Добірка наукової літератури з теми "Solid electrode Interface"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Solid electrode Interface".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Solid electrode Interface"

1

Aharon, Hannah, Omer Shavit, Matan Galanty, and Adi Salomon. "Second Harmonic Generation for Moisture Monitoring in Dimethoxyethane at a Gold-Solvent Interface Using Plasmonic Structures." Nanomaterials 9, no. 12 (December 16, 2019): 1788. http://dx.doi.org/10.3390/nano9121788.

Повний текст джерела
Анотація:
Second harmonic generation (SHG) is forbidden from most bulk metals because metals are characterized by centrosymmetric symmetry. Adsorption or desorption of molecules at the metal interface can break the symmetry and lead to SHG responses. Yet, the response is relatively low, and minute changes occurring at the interface, especially at solid/liquid interfaces, like in battery electrodes are difficult to assess. Herein, we use a plasmonic structure milled in a gold electrode to increase the overall SHG signal from the interface and gain information about small changes occurring at the interface. Using a specific homebuilt cell, we monitor changes at the liquid/electrode interface. Specifically, traces of water in dimethoxyethane (DME) have been detected following changes in the SHG responses from the plasmonic structures. We propose that by plasmonic structures this technique can be used for assessing minute changes occurring at solid/liquid interfaces such as battery electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Suzuki, Tatsumi, Chengchao Zhong, Keiji Shimoda, Ken'ichi Okazaki, and Yuki Orikasa. "(Digital Presentation) Electrochemical Impedance Analysis of Three-Electrode Cell with Solid Electrolyte/Liquid Electrolyte Interface." ECS Meeting Abstracts MA2023-02, no. 8 (December 22, 2023): 3369. http://dx.doi.org/10.1149/ma2023-0283369mtgabs.

Повний текст джерела
Анотація:
Mechanical contact loss at the solid electrolyte/electrode interface in all-solid-state batteries, a type of next-generation battery, has been reported as a major issue for ion transport in all-solid-state batteries[1]. To improve this contact problem, it has been proposed to add a small amount of liquid electrolyte to the solid electrolyte/electrode interface[2]. However, the reported ion transport analysis at the solid electrolyte/liquid electrolyte interface is limited in semi-solid-state system using symmetrical cells with lithium metal as the working electrode[3]. In this study, charge transfer reactions at the solid electrolyte/liquid electrolyte interface were analyzed by impedance (EIS) measurements in a three-electrode cell with a solid/liquid electrolyte interface using a composite electrode containing a cathode active material as the working electrode. A composite electrode prepared by mixing LiCoO2:acetylene black:polyvinylidene fluoride in a weight ratio of 8:1:1, coating Al foil, drying and pressing was used as the working electrode, while lithium metal was used as the counter and reference electrodes. A NASICON-type solid electrolyte Li1+x+y Al x (Ti2−y Ge y )P3−z Si z O12 was constructed between the working electrode and the counter electrode, and a three-electrode cell prepared by filling the liquid electrolyte 1 M LiClO4/PC between the solid electrolyte and both electrodes. The reference electrode was placed between the solid electrolyte and the counter electrode, as the solid electrolyte/liquid electrolyte interface charge transfer is not observed in EIS measurements when the reference electrode is placed between the working electrode and the solid electrolyte. After two cycles of constant current charge/discharge measurements (current rate: 0.1 C rate, cut-off potential: 3.2 V - 4.2 V vs. Li/Li+), the solid electrolyte/liquid electrolyte interface charge transfer was analyzed by performing EIS measurements. To identify the semicircle associated with the solid electrolyte/liquid electrolyte interface resistance, measurements were also performed in a cell without a solid electrolyte and the resistance components corresponding to each semicircle were assigned. The temperature dependence of the observed semicircles was analyzed. A comparison of the activation energies calculated from the slopes of the Arrhenius plots confirmed a particularly large activation barrier at the solid electrolyte/liquid electrolyte interface and the working electrode/liquid electrolyte interface charge transfer. [1] R. Koerver, I. Aygun, T. Leichtweiss, C. Dietrich, W. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier and J. Janek, Chem. Mater., 29, 5574-5582 (2017). [2] C. Wanga, Q. Suna, Y. Liua, Y. Zhaoa, X. Lia, X. Lina, M.N. Banisa, M. Lia, W. Lia, K.R. Adaira, D. Wanga, J. Lianga, R. Lia, L. Zhangb, R. Yangb, S. Lub and X. Suna, Nano Energy, 48, 35-43 (2018). [3] T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc., 151, A1120-A1123 (2004).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lenser, Christian, Alexander Schwiers, Denise Ramler, and Norbert H. Menzler. "Investigation of the Electrode-Electrolyte Interfaces in Solid Oxide Cells." ECS Meeting Abstracts MA2023-01, no. 54 (August 28, 2023): 262. http://dx.doi.org/10.1149/ma2023-0154262mtgabs.

