Добірка наукової літератури з теми "Solid-state electronics devices"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Solid-state electronics devices".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Solid-state electronics devices"

1

Feng, Jinjun, Xinghui Li, Jiannan Hu, and Jun Cai. "General Vacuum Electronics." Journal of Electromagnetic Engineering and Science 20, no. 1 (January 31, 2020): 1–8. http://dx.doi.org/10.26866/jees.2020.20.1.1.

Повний текст джерела
Анотація:
The electron devices in which electrons do not collide with other particles or in which the collision probability is very small in the transport process can be theoretically regarded as general vacuum electron devices. General vacuum electron devices include microfabricated vacuum nano-electronic devices, which can work in atmosphere, and some solid-state electron devices with nanoscale channel for electrons whose material characteristics are close to those of vacuum channels. Vacuum nano-electron devices (e.g., nanotriodes) are expected to be the fundamental elements for high-speed, radiation-resistant large-scale vacuum integrated circuits. The solid-state electron devices with spin semiconductor materials, multiferroics or topological crystal insulators are quite different from traditional semiconductor devices and are expected to operate under novel principles. Understanding vacuum electron devices from a microcosmic perspective and understanding solid-state electron devices from a vacuum perspective will promote a union of vacuum electronics and microelectronics, as well as the formation and development of general vacuum electronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Compagnoni, Christian Monzio, and Riichiro Shirota. "High-Density Solid-State Memory Devices and Technologies." Electronics 11, no. 4 (February 11, 2022): 538. http://dx.doi.org/10.3390/electronics11040538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moth-Poulsen, Kasper, and Thomas Bjørnholm. "Molecular electronics with single molecules in solid-state devices." Nature Nanotechnology 4, no. 9 (August 30, 2009): 551–56. http://dx.doi.org/10.1038/nnano.2009.176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tang, Haijun, Irfan Ahmed, Pargorn Puttapirat, Tianhao Wu, Yuwei lan, Yanpeng Zhang, and Enling Li. "Investigation of multi-bunching by generating multi-order fluorescence of NV center in diamond." Physical Chemistry Chemical Physics 20, no. 8 (2018): 5721–25. http://dx.doi.org/10.1039/c7cp08005k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mustafa, F., and A. M. Hashim. "Plasma Wave Electronics: A Revival Towards Solid-State Terahertz Electron Devices." Journal of Applied Sciences 10, no. 14 (July 1, 2010): 1352–68. http://dx.doi.org/10.3923/jas.2010.1352.1368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Möschwitzer, Albrecht. "Book Review: Industrial Solid-State Electronics: Devices and Systems, 2nd Ed." International Journal of Electrical Engineering & Education 25, no. 1 (January 1988): 62. http://dx.doi.org/10.1177/002072098802500114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Yang. "A mini-review: emerging all-solid-state energy storage electrode materials for flexible devices." Nanoscale 12, no. 6 (2020): 3560–73. http://dx.doi.org/10.1039/c9nr08722b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thomas, Rajesh, and G. Mohan Rao. "SnO2 nanowire anchored graphene nanosheet matrix for the superior performance of Li-ion thin film battery anode." Journal of Materials Chemistry A 3, no. 1 (2015): 274–80. http://dx.doi.org/10.1039/c4ta04836a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hersam, M. C., and R. G. Reifenberger. "Charge Transport through Molecular Junctions." MRS Bulletin 29, no. 6 (June 2004): 385–90. http://dx.doi.org/10.1557/mrs2004.120.

Повний текст джерела
Анотація:
AbstractIn conventional solid-state electronic devices, junctions and interfaces play a significant if not dominant role in controlling charge transport. Although the emerging field of molecular electronics often focuses on the properties of the molecule in the design and understanding of device behavior, the effects of interfaces and junctions are often of comparable importance. This article explores recent work in the study of metal–molecule–metal and semiconductor–molecule–metal junctions. Specific issues include the mixing of discrete molecular levels with the metal continuum, charge transfer between molecules and semiconductors, electron-stimulated desorption, and resonant tunneling. By acknowledging the consequences of junction/interface effects, realistic prospects and limitations can be identified for molecular electronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

URCIUOLI, D. P., and VICTOR VELIADIS. "BI-DIRECTIONAL SCALABLE SOLID-STATE CIRCUIT BREAKERS FOR HYBRID-ELECTRIC VEHICLES." International Journal of High Speed Electronics and Systems 19, no. 01 (March 2009): 183–92. http://dx.doi.org/10.1142/s0129156409006242.

