chargecarriers that are injected into the inorganic ambipolar transporting matrix. As one ofthe candidate material combinations, bilayer and composite thin films of ZnSe and ared iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHVthermal evaporation technique. The energy band alignments measured byphotoelectron spectroscopy (PES) for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA)composite reveal that the HOMO and LUMO of the organic dye are positioned in theZnSe bandgap. This lineup provides the required energetic driving forces for electronand hole transfers from ZnSe to Ir(BPA). By interpreting PES data, the chemicalcomposition of the interfaces were also determined. The ZnSe/Ir(BPA) interface isreactive even though it is of high material purity. Meanwhile, the Ir(BPA)/ZnSeinterface does not exhibit material purity. This is accounted to the nature of ZnSeevaporation as individual Zn and Se2 fluxes, coupled with chemical interactions withthe Ir(BPA) substrate. The interface is, thereby, composed of an abundance of Se0phases, sparse ZnSe phases, reduced Se and oxidized dye molecules, and Znatoms that are intercalated into the Ir(BPA) substrate. PES of the ZnSe+Ir(BPA)composites reveals similar trends to the Ir(BPA)/ZnSe interface. A faded areal andintermittent red light emissions were observed from devices that incorporatedalternating layer sequences of ZnSe and Ir(BPA) for the active layer
Furman, Joshua D. "Novel phosphors for solid state lighting." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/228686.
Повний текст джерелаFernandes, Ricardo Liz de Castilho. "Green emitting diodes for solid state lighting." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17763.
Повний текст джерелаNos anos recentes a iluminação de estado sólido impulsionou alternativas de iluminação efí cientes e ecológicas. Os desafi os correntes envolvem o desenvolvimento de materiais emissores de luz que convertem radiação de uma determinada energia para radiação de energia mais baixa, na gama do visível. Esta tese estuda um complexo novo, Tb(NaI)3(H2O)2 onde NaI é o ácido nalidíxico, que emite na região do verde e é estável sob iluminação no ultravioleta. Este foi incorporado em materiais híbridos orgânico-inorgânico tripodais com dois pesos moleculares médios (3000 e 5000 g.mol-1, denominados t- U(3000) e t-U(5000) respetivamente) que permitem o processamento de monólitos e fi lmes com forma e espessura controlada. Estes híbridos também aumentam o rendimento quântico absoluto de emissão de 0.11 medidos para o Tb(NaI)3(H2O)2 isolado para ~0.82 após incorporação no t-U(5000). Foi também demonstrado o potencial de usar estes materiais híbridos como emissores na região verde para uso em iluminação de estado sólido através do revestimento do díodo emissor na região ultravioleta (365 nm). Este LED apresenta uma efi cácia de 1.3 lm.W1.
In the last few years, solid state light-emitting diodes (LEDs) have been driving the lighting industry towards energy e cient and environmental friendly lighting. Current challenges encompass e cient and low-cost downconverting photoluminescent phosphors with emission in the visible region. This thesis will cover a novel UV-photostable green emitting complex, Tb(NaI)3(H2O)2 where NaI is nalidixic acid, was incorporated into organic-inorganic tripodal hybrid materials with two average molecular weights (3000 and 5000 g.mol{1, termed as t- U(5000) and t-U(3000), respectively) which enable the easy shaping of monoliths and lms with controlled thickness. Moreover, the hybrid hosts boost the Tb3+ green absolute emission quantum yield from 0.11 measured for the isolated Tb(NaI)3(H2O)2 complex to 0.82 after incorporation into t-U(5000). The potential use of the hybrid materials as UV-down converting green-emitting phosphors for solid state lighting was demonstrated by means of coating a near-UV LED (365 nm). This LED shows an e cacy of 1.3 lm.W1.
Kelly, Timothy L. (Timothy Lee) 1967. "Solid state lighting : strategies for a brighter future." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17866.
Повний текст джерелаIncludes bibliographical references (p. 98-102).
Combining an understanding of the technical progress and potential of semiconductor light emitting materials with an analysis of market adoption reveals useful insights into challenges and opportunities in the growing field of solid state lighting. The integration of discrete LEDs into solid state lighting systems is identified as a critical area of both technical and business development and the key to creating useful products and expanding new markets. Analysis of conventional and emerging optosemiconductor lighting industries highlights important differences of influence within the value chain. For solid state lighting, the significance of system integration shifts control away from large LED manufacturers and closer to the end user. Special focus on companies pursuing the system integrator role compares strategies for technology based niche players with strategies for joint venture companies formed by alliances of large lighting and semiconductor companies. Based on technology capability, industry conditions, and historical analogy, solid state lighting is projected to achieve wider adoption primarily through the growth of new applications and markets, not through the substitution of existing lighting business.
by Timothy L. Kelly.