Повний текст джерела
Анотація:
The interfaces between electrodes and electrolyte are critical locations in a solid oxide cell (SOC). These interfaces originate from the chemical interaction of two different materials during processing, and are therefore very sensitive to the chemical nature of the materials, as well as the thermal history of the cell. On the air side, perovskite air electrodes tend to form insulating zirconates when sintered on stabilized zirconia, the most common electrolyte material. On the fuel side, using an ionic conductor with a different chemical composition as zirconia can lead to pronounced interdiffusion and the formation of new phases. Interlayers of doped ceria are frequently used in order to suppress these undesired chemical reactions between electrodes and stabilized zirconia electrolytes. Prior investigations have focused extensively on the chemical composition of the interface and its consequences for cell performance. The focus of this contribution is the microstructure of the interface, as well as the microstructural development during processing. On the fuel side, the interdiffusion of ceria and zirconia is known to lead to an intermixed phase with decreased conductivity. However, the reduced cell performance of anode-supported cells with Ni-GDC electrodes cannot be explained by an increase in the electrolyte resistance alone. We show that the formation of porosity due to a difference in the diffusion coefficients of ceria and zirconia leads to an increase in the fuel electrode polarization, and investigate possible countermeasures. It is shown that specifically the presence of NiO leads to the formation of porosity at the interface. On the air side, we investigate the role of a dense interdiffusion layer between ceria and zirconia on the air electrode polarization. We confirm that only a dense interdiffusion layer is necessary by using Pr-doped ceria as a barrier layer, which delaminates after sintering and leaves behind a submicron barrier layer. Finally, we investigate the hypothesis that the densification of the barrier layer during air electrode sintering is essential for electrode adhesion and performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mukhan, Orynbassar, Ji-Su Yun, and Sung-soo Kim. "Investigation of Interfacial Behavior of Ni-Rich NCM Cathode Particles in Sulfide-Based Solid-State Electrolyte." ECS Meeting Abstracts MA2023-02, no. 60 (December 22, 2023): 2892. http://dx.doi.org/10.1149/ma2023-02602892mtgabs.

Повний текст джерела
Анотація:
All-solid-state batteries (ASSBs) are currently investigated as a future battery technology with conventional layered cathode materials because they can offer benefits in the gravimetric and volumetric energy densities compared to flammable liquid electrolyte lithium-ion batteries with graphite intercalation anode. The solid electrolyte is believed to suppress dendritic growth and low Coulombic efficiency on the lithium metal anode side, which are the key issues for the use of a lithium metal electrode in conventional batteries with liquid electrolyte. Moreover, layered transition metal oxides such as LiNixCoyMnzO2 (NCM, 0 < x, y, z < 1) are one of the most promising positive electrode active material candidates being developed to increase the energy density. In particular, recent studies have shown a tendency to decrease the cobalt content and increase the nickel content to increase energy density and price competitiveness, so high-nickel NCM can be the optimal material suitable for this purpose. However, the remaining interfacial challenges of the cathode / solid electrolyte interface still need to be solved. Herein, we investigated the kinetics such as charge transfer resistance at the interface between high nickel (Ni0.94) NCM particles and argyrodite (Li6PS5Cl) solid electrolytes using the microcavity electrode with the negative and positive pulsed current measurement technique and compared with liquid electrolytes using the same manner measurement technique. The cavity-electrode system is adopted to analyze the electrochemical properties of active particles and electrolytes confined in the cavity to exclude the effects of surrounding interfaces, barriers, and side reactions caused by battery components around the electrodes and the impact of loading and current collectors of the composite electrode. Therefore, understanding the electrode-electrolyte interface between cathode active particles and solid electrolytes is crucial for theoretical studies on the interfacial phenomenon in solid electrolyte batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marbella, Lauren, Wesley Chang, Richard May, Michael Wang, Jeff Sakamoto, and Daniel A. Steingart. "Combining Operando Techniques to Probe Chemo-Mechanical Evolution at Buried Solid/Solid Interfaces." ECS Meeting Abstracts MA2022-01, no. 37 (July 7, 2022): 1636. http://dx.doi.org/10.1149/ma2022-01371636mtgabs.