Повний текст джерела
Анотація:
Power electronics in hybrid-electric military ground vehicles require fast fault isolation, and benefit additionally from bi-directional fault isolation. To prevent system damage or failure, maximum fault current interrupt speeds in tens to hundreds of microseconds are necessary. While inherently providing bi-directional fault isolation, mechanical contactors and circuit breakers do not provide adequate actuation speeds, and suffer severe degradation during repeated fault isolation. Instead, it is desired to use a scalable array of solid-state devices as a solid-state circuit breaker (SSCB) having a collectively low conduction loss to provide large current handling capability and fast transition speed for current interruption. Although, both silicon-carbide (SiC) JFET and SiC MOSFET devices having high breakdown voltages and low drain-to-source resistances have been developed, neither device structure alone is capable of reverse blocking at full voltage. Limitations exist for using a dual common-source structure for either device type. Small-scale SSCB experiments were conducted using 0.03 cm2 normally-on SiC VJFETs. Based on results of these tests, a normally-on VJFET device modification is made, and a proposed symmetric SiC JFET is considered for this application.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Solid-state electronics devices"

1

Zhang, Yuelan. "Synthesis and Characterization of Nanostructured Electrodes for Solid State Ionic Devices." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14000.

Повний текст джерела
Анотація:
The demands for advanced power sources with high energy efficiency, minimum environmental impact, and low cost have been the impetus for the development of a new generation of batteries and fuel cells. One of the key challenges in this effort is to develop and fabricate effective electrodes with desirable composition, microstructure and performance. This work focused on the design, fabrication, and characterization of nanostructured electrodes in an effort to minimize electrode polarization losses. Solid-state diffusion often limits the utilization and rate capability of electrode materials in a lithium-ion battery, especially at high charge/discharge rates. When the fluxes of Li+ insertion or extraction exceed the diffusion-limited rate of Li+ transport within the bulk phase of an electrode, concentration polarization occurs. Further, large volume changes associated with Li+ insertion or extraction could induce stresses in bulk electrodes, potentially leading to mechanical failure. Interconnected porous materials with high surface-to-volume ratio were designed to suppress the stress and promote mass transport. In this work, electrodes with these unique architectures for lithium ion batteries have been fabricated to improve the cycleability, rate capability and capacity retention. Cathodic interfacial polarization represents the predominant voltage loss in a low-temperature SOFC. For the first time, regular, homogeneous and bimodal porous MIEC electrodes were successfully fabricated using breath figure templating, which is self-assembly of the water droplets in polymer solution. The homogeneous macropores promoted rapid mass transport by decreasing the tortuosity. And mesoporous microstructure provided more surface areas for gas adsorption and more TPBs for the electrochemical reactions. Moreover, composite electrodes were developed with a modified sol-gel process for honeycomb SOFCs. The sol gel derived cathodes with fine grain size and large specific surface area, showed much lower interfacial polarization resistances than those prepared by other existing processing methods. Nanopetals of cerium hydroxycarbonate have been synthesized via a controlled hydrothermal process in a mixed water-ethanol medium. The formation of the cerium compound depends strongly on the composition of the precursors, and is attributed to the favored ethanol oxidation by Ce(IV) ions over Ce(IV) hydrolysis process. Raman studies showed that microflower CeO2 preferentially stabilizes O2 as a peroxide species on its surface for CO oxidation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Magalhães, de Oliveira Marcio. "Power Electronics for Mitigation of Voltage Sags and Improved Control of AC Power Systems." Doctoral thesis, KTH, Electric Power Systems, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3018.

Повний текст джерела
Анотація:

The thesis deals with the application of compensators andswitches based on power electronics in AC transmission anddistribution systems. The objective of the studieddevices/equipment is the power flow and voltage control intransmission systems and the mitigation of voltage sags andmomentary interruptions to critical loads in distributionsystems.

For validating the power electronics based devices/equipmentdescribed in the thesis, scaled models at a real-time simulatorhave been built. Simulation results of these models arepresented and discussed in the thesis.