S.M.M.O.T.
Kalaji, Ali. "Novel cerium-doped phosphors for solid-state lighting." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607693.
Повний текст джерелаКниги з теми "SOLID STATE LIGHTING (SSL)"
van Driel, W. D., and X. J. Fan, eds. Solid State Lighting Reliability. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3067-4.
Повний текст джерелаMichael, Shur, and Gaska Remis, eds. Introduction to solid-state lighting. New York: J. Wiley, 2002.
Знайти повний текст джерелаShinde, Kartik N., S. J. Dhoble, H. C. Swart, and Kyeongsoon Park. Phosphate Phosphors for Solid-State Lighting. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34312-4.
Повний текст джерелаvan Driel, Willem Dirk, Xuejun Fan, and Guo Qi Zhang, eds. Solid State Lighting Reliability Part 2. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58175-0.
Повний текст джерелаNitride phosphors and solid-state lighting. Boca Raton: Taylor & Francis, 2011.
Знайти повний текст джерелаShinde, Kartik N. Phosphate Phosphors for Solid-State Lighting. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Знайти повний текст джерелаKumar, Vijay, Vishal Sharma, and Hendrik C. Swart, eds. Advanced Materials for Solid State Lighting. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4145-2.
Повний текст джерелаFeng, Zhe Chuan, ed. Handbook of Solid-State Lighting and LEDs. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | Series: Series in optics and optoelectronics ; 25: CRC Press, 2017. http://dx.doi.org/10.1201/9781315151595.
Повний текст джерелаKitai, Adrian, ed. Materials for Solid State Lighting and Displays. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119140610.
Повний текст джерелаDriel, W. D. van. Solid State Lighting Reliability: Components to Systems. New York, NY: Springer New York, 2013.
Знайти повний текст джерелаЧастини книг з теми "SOLID STATE LIGHTING (SSL)"
Yang, Daoguo, and Miao Cai. "SSL Case Study: Package, Module, and System." In Solid State Lighting Reliability, 427–53. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_17.
Повний текст джерелаBarandiarán, Zoila, Jonas Joos, and Luis Seijo. "Solid-State Lighting Phosphors." In Springer Series in Materials Science, 229–63. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94984-6_8.
Повний текст джерелаde Groot, T., T. Vos, R. J. M. J. Vogels, and W. D. van Driel. "Quality and Reliability in Solid-State Lighting." In Solid State Lighting Reliability, 1–11. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_1.
Повний текст джерелаFan, H., and M. M. F. Yuen. "A Multiscale Approach for Interfacial Delamination in Solid-State Lighting." In Solid State Lighting Reliability, 305–16. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_10.
Повний текст джерелаvan der Sluis, O., S. P. M. Noijen, and P. H. M. Timmermans. "On the Effect of Microscopic Surface Roughness on Macroscopic Polymer–Metal Adhesion." In Solid State Lighting Reliability, 317–27. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_11.
Повний текст джерелаvan Driel, W. D., F. E. Evertz, J. J. M. Zaal, O. Morales Nápoles, and C. A. Yuan. "An Introduction to System Reliability for Solid-State Lighting." In Solid State Lighting Reliability, 329–46. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_12.
Повний текст джерелаSchuld, M. H., B. F. Schriever, and J. W. Bikker. "Solid State Lighting System Reliability." In Solid State Lighting Reliability, 347–71. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_13.
Повний текст джерелаPecht, M. G. "Prognostics and Health Management." In Solid State Lighting Reliability, 373–93. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_14.
Повний текст джерелаDong, Jianfei, W. D. van Driel, and G. Q. Zhang. "Fault Tolerant Control of Large LED Systems." In Solid State Lighting Reliability, 395–412. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_15.
Повний текст джерелаLi, Xiu Peng, and Chen Mei. "LED Retrofit Lamps Reliability." In Solid State Lighting Reliability, 413–26. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3067-4_16.