Повний текст джерела
Анотація:
Chemical and mechanical changes local to the electrode/electrolyte interface critically impact performance in all-solid-state batteries. Unfortunately, the dynamics at electrochemical interfaces are exceptionally challenging to probe in all-solid-state batteries because these changes take place across multiple length scales (from the nano- to meso-scale) and are buried within the system (at the solid/solid electrode/electrolyte interface). Here, I show our efforts to couple operando acoustic transmission measurements with nuclear magnetic resonance spectroscopy and imaging to correlate changes in interfacial mechanics with the growth of Li microstructures and the solid electrolyte interphase (SEI) in a non-invasive, multimodal fashion. Specifically, we study chemo-mechanical changes at the interface between Li metal anodes and Li7La3Zr2O12 solid electrolytes as a function of stack pressure and current density.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Il’ina, Evgeniya, Svetlana Pershina, Boris Antonov, and Alexander Pankratov. "Impact of Li3BO3 Addition on Solid Electrode-Solid Electrolyte Interface in All-Solid-State Batteries." Materials 14, no. 22 (November 22, 2021): 7099. http://dx.doi.org/10.3390/ma14227099.

Повний текст джерела
Анотація:
All-solid-state lithium-ion batteries raise the issue of high resistance at the interface between solid electrolyte and electrode materials that needs to be addressed. The article investigates the effect of a low-melting Li3BO3 additive introduced into LiCoO2- and Li4Ti5O12-based composite electrodes on the interface resistance with a Li7La3Zr2O12 solid electrolyte. According to DSC analysis, interaction in the studied mixtures with Li3BO3 begins at 768 and 725 °C for LiCoO2 and Li4Ti5O12, respectively. The resistance of half-cells with different contents of Li3BO3 additive after heating at 700 and 720 °C was studied by impedance spectroscopy in the temperature range of 25–340 °C. It was established that the introduction of 5 wt% Li3BO3 into LiCoO2 and heat treatment at 720 °C led to the greatest decrease in the interface resistance from 260 to 40 Ω cm2 at 300 °C in comparison with pure LiCoO2. An SEM study demonstrated that the addition of the low-melting component to electrode mass gave better contact with ceramics. It was shown that an increase in the annealing temperature of unmodified cells with Li4Ti5O12 led to a decrease in the interface resistance. It was found that the interface resistance between composite anodes and solid electrolyte had lower values compared to Li4Ti5O12|Li7La3Zr2O12 half-cells. It was established that the resistance of cells with the Li4Ti5O12/Li3BO3 composite anode annealed at 720 °C decreased from 97.2 (x = 0) to 7.0 kΩ cm2 (x = 5 wt% Li3BO3) at 150 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lenser, Christian, Alexander Schwiers, Denise Ramler, and Norbert H. Menzler. "Investigation of the Electrode-Electrolyte Interfaces in Solid Oxide Cells." ECS Transactions 111, no. 6 (May 19, 2023): 1699–707. http://dx.doi.org/10.1149/11106.1699ecst.

Повний текст джерела
Анотація:
The interface between electrodes and electrolyte in a solid oxide cell (SOC) are critical locations for cell performance. These interfaces originate from the chemical interaction of two different materials during processing. Different mechanisms can degrade cell performance on the air and fuel side, which necessitates different approaches to mitigate these effects. Here, materials interaction during processing is discussed for selected materials on the air side of an SOC. A new approach to obtain barrier layers of doped ceria with submicron thickness is introduced, and it is confirmed that only the interdiffusion layer between ceria and zirconia is necessary to prevent the formation of SrZrO3. Furthermore, the effect of the microstructure of a GDC layer on the sintering of a perovskite air electrode in this layer is investigated. It is demonstrated that the morphology of the GDC layer has an impact on the quality of the interface between air electrode and barrier layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tan, Feihu, Hua An, Ning Li, Jun Du, and Zhengchun Peng. "Stabilization of Li0.33La0.55TiO3 Solid Electrolyte Interphase Layer and Enhancement of Cycling Performance of LiNi0.5Co0.3Mn0.2O2 Battery Cathode with Buffer Layer." Nanomaterials 11, no. 4 (April 12, 2021): 989. http://dx.doi.org/10.3390/nano11040989.