The equipment studied in the thesis exploit the fast controlactions that can be taken by power electronics devices, whichare much faster than the speed of conventional equipment andprotection systems, based on electromechanical devices. In thisway, the power quality of distribution systems is improved,regarding duration and magnitude of voltage sags (dips) andmomentary interruptions, which are the most relevant types ofdisturbances in distribution systems.

The thesis presents some compensators based onforced-commutation voltage-source converters for correctingvoltage sags and swells to critical loads. The seriesconverter, usually denoted Dynamic Voltage Restorer (DVR), hasbeen proved suitable for the task of compensating voltage sagsin the supply network. The use of solid-state devices ascircuit breakers in distribution systems has also been studiedwith the objective of achieving fast interruption or limitationof fault currents. The location and practical aspects for theinstallation of these solid-state breakers are presented. Ithas beenshown that a configuration based on shunt and seriesconnected solid-state devices with controllable turn-offcapability can also provide voltage sag mitigation, without theneed of transformers and large energy storage elements.

The operation and control of two Flexible AC TransmissionSystem (FACTS) devices for voltage and power flow control intransmission systems, namely the Static Synchronous Compensator(STATCOM) and the Unified Power Flow Controller (UPFC),respectively, are also studied. A faster response compared totraditional equipment consisting of mechanically based/switchedelements is then achieved. This allows a more flexible controlof power flow and a secure loading of transmission lines tolevels nearer to their thermal limits. The behaviour of thesedevices during faults in the transmission system is alsopresented. Keywords: power electronics, power quality, voltagesags, voltage-source converters, Custom Power, FACTS, real-timesimulations, solid-state devices.

Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ortega, Torres Silvia. "Bottom-up Engineering of Thermoelectric Nanomaterials and Devices from Solution-Processed Nanoparticle Building Blocks." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/459298.

Повний текст джерела
Анотація:
In the world around us, it is easy to think in different situations in which there are temperature gradients available. These could be converted into a great source of energy if using the proper technology. Thermoelectric devices are environmentally friendly solid-state harvesters able to play this role by converting temperature differences into an electric voltage and vice-versa. These devices, besides being highly reliable since they have no moving parts, if engineered and fabricated in a shape-adaptable manner, are able to fit in countless industrial or domestic applications to improve their efficiency or power low-consumption devices like sensors. If, on top of it, the whole fabrication process is cost-effective and easily scalable, the outcoming thermoelectric devices could potentially reach numerous markets banned to date due to a mix of low efficiencies and high prices of the currently existing solutions. The first milestone towards cost-effective thermoelectric devices relies on the improvement of the thermoelectric conversion efficiency of the constituents materials. However, such improvement cannot be at all costs. New materials with significant improved performance need to be designed and engineered with relatively low production cost. In this framework, solution-processed techniques are an outstanding alternative for the production of thermoelectric materials and devices. In particular, the bottom-up assembly of colloidal nanoparticles, with controlled size, shape, crystal phase and composition, has no competing technology to precisely design functional metamaterials without the need of a high capital equipment or complex procedures, not only for thermoelectrics, but also for a wide range of applications. Nevertheless, some limitations still need to be overcome to exploit the full potential of solution-processed assembly technologies, and two different challenges should be addressed. The first one is regarding materials efficiency enhancement, and the second one to the device development itself. In this