Повний текст джерелаТези доповідей конференцій з теми "SOLID STATE LIGHTING (SSL)"
Rudolph, Horst. "How Digitalization of SSL Changes the World of Lighting." In Solid-State Lighting. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ssl.2016.sstu2d.2.
Повний текст джерелаDiaz, Liliana Ruiz, Ross D. Uthoff, Rachel N. Ulanch, Kaitlyn E. Williams, Nathan Saxton, and R. John Koshel. "Solid-State Lighting for High-Valued Artwork." In Solid-State Lighting. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ssl.2017.sm3b.5.
Повний текст джерелаLozano, Gabriel, Dongling Geng, J. M. Miranda Muñoz, and Hernán Míguez. "Nanophotonics for Color Conversion in Solid-State Lighting." In Solid-State Lighting. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ssl.2016.ssm3d.4.
Повний текст джерелаHuang, Jian-Jang. "Applications of Nitride Semiconductor beyond Solid-State Lighting." In Solid-State Lighting. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ssl.2017.sm3b.1.
Повний текст джерелаGiebink, N. C. "The Nature of Catastrophic OLED Lighting Panel Failure." In Solid-State Lighting. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ssl.2017.stu1c.1.
Повний текст джерелаHolmes, Russell J. "Unified Analysis of Transient and Steady-State Electrophosphorescence in Organic Light-Emitting Devices (OLEDs)." In Solid-State Lighting. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ssl.2016.ssw5b.1.
Повний текст джерелаLemmer, Uli. "OLEDs Exceeding 1000 cd/A Current Efficiency." In Solid-State Lighting. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ssl.2016.ssw3c.3.
Повний текст джерелаPetersen, Paul Michael. "Biomedical applications of visible and UV solid state lighting." In Solid-State Lighting. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ssl.2016.ssw3c.4.
Повний текст джерелаHerrnsdorf, J., J. J. D. McKendry, E. Xie, M. J. Strain, E. Gu, I. M. Watson, and M. D. Dawson. "Gallium nitride structured illumination light sources." In Solid-State Lighting. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ssl.2016.ssm2c.1.
Повний текст джерелаGriffiths, Alexander D., Johannes Herrnsdorf, Jonathan J. D. McKendry, Robert Henderson, Harald Haas, Erdan Gu, and Martin D. Dawson. "Spatially Superposed Pulse Amplitude Modulation Using a Chip-Scale CMOS-Integrated GaN LED Array." In Solid-State Lighting. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ssl.2016.ssm2c.2.
Повний текст джерелаЗвіти організацій з теми "SOLID STATE LIGHTING (SSL)"
none,. Solid-State Lighting (SSL) Manufacturing Workshops Report. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/1218294.
Повний текст джерелаDavis, J. Lynn. Final Report: System Reliability Model for Solid-State Lighting (SSL) Luminaires. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1360770.
Повний текст джерелаPei, Qibing. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1398279.
Повний текст джерелаTheodore D. Moustakas. Solid State Lighting Program. Office of Scientific and Technical Information (OSTI), November 2007. http://dx.doi.org/10.2172/938803.
Повний текст джерелаMiller, C. Cameron, Lawrence I. Knab, Ambler Thompson, and Jon Crickenberger. Energy Efficient Lighting Products – Solid State Lighting. Gaithersburg, MD: National Institute of Standards and Technology, 2009. http://dx.doi.org/10.6028/nist.hb.150-1ae2009.
Повний текст джерелаMiller, C. Cameron, Lawrence I. Knab, Ambler Thompson, and Jon Crickenberger. Energy Efficient Lighting Products – Solid State Lighting. Gaithersburg, MD: National Institute of Standards and Technology, 2009. http://dx.doi.org/10.6028/nist.150-1ae2009.
Повний текст джерелаTsao, Jeffrey Yeenien, and Michael Elliott Coltrin. Solid-state lighting technology perspective. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/889939.
Повний текст джерелаMeeks, Steven. Solid State Lighting Program (Falcon). Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1165667.
Повний текст джерелаRubinstein, Francis. Controls for Solid-State Lighting. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/923020.
Повний текст джерелаSchubert, E. Fred, Daniel David Koleske, Christian Wetzel, Stephen Roger Lee, Nancy A. Missert, Shawn-Yu Lin, Mary Hagerott Crawford, and Arthur Joseph Fischer. Nanoengineering for solid-state lighting. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/973851.
Повний текст джерела