Повний текст джерела
Анотація:
All-solid-state batteries (ASSBs) are attractive for energy storage, mainly because introducing solid-state electrolytes significantly improves the battery performance in terms of safety, energy density, process compatibility, etc., compared with liquid electrolytes. However, the ionic conductivity of the solid-state electrolyte and the interface between the electrolyte and the electrode are two key factors that limit the performance of ASSBs. In this work, we investigated the structure of a Li0.33La0.55TiO3 (LLTO) thin-film solid electrolyte and the influence of different interfaces between LLTO electrolytes and electrodes on battery performance. The maximum ionic conductivity of the LLTO was 7.78 × 10−5 S/cm. Introducing a buffer layer could drastically improve the battery charging and discharging performance and cycle stability. Amorphous SiO2 allowed good physical contact with the electrode and the electrolyte, reduced the interface resistance, and improved the rate characteristics of the battery. The battery with the optimized interface could achieve 30C current output, and its capacity was 27.7% of the initial state after 1000 cycles. We achieved excellent performance and high stability by applying the dense amorphous SiO2 buffer layer, which indicates a promising strategy for the development of ASSBs.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Crumlin, Ethan J. "(Invited) Using Ambient Pressure XPS to Probe the Solid/Gas and Solid/Liquid Interface Under in Situ and Operando Conditions." ECS Meeting Abstracts MA2022-02, no. 46 (October 9, 2022): 1715. http://dx.doi.org/10.1149/ma2022-02461715mtgabs.

Повний текст джерела
Анотація:
Interfaces play an essential role in nearly all aspects of life and are critical for electrochemistry. Prof. Robert Savinell has played a pivotal interface to me in the role of mentorship in both life and electrochemistry, and I look to honor his contributions to both through this talk. Electrochemical systems ranging from high-temperature solid oxide fuel cells (SOFC) to batteries to capacitors have a wide range of important interfaces between solids, liquids, and gases, which play a pivotal role in how energy is stored, transferred, and converted. I will share the use of ambient pressure XPS (APXPS) to directly probe the solid/gas and solid/liquid electrochemical interface. APXPS is a photon-in/electron-out process that can provide both atomic concentration and chemical-specific information at pressures greater than 20 Torr. Using synchrotron X-rays at Lawrence Berkeley Nation Laboratory, the Advanced Light Source has several beamlines dedicated to APXPS endstations that are outfitted with various in situ/operando features such as heating to temperatures > 500 °C, pressures greater than 20 Torr to support solid/liquid experiments and electrical leads to support applying electrical potentials support the ability to collect XPS data of actual electrochemical devices while it's operating in near ambient pressures. This talk will introduce APXPS and provide several interface electrochemistry examples using in situ and operando APXPS, including the probing of Sr segregation on a SOFC electrode to a Pt metal electrode undergoing a water-splitting reaction to generate oxygen, the ability to measure the electrochemical double layer (EDL) to our most recent efforts to directly probe an ion exchange membranes Donnan potential. Gaining new insight to guide the design and control of future electrochemical interfaces and how Bob, electrochemistry, and I have interfaced over the years.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hu, Jia-Mian, Linyun Liang, Yanzhou Ji, Liang Hong, Kirk Gerdes, and Long-Qing Chen. "Interdiffusion across solid electrolyte-electrode interface." Applied Physics Letters 104, no. 21 (May 26, 2014): 213907. http://dx.doi.org/10.1063/1.4879835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Solid electrode Interface"

1

Yada, Chihiro. "Studies on electrode/solid electrolyte interface of all-solid-state rechargeable lithium batteries." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144024.

Повний текст джерела
Анотація:
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第12338号
工博第2667号
新制||工||1377(附属図書館)
24174
UT51-2006-J330
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 江口 浩一, 教授 田中 功
学位規則第4条第1項該当
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Foster, Simon Edward. "Routes to interfacial deposition of platinum microparticles in solid polymer fuel cells." Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/28053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yamate, Shigeki. "Studies on Effects of Solid Electrolyte Interface on Negative Electrode Properties for Lithium-ion Batteries." Kyoto University, 2017. http://hdl.handle.net/2433/225963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Konno, Akio. "Novel Performance Enhancement Method by Mesoscale-Structure Control of Electrode-Electrolyte Interface in Solid Oxide Fuel Cells." 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Obadero, Abayomi Samuel. "Intercalation dans les matériaux graphitiques." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY024.