work, we undertake a journey from the material development to the engineering of the final device. The thesis is structured in 5 chapters, starting from the Chapter 0 or General Introduction that intends to situate the reader into the broader context of the technology and present the main objectives of the work. Chapter 1 presents a general view of the solution-processed route for the development of bottom-up engineered nanoparticle-based thermoelectric nanomaterials and devices. It is an extended and comprehensive text where main concepts, challenges, advantages and opportunities that the technology offers are exposed. Chapter 2 is built around 3 publications that cover the three different steps of the solution-processed nanomaterials preparation, and how the efficiency can be enhanced within each one. First article is focused on the synthesis stage, and presents the production of core-shell nanoparticles as a way to design nanocomposites. The second one is related to the purification step, showing how, taking advantage of the nanoparticle surface, an HCl-mediated ligand displacement is able to introduce controlled amounts of dopants in the nanoparticle. Last one, is focused on the final assembly phase, in which by properly assembling two different kinds of nanoparticles, a semiconductor and a metal, the efficiency could be greatly enhanced. In Chapter 3 a step is made towards the production of a ring-shape device, taking PbSe as a model material. These results have been submitted for their publication. Chapter 4, presents the integration of a thermoelectric device together with a nanoparticle-based temperature sensor. This integrated assembly, including an ultra-low-power electronic management, was implemented as an autonomous soil moisture sensor, and shows the great opportunity that both solution-processed techniques and thermoelectrics technology offer for the development of new applications. Finally, some conclusions over the presented project and future work are listed.
Al món que ens envolta és fàcil pensar en situacions en què hi ha gradients de temperatura disponibles. Aquests, es podrien convertir en fonts d’energia molt interessants mitjançant l’ús adequat de la tecnologia. Els dispositius termoelèctrics son conversors d’estat sòlid capaços de jugar aquest important paper, ja que son capaços de transformar diferències de temperatura en energia elèctrica i vice-versa. Poden ser instal·lats a qualsevol emplaçament si son adaptats a l’aplicació en qüestió, ja sigui a escala domèstica o industrial, per millorar la seva eficiència energètica o, per exemple, alimentar altres dispositius de baix cost. Si, a més a més, el conjunt del procés de fabricació és de baix cost i fàcilment escalable per la seva producció en massa, els dispositius termoelèctrics resultants tindran la possibilitat d’entrar dins de nous mercats, fins ara impossibles degut a una barreja fatal d’alts preus i baixes eficiències dels productes comercials disponibles actualment. El primer pas cap a la fabricació de mòduls termoelèctrics més efectius en tots els sentits, és la millora de la seva eficiència a través de la recerca de nous o més efectius materials dels quals estan constituïts. Tanmateix, però, aquesta millora no pot ser a qualsevol cost. És necessari que aquests nous materials mantinguin alhora l’eficiència i baix cost en la seva fabricació. En aquest sentit, les tècniques de processat en solució son una gran alternativa per la producció de materials i dispositius termoelèctrics, i, en particular, la utilització de nanopartícules col·loïdals, amb mida, forma, fase i composició controlada. No hi ha cap altra tecnologia que aconsegueixi el seu nivell de control sobre el disseny de materials funcionals sense la necessitat de costosos equipaments o procediments complexes, no només per termoelèctrics sinó per un ampli ventall d’aplicacions. No obstant això, algunes limitacions encara han de ser superades per tal de poder explotar plenament el potencial que les tècniques de processat en solució ofereixen. Els dos majors reptes als quals la tecnologia s’enfronta son: primer, millorar l’eficiència dels materials, i, segon, en el desenvolupament de nous models de dispositius. En aquest treball, fem un viatge des del desenvolupament del material fins la fabricació d’un dispositiu.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

López, Vidrier Julià. "Silicon Nanocrystal Superlattices for Light-Emitting and Photovoltaic Devices." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/334396.

Повний текст джерела
Анотація:
During the last decades, silicon nanocrystals have focused great attention due to the size-dependent physical properties they present, attributed to the quantum confinement effect. This, added to the bulk silicon compatibility with the well-established microelectronics technology and the low mining and manipulation costs this material presents, makes silicon a potential candidate for the growing photonics and optoelectronics fields. In particular, the tunnability of the electronic properties of silicon nanocrystals can be reached by controlling the nanocrystal size. This has been recently achieved by means of the superlattice approach, consisting of the alternated deposition of ultra-thin (2-4 nm) stoichiometric and silicon-rich layers of a given silicon-rich material. After a high-temperature annealing treatment, the silicon excess precipitates and crystallizes in the final form of nanocrystals, whose properties strongly depend on the fabrication process. Consequently, an ordered arrange of size-controlled nanocrystals (the superlattice) is obtained. In this Thesis Project, the structural, optical, electrical and electro-optical properties of silicon nanocrystal superlattices have been studied, using two different silicon-based materials as host matrices: silicon oxide and silicon carbide. The fabrication of these material systems has been carried out at different European institutions, specialists in the controlled deposition of nm¬thick films. Aiming at the nanocrystal superlattices characterization, different experimental techniques have been employed, which yield structural (transmission and scanning electron microscopies, X-ray diffraction), optical (optical absorption, photoluminescence and Raman scattering spectroscopies) and electrical / electro-optical (current versus voltage analysis in dark and under illumination, and electroluminescence, electro-optical response and light-beam induced photocurrent spectroscopies) information. From the material's point of view, the optimum structural properties that allow an almost perfect nanocrystal arrangement, size control and crystalline degree have been determined, always aiming at an optimum light emission and/or light absorption. Within this frame, fundamental studies have been performed to assess the crystalline degree of the nanostructures (confirming an atomic-thin transition layer between the crystalline nanocrystal core and the surrounding matrix), and to carefully inspect the controversial origin of luminescence within the nanocrystals when embedded in a silicon oxide matrix; as well, the structural conditions under which size-confinement of nanocrystals is reached when embedded in silicon carbide are reported. Once the best structural and optical properties from silicon nanocrystal superlattices were found, these material systems have been employed as active layers for light emitting and light converter (i.e. photovoltaic) devices. In oxide-based systems, the mechanisms that govern charge transport through the superlattices have been studied, and impact ionization has been hypothesized as the main electroluminescence excitation mechanism according to the experimental observations. In addition, the structural conditions (sublayer thicknesses, silicon-rich layer stoichiometry) that yield a maximum electroluminescence efficiency have been determined. Regarding silicon nanocrystals embedded in silicon carbide, a correlation has been established between the charge photogeneration and extraction when acting as an absorber material, which allowed assessing the structural conditions that maximize charge transport while minimizing the non-desirable recombination. Finally, via spectral response measurements, quantum confinement of excitons within silicon nanocrystals has been reported in silicon carbide matrix for the first time. In conclusion, the study on silicon nanocrystal superlattices developed within the present Thesis Project reveals the potential of silicon oxide as host matrix for silicon nanostructures to be used as light-emitting devices; instead, silicon carbide has proved a more suitable host material for photovoltaic applications, which sheds light to the future application of silicon nanocrystals as the top cell of an all-Si tandem cell.
Els nanocristalls de silici han esdevingut objecte d'estudi durant l'últim quart de segle, degut a què presenten, a causa de l'efecte de confinament quàntic, unes propietats físiques dependents de la seva mida. A més, la compatibilitat del silici massiu amb la ben establerta tecnologia microelectrònica juga en favor de la seva utilització i el seu desenvolupament per a futures aplicacions en el camp de la fotònica i l'optoelectrónica. El control del creixement de nanocristalls de silici es pot dur a terme mitjançant el dipòsit de superxarxes d'entre 2 i 4 nm de gruix, on capes de material estequiomètric basat en silici s'alternen amb altres de material ric en silici. Un posterior procés de recuit a alta temperatura permet la precipitació de l'excés de silici i la seva cristal.lització, tot originant una xarxa ordenada de nanocristalls de silici de mida controlada. En aquesta Tesi, s'han estudiat les propietats estructurals, òptiques, elèctriques i electro-òptiques de superxarxes de nanocristalls de silici embeguts en dues matrius diferents: òxid de silici i carbur de silici. Amb tal objectiu, s'han emprat tot un seguit de tècniques experimentals, que comprenen la caracterització estructural (microscòpia electrònica de transmissió i d'escombrat, difracció de raigs X), òptica (espectroscòpies d'absorció òptica, de fotoluminescència i dispersió Raman) i elèctrica / electro-òptica (caracterització intensitat-voltatge en foscor o sota il.luminació, electroluminescència, resposta electro-òptica), entre d'altres. Des del punt de vista del material, s'han estudiat les propietats estructurals òptimes per tal d'obtenir un perfecte ordenament en la xarxa de nanocristalls, una major qualitat cristal.lina i unes propietats d'emissió òptimes. L'optimització del material s'ha dut a terme en vistes a la seva utilització com a capa activa dins de dispositius emissors de llum i fotovoltaics, l'eficiència dels quals ha estat monitoritzada segons els diferents paràmetres estructurals (gruix de les capes nanomètriques involucrades, estequiometria, temperatura de recuit). Finalment, els nanocristalls de silici embeguts en òxid de silici han demostrat un major rendiment com a emissors de llum, mentre que una matriu de carbur de silici beneficia les propietats d'absorció i extracció (fotovoltaiques) del sistema.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shepherd, Justin Thomas. "Characterisation of molecular materials for electronic devices." Thesis, University of Abertay Dundee, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jones, R. E. "Electronic processes in electroluminescent device structures." Thesis, Durham University, 1986. http://etheses.dur.ac.uk/7031/.