Повний текст джерела
Анотація:
Bien que l'humanité lutte contre le défi pressant des émissions de gaz à effet de serre, l'importance des solutions énergétiques durables devient de plus en plus évidente. Les batteries au lithium-ion, considérées comme une avenue prometteuse pour stockage d'énergie électrique, sont essentielles pour l'électronique intégrée, le transport électrique et la production irrégulière à partir de sources renouvelables telles que l'éolien, la géothermie et le solaire. Cependant, leur adoption généralisée dépend de deux facteurs critiques principaux tels que la non-disponibilité du lithium dans la croûte terrestre et sa difficulté d'extraction. De plus, batteries au lithium-ion doivent stocker plus d'énergie et se recharger rapidement. Peut-être que l'exigence de haute capacité des batteries au lithium-ion pourrait être satisfaite en étudiant composants clés du lithium-ion, en particulier les électrodes d'anode (négative) et cathode (positive). Dans ce cadre, l'étude des composés d'intercalation du graphite (GIC) émerge comme un domaine essentiel, offrant des perspectives pour améliorer capacité de l'électrode d'anode où le graphite est le matériau hôte, d'où le nom GIC.Essentiellement, le GIC, qui appartient aux matériaux stratifiés, implique l'insertion régulière d'atomes, d'ions ou de molécules invités entre les couches graphite. Dans le contexte du GIC, travaux théoriques et expérimentaux ont été réalisés dans le but de comprendre et de relever les défis des batteries au lithium-ion. Par exemple, chercheurs ont exploré l'utilisation d'autres métaux alcalins (AM) tels que le sodium (Na) et le potassium (K) en remplacement du lithium (Li). Cependant, premiers semblent avoir une capacité réduite, en particulier dans cas du sodium (Na), où le composé totalement sodié est connu pour ne pas former. De plus, alors que les matériaux entièrement lithiés du GIC-Li ont été bien étudiés et caractérisés, les phénomènes en régime de concentration diluée ou faible demeurent évasifs. De même que pour le lithium, peu ou pas d'informations sur le régime de concentration diluée sont connues pour le GIC-K. En fait, le potassium (K) a été signalé pour occuper les interstices du graphite de manière désordonnée sans aucune stœchiométrie établie entre le carbone et le potassium. De plus, dans ce régime, des questions telles que l'évolution de l'environnement local AM en fonction de concentration, la concentration en AM à laquelle le l'empilement de graphite pur (AB ou Bernal) passe à l'empilement totalement lithié (AA ou hexagonal) pendant la lithiation, le mécanisme qui entraîne l'intercalation, et bien d'autres questions restent ouvertes dans le domaine des composés d'intercalation du graphite de métal alcalin (AM-GIC).Par conséquent, dans ce mémoire de thèse, nous avons mené une étude numérique approfondie sur à la fois le GIC-Li et le GIC-K la phase dense aux phases diluées en utilisant le formalisme de la théorie de la fonctionnelle de la densité (DFT). L'objectif de ce travail est de comprendre l'intercalation des AM (Li, Na et K) dans le graphite avec un accent particulier sur le régime dilué. Bien que notre outil DFT ait révélé que peu de calculs pouvaient être effectués avec Na en raison de son coût computationnel élevé, nous nous sommes concentrés sur Li et K pour lesquels des comportements différents sont rapportés dans les expériences. Utilisant l'outil DFT, nous avons montré que l'interaction entre Li et K dans la galerie du graphite n'est pas simplement électrostatique comme on l'a supposé jusqu'à présent. De plus, dans le régime dilué, les AM déforment localement la feuille de graphite pour éviter une surcompression par les atomes de carbone. Cette déformation structurelle est différente dans le graphite AB et AA. Nous avons utilisé cette différence structurelle observée entre le graphite AB et AA pour étayer la transition de l'empilement AB à l'empilement AA lors de l'intercalation de Li sur base des calculs d'énergie totale de la DFT
As humanity grapples with the pressing challenge of greenhouse gas emissions, the significance of sustainable energy solutions becomes increasingly evident. Lithium-ion (Li-ion) batteries, hailed as a promising avenue for electricity energy storage,which is critical for embedded electronics, electric transportation, and irregular production from renewable sources such as wind, geothermal, solar. e.t.c. However, their widespread adoption hinges on two main critical factors such as the non-availability of Li in the Earth’s crust and its difficulty in extraction. Hence, its supply may lead to future conflicts. Apart from these, Li-ion batteries are required to store more energy, that is, have better capacity and also charge quickly. Perhaps, the high capacity requirement of Li-ion batteries could possibly be met by investigating into the key components of Li-ion, specifically the Anode (negative) and Cathode (positive) electrodes. These electrodes host the Li-ions that move in opposite direction to electric current during charge and discharge. Within this framework, the study of graphite intercalation compounds (GICs) emerges as a pivotal field, offering insights into enhancing the capacity of specifically the Anode electrode where graphite is the host material, hence the name GIC.Basically, GIC which belongs to layered materials, involves the regular insertion of guest atoms, ions, or molecule between the layers of graphite. In the context of GIC, both theoretical and experimental work have been carried out in a bid to understand and tackle the challenges faced with Li-ion batteries. For instance, researchers have tried to explore the use other Alkali Metals (AM) which are readily available such as Na, and K as substitutes for Li. However, the formers seems to have reduced capacity, particularly in the case Na, where fully Sodiated compound has been known not to form. Furthermore, while fully Lithiated materials of Li-GIC have been well studied and characterized, phenomena at dilute or low concentration regime remains elusive. Similar to the case of Li, little or no information about the dilute regime has been known for K-GIC. In fact, K has been reported to occupy graphite gallery in a disordered manner without any established stoichiometry between C and K. Furthermore in this regime, questions like (i) the local environment evolution of AM as a function of concentration, (ii) the AM content at which pristine graphite stacking (AB or Bernal) transit to the fully lithiated (AA or hexagonal) stacking during lithiation,(iii) the mechanism driving intercalation, and many more are still open questions in the field of Alkali Metal Graphite Intercalation Compound (AM-GIC).Therefore in this thesis manuscript, we conducted an extensive numerical study on both Li-GIC and K-GIC from the dense phase to dilute phases using the Density Functional Theory (DFT) formalism. The aim of this work is to understand the intercalation of AM (Li, Na, and K) into graphite with a particular emphasis on the dilute regime. Although with our DFT tool, we realized that not much calculations could be performed with Na due to its computational cost. Therefore, we focused on Li and K for which different behavior is reported in experiments. Hence pointing to different mechanisms at the atomic scale that we aim to capture with our approach. Using the DFT tool, we have shown that the interaction between Li and K in the graphite gallery is not merely electrostatic as assumed so far. Furthermore in the dilute regime, AM locally deforms the graphite sheet to avoid an over-compression by C atoms. This structural deformation is different in AB and AA graphite. We have used this observed structural difference between AB and AA graphite to substantiate the transition from AB to AA stacking during Li intercalation based on the total energy calculations from DFT
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tchakalov, Rossen. "Engineering and optimization of electrode/electrolyte interfaces to increase solid oxide fuel cell (SOFC) performances." Thesis, Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLM001.