Повний текст джерела
Анотація:
Electronic processes in two different electroluminescent device structures, the forward biassed metal/thick insulator/semiconductor (MIS) diode and the high field metal/insulator/metal (MIM) panel, are investigated. Models are produced to explain the behaviour of two particular MIS systems which have been studied experimentally. One of these systems is the Au/cadmium stearate/n-GaP structure, where the insulator is deposited using Langmuir-Blodgett (LB) technology. The other is the Au/i-ZnS/n-ZnS structure. In the MIS devices electroluminescence occurs as a result of the recombination of electrons and holes in the semiconductor and so it is necessary to have an efficient minority carrier (hole) injection mechanism. Attention is paid to the impact excitation of the electron gas in the metal by the electrons injected from the semiconductor because this has been proposed by other workers as a process for producing holes in the metal that are energetically capable of entering the semiconductor valence band, provided they can traverse the insulator. The characteristics of the LB film devices are found to be best described by assuming the minority carrier injection to be limited by the hole transport through the insulator. Hopping between interface states on the successive LB layers is proposed as the transport mechanism. However, the device incorporating a II-VI semi-insulator is shown to be more characteristic of hole transport in the insulator valence band and a minority carrier injection which is limited by the supply of holes from the metal. In high field MIM panels the mechanism of electroluminescence is quite different with impurity centres being impact excited or impact ionised by injected electrons and subsequently luminescing. Such devices driven by a dc signal are susceptible to the formation of high current filaments which burn out and result in device failure. A model is developed which predicts that there is a voltage range over which the device can exist in either a low current state or two higher current states and the resultant instability is expected to be destructive. Current-voltage characteristics are produced using this model and their general features are found to be relatively insensitive to material and device parameters. In order to understand the evolution of the electrical state of the MIM device after switch-on, a time dependent theory of system behaviour is also developed. This is particularly important as the devices are usually driven by a pulsed signal. For an homogeneous system the current is found to converge to the lower current state of the steady state characteristic.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Shouyin. "Characterisation of ZnSe and ZnCdSe/ZnSe opto-electronic devices." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Adianto. "Plasma polymerized organic thin films applied to electronic devices." Thesis, University of Salford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ji, Tao. "Inelastic electron tunneling spectroscopy in molecular electronic devices from first-principles." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96883.

Повний текст джерела
Анотація:
In this thesis, we present the first-principle calculations of inelastic electron tunneling spectroscopy(IETS) in single molecular break junctions. In a two-probe electrode-molecule-electrode setup, density functional theory(DFT) is used for the construction of the Hamiltonian and the Keldysh non-equilibrium Green's function(NEGF) technique will be employed for determining the electron density in non-equilibrium system conditions. Total energy functional, atomic forces and Hessian matrix can be obtained in the DFT-NEGF formalism and self-consistent Born approximation(SCBA) is used to integrate the molecular vibrations (phonons) into the framework once the phonon spectra and eigenvectors are calculated from the dynamic matrix. Geometry optimization schemes will also be discussed as an indispensable part of the formalism as the equilibrium condition is crucial to correctly calculate the phonon properties of the system.To overcome the numerical difficulties, especially the large computational time demand of the electron-phonon coupling problem, we develop a numerical approximation for the electron self-energy due to phonons and the error is controlled within numerical precision. Besides, a direct IETS second order I-V derivative expression is derived to reduce the error of numerical differentiation under reasonable assumptions. These two approximations greatly reduce the computation requirement and make the calculation feasible within current numerical capability.As the application of the DFT-NEGF-SCBA formalism, we calculate the IETS of the gold-octanedithiol(ODT) molecular junction. The I-V curve, conductance and IETS from ab-inito calculations are compared directly to experiments. A microscopic understanding of the electron-phonon coupling mechanism in the molecular tunneling junctions is explained in this example. In addition, comparisons of the hydrogen-dissociative and hydrogen-non-dissociative ODT junctions as well as the different charge transfer behaviors are presented to show the effects of thiol formation in the ODT molecular junction.
Dans cette thèse, nous présentons des calculs ab initio de la spectroscopie à effet tunnel par électron inélastique (IETS)appliqués à des jonctions moléculaires. Dans le cadre d'une configuration électrode-molécule-électrode,la théorie de la fonctionnelle de la densité (DFT) est utilisée pour construire l'hamiltonien et les fonctions de Green hors-équilibres(NEGF) sont employées pour déterminer la densité électroniquedans des conditions hors-équilibre. Le cadrede la DFT-NEGF nous permet de calculer des quantités telles que la fonctionnelle d'énergie totale,les forces atomiques ainsi que la matrice de Hessian. L'approximationauto-consistante de Born (SCBA) est employée afin d'intégrer les vibrations moléculaires (phonons) dans le formalisme DFT-NEGF,une fois que le spectre des phonons et les vecteurs propres ont été calculés à partir de la matrice dynamique. Des méthodes d'optimisations géométriques sont aussi discutées en tant que part indispensable du formalisme,étant donné que la condition d'équilibre mécanique est essentielle afin de calculer correctement les propriétés des phonons du système.Afin de surmonter les difficultés numériques, particulièrement concernant la grande demandecomputationnelle requise pour le calcul du couplage électron-phonon, nous développons une approximation numérique pour la self-énergie associée aux phonons. De plus, en employant quelques hypothèses raisonables, nous dérivons une expression pour l'IETS calculée à partir de laseconde dérivée de la courbe I-V dans le butde réduire l'erreur associée à la différentiation numérique. L'utilisation de ces deux approximations diminuent grandement les exigences computationnelles et rendent les calculs possibles avec les capacités numériques actuelles.Comme application du formalisme DFT-NEGF-SCBA, nous calculons l'IETS de la jonction moléculaire or-octanedithiol(ODT)-or. La courbe I-V, la conductance et l'IETS obtenues par calculs ab initio sontdirectement comparées aux données expérimentales. Une compréhension microscopique du couplage électron-phonon pour une jonction moléculaire à effet tunnel est élaborée dans cet exemple. De plus, des comparaisons entre les jonctions ODT à hydrogène dissociatif et à hydrogène non-dissociatif ainsi queles différents comportements de transfert de charges sont présentés afin de montrer les effets de la formation du thiol dans la jonction moléculaire ODT.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lauters, Michael E. "Organic Opto-Electronic Devices for Data Storage and Solid-State Lighting." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/193770.

Повний текст джерела
Анотація:
Metal/organic/indium tin oxide (ITO) structures, including OLEDs, are demonstrated to contain multiple nonvolatile conductance states that can be programmed by the application of an external bias above a certain threshold voltage (Vth). These conductance states are stable and in turn can be probed by the use of a bias lower in value than Vth. The unbiased retention time of states is greater than several weeks, and more than 48,000 write-read-rewrite-read cycles have been performed with minimal degradation. It is found that the programming of a continuum of conductance states is possible, and techniques to do so are outlined. The electrical conductivity of the highest and lowest states can differ by six orders of magnitude. Switching speeds below 50 ns are shown, resulting in an energy requirement of about 100 pJ to switch from one conductance state to another. The memory phenomenon is shown to be influenced by the active layer thickness and anode/surface roughness while temperature dependence is limited. The electrical characteristics of these devices are consistent with metal diffusion or filament phenomena found in metal-insulator-metal structures, suggesting a possible mechanism by which the states are stored.Electroluminescent devices employing several new organic-inorganic lumophore-functionalized macromolecules are presented. In this study, macromolecules incorporating several lumophores covalently bonded to the vertices of a cubical core structure based on Polyhedral Oligomeric Silsesquioxane (POSS) in multiple configurations are implemented as light-emitting centers. The hole-transporting polymer poly(N-vinylcarbazole) (PVK) and electron-transporting additive 2-(4-biphenylyl)-5-(4-tert-butylphenyl)1,3,4-oxadiazole (PBD) are used as a two-part host to enhance the carrier transport in these simple solution-processed single-layer devices. A study of energy transfer in several systems is carried out to understand the requirements needed to create white-light emission from a single macromolecule. A single macromolecule incorporating twenty-one blue and one yellow lumophore is shown to exhibit field-independent stable white-light electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.31, 0.37). An external quantum efficiency of 0.55 percent and a maximum brightness of 1600 cd/m2 are attained with simple solution-processed single-layer devices. High solubility and ease of purification give these macromolecule white-light emitters advantages over their small molecule and polymeric type counterparts.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Solid-state electronics devices"