Повний текст джерела
Анотація:
Dans ce travail, nous avons établi un protocole de fabrication industrielle pour réaliser des cellules de piles à combustible avec interfaces électrode/électrolyte architecturées, ou planes. Nous avons démontré que pour deux types d'échantillons, différents par les matériaux, la microstructure, le nombre de couches et l'emplacement de l'architecture, l'architecture de l'interface électrode/électrolyte entraîne une augmentation très significative des performances. Les mesures de polarisation et l'EIS sont utilisées pour étudier les performances électrochimiques des cellules, ainsi que pour comparer les cellules architecturées et les cellules planes. Nous isolons l'influence de l'architecture sur les spectres d'impédance globaux en utilisant une méthode de comparaison innovante basée sur l'étude des écarts relatifs des parties de résistance dépendantes de la fréquence. Ainsi, l'architecture a une influence favorable sur les performances électrochimiques en améliorant les capacités catalytiques des électrodes ainsi que le transfert de charges (et en particulier le transfert d'ions) dans la cellule. L'architecture induit une augmentation de 60 % de la densité de puissance maximale pour les cellules de Type I et de 75 % pour les cellules de Type II
In this work, we have established an industrial fabrication protocol for single fuel cells with either architectured or planar electrode/electrolyte interfaces. We have demonstrated that in two types of samples, differing in materials, microstructure, number of layers, and architecture location, the architecturation of the electrode/electrolyte interface results in a highly significant performance increase. Polarization measurements and EIS are used to study the electrochemical performances of the cells, to compare the architectured and planar ones. We isolate the influence of the architecturation on global impedance spectra by using an innovative comparison method based on the study of the relative gaps of the frequency-dependent resistance parts. Thus, the architecturation has a strongly favorable influence on the electrochemical performances by enhancing the catalytic capabilities of the electrodes as well as the charge transfer (and in particular the ion transfer) within the cell. The architecturation induces a 60 % increase of the maximum power density for the Type I cells and 75% for the Type II cells
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Feng, Shi. "Elucidation of hydrogen oxidation kinetics on metal/proton conductor interface." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/48941.

Повний текст джерела
Анотація:
High temperature proton conducting perovskite oxides are very attractive materials for applications in electrochemical devices, such as solid oxide fuel cells (SOFCs) and hydrogen permeation membranes. A better understanding of the hydrogen oxidation mechanism over the metal/proton conductor interface, is critical for rational design to further enhance the performances of the applications. However, kinetic studies focused on the metal/proton system are limited, compared with the intensively studied metal/oxygen ion conductor system, e.g., Ni/YSZ (yttrium stabilized zirconia, Zr₁-ₓYₓO₂-δ). This work presents an elementary kinetic model developed to assess reaction pathway of hydrogen oxidation/reduction on metal/proton conductor interface. Individual rate expressions and overall hydrogen partial pressure dependencies of current density and polarization resistance were derived in different rate limiting cases. The model is testified by tailored experiments on Pt/BaZr₀.₁Ce₀.₇Y₀.₁Yb₀.₁O₃-δ (BZCYYb) interface using pattern electrodes. Comparison of electrochemical testing and the theoretical predictions indicates the dissociation of hydrogen is the rate-limiting step (RLS), instead of charge transfer, displaying behavior different from metal/oxygen ion conductor interfaces. The kinetic model presented in this thesis is validated by high quantitative agreement with experiments under various conditions. The discovery not only contributes to the fundamental understanding of the hydrogen oxidation kinetics over metal/proton conductors, but provides insights for rational design of hydrogen oxidation catalysts in a variety of electrochemical systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guille, Emilie. "Approche coupl´ee exp´erience/th´eorie des interfaces ´electrode/´electrolyte dans les microbatteries au lithium : application au syst`eme LixPOyNz/Si." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3045/document.

Повний текст джерела
Анотація:
Afin de pallier les problèmes de sécurité posés par l'emploi d'électrolytes liquides, des batteries incorporant des électrolytes solides ont été envisagées, conduisant à des dispositifs « tout solide » de type microbatterie au lithium. Dans le cas de ces systèmes, des études concernant les phénomènes aux interfaces restent à développer, afin de comprendre les processus limitants qui se déroulent à l'échelle atomique, similairement à la formation de la SEI (« Solid Electrolyte Interface »), bien connue dans le cas de l'utilisation d'électrolytes liquides. Dans ce type de problématiques, l'apport des méthodes de la chimie calculatoire, de part leur aspect prédictif et explicatif, est incontestable. Le présent travail de thèse, en prenant pour objet d'étude l'électrolyte solide LixPOyNz, se place dans ces problématiques, en proposant l'étude fondamentale de modèles d'interfaces électrode/électrolyte. L'électrolyte considéré étant un matériau amorphe, le premier verrou à lever consiste en la recherche d'un modèle de ce système, apte à simuler les propriétés électroniques de l'électrolyte réel, constituées par des données XPS cibles. Les calculs menés, visant à la modélisation des spectres XPS, ont permis tout à la fois de proposer un modèle de l'électrolyte et de mettre en lumière l'existence d'une coordinence des atomes d'azote non considérée jusqu'alors dans l'interprétation expérimentale des données XPS. La possible existence d'atomes d'azote monovalents au sein de l'électrolyte semble confirmée par des calculs vibrationnels, thermodynamiques et cinétiques complémentaires, tandis que ce résultat permet de réviser la vision communément admise de la structuration de l'électrolyte LixPOyNz et de la diffusion des ions Li+ au sein de celui-ci. Enfin, ce modèle structural de l'électrolyte a été employé à la simulation d'une interface électrode/électrolyte (LixPOyNz/Si). Une considération particulière a notamment été apportée à l'étude de l'adsorption du modèle à la surface et de la diffusion des ions lithium au sein de l'interface
In order to overcome the safety issues induced by the use of liquid electrolytes, Li-ion batteries involving solid electrolytes have been considered, leading to an ‘all-solid’ kind of devices, commonly called microbatteries. For such devices, studies on the limiting processes that take place at electrode/electrolyte interfaces need to be done, to understand the electrochemical phenomenons likely to occur at the atomic scale, similarly to the well-known SEI formation. In this goal, methods of computational chemistry can provide both explanatory and predictive breakthroughs. The present work takes part in those issues by intending a study of electrode/electrolyte interfaces, considering LixPOyNz as the solid electrolyte material. Owing to the amorphous structuration of this system, the first barrier to break consists in the search for a suitable model, able to reproduce its real XPS electronic properties. Modelling of XPS spectra has both lead to propose a model of the electrolyte and highlight the possible existence of a new coordinence for nitrogen atoms, up to now unconsidered experimentally. Complementary calculations of Raman spectra, thermodynamic and kinetic data tend to evidence this coordinence, leading to a refinement of the commonly considered diffusion scheme. Finally, this structural model has been used to simulate an electrode/electrolyte interface (LixPOyNz/Si), with the particular aim of studying its adsorption on the electrode and the Li-ion diffusion through the interface
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ciosek, Högström Katarzyna. "The Complex Nature of the Electrode/Electrolyte Interfaces in Li-ion Batteries : Towards Understanding the Role of Electrolytes and Additives Using Photoelectron Spectroscopy." Doctoral thesis, Uppsala universitet, Strukturkemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219336.

Повний текст джерела
Анотація:
The stability of electrode/electrolyte interfaces in Li-ion batteries is crucial to the performance, lifetime and safety of the entire battery system. In this work, interface processes have been studied in LiFePO4/graphite Li-ion battery cells.  The first part has focused on improving photoelectron spectroscopy (PES) methodology for making post-mortem battery analyses. Exposure of cycled electrodes to air was shown to influence the surface chemistry of the graphite. A combination of synchrotron and in-house PES has facilitated non-destructive interface depth profiling from the outermost surfaces into the electrode bulk. A better understanding of the chemistry taking place at the anode and cathode interfaces has been achieved. The solid electrolyte interphase (SEI) on a graphite anode was found to be thicker and more inhomogeneous than films formed on cathodes. Dynamic changes in the SEI on cycling and accumulation of lithium close to the carbon surface have been observed.    Two electrolyte additives have also been studied: a film-forming additive propargyl methanesulfonate (PMS) and a flame retardant triphenyl phosphate (TPP). A detailed study was made at ambient and elevated temperature (21 and 60 °C) of interface aging for anodes and cathodes cycled with and without the PMS additive. PMS improved cell capacity retention at both temperatures. Higher SEI stability, relatively constant thickness and lower loss of cyclable lithium are suggested as the main reasons for better cell performance. PMS was also shown to influence the chemical composition on the cathode surface. The TPP flame retardant was shown to be unsuitable for high power applications. Low TPP concentrations had only a minor impact on electrolyte flammability, while larger amounts led to a significant increase in cell polarization. TPP was also shown to influence the interface chemistry at both electrodes. Although the additives studied here may not be the final solution for improved lifetime and safety of commercial batteries, increased understanding has been achieved of the degradation mechanisms in Li-ion cells. A better understanding of interface processes is of vital importance for the future development of safer and more reliable Li-ion batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dussart, Thibaut. "Batterie lithium tout solide : augmentation de la densité de courant critique et procédé innovant de fabrication." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS396.

Повний текст джерела
Анотація:
Le premier axe de cette étude a porté sur l’augmentation de la densité de courant critique atteignable dans des cellules symétriques par la modification des certains paramètres comme la microstructure, l’interface avec le lithium ou encore la pression exercée. Nous avons montré qu’une pression exercée sur les cellules, même faible, modifie l’interface entre l’électrolyte solide et le lithium même dans le cas d’électrolyte à base d’oxyde ; une amélioration de l’ASR est observée lorsque la pression est augmentée. Une ASR aussi faible que 5 Ω.cm2 a été obtenue et une densité de courant critique de 350 µA.cm-2 a ainsi été atteinte. Le deuxième axe de ce travail a porté sur l’étude, la