1

Solid state electronic devices. 4th ed. Englewood Cliffs, N.J: Prentice Hall, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Solid state electronic devices. 3rd ed. Englewood Cliffs, N.J: Prentice-Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Streetman, Ben G. Solid state electronic devices. 4th ed. London: Prentice-Hall International, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Streetman, Ben G. Solid state electronic devices. 3rd ed. Englewood Cliffs, N.J: Prentice-Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Solid-state microwave devices. Boston: Artech House, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maloney, Timothy J. Industrial solid-state electronics: Devices and systems. 2nd ed. London: Prentice-Hall International, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Industrial solid-state electronics: Devices and systems. 2nd ed. Englewood Cliffs, N.J: Prentice-Hall, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liao, Samuel Y. Microwave solid-state devices. Englewood Cliffs, N.J: Prentice-Hall, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gottlieb, Irving M. Power control with solid state devices. Reston, Va: Reston Pub. Co., 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Power control with solid-state devices. Blue Ridge Summit, PA: TAB Professional and Reference Books, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Solid-state electronics devices"

1

Talham, Daniel R., Richard M. Crooks, Vince Cammarata, Nicholas Leventis, Martin O. Schloh, and Mark S. Wrighton. "Solid-State Microelectrochemical Devices: Transistor and Diode Devices Employing a Solid Polymer Electrolyte." In Lower-Dimensional Systems and Molecular Electronics, 627–34. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2088-1_73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Arutyunov, K. Yu, T. T. Hongisto, and J. P. Pekola. "Solid State Analogue of a Double Slit Interferometer." In International Workshop on Superconducting Nano-Electronics Devices, 43–51. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0737-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

de Cogan, Donard. "Electrons and Holes in Semiconductors." In Solid State Devices, 77–92. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18658-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Offenhäusser, Andreas, Sven Ingebrandt, and Dirk Mayer. "Interfacing Biology with Electronic Devices." In Solid State Phenomena, 789–96. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-13-2.789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pocholle, J. P., and M. H. Carpentier. "Solid-state opto-electronic devices." In The Microwave Engineering Handbook, 341–48. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4552-5_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jiles, David. "Optoelectronics — Solid-State Optical Devices." In Introduction to the Electronic Properties of Materials, 242–58. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2582-0_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gamier, F., and G. Horowitz. "Organic Semiconducting Polymers for New Electronic Devices." In Springer Series in Solid-State Sciences, 423–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83284-0_78.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de Cogan, Donard. "Electrons and Holes in Semiconductors." In Solid State Devices — A Quantum Physics Approach, 77–92. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-0621-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ha, Sieu D., You Zhou, Rafael Jaramillo, and Shriram Ramanathan. "Correlated Electrons: A Platform for Solid State Devices." In Future Trends in Microelectronics, 300–307. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118678107.ch22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Solid-State Electronics." In Modern Devices, 91–125. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119011811.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Solid-state electronics devices"

1

"Solid State and Nanoelectronic Devices -- Nanowire Electronics." In 2006 International Electron Devices Meeting. IEEE, 2006. http://dx.doi.org/10.1109/iedm.2006.346836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Patel, Rajesh S. "Fueling Precision Micromachining of Electronics and Medical Devices Using Lasers." In Advanced Solid State Lasers. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/assl.2014.af3a.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hosono, H. "Materials Innovation for Future Solid State Electronics." In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.pl-2-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shannon, J. M., S. D. Brotherton, and I. D. French. "Active Devices for Large Area Electronics." In 1990 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1990. http://dx.doi.org/10.7567/ssdm.1990.s-e-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Session 8 - Solid State Devices - Room Temperature Single Electronics and Tunneling Devices." In IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004. IEEE, 2004. http://dx.doi.org/10.1109/iedm.2004.1419102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bao, Z. "Skin-Inspired Electronics." In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.pl-1-03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

King Liu, T. J. "Electronics Proliferation through Diversification." In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.pl-2-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kimoto, T., and J. Suda. "High-Voltage SiC Power Devices for Energy Electronics." In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.al-6-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maslennikov, Sergey P., Yury N. Paramonov, and Aleksandra S. Serebryakova. "Solid-state grid modulator for power vacuum microwave devices." In 2018 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2018. http://dx.doi.org/10.1109/ivec.2018.8391616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Someya, Takao. "Organic Transistors: towards Ambient Electronics." In 2007 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2007. http://dx.doi.org/10.7567/ssdm.2007.pl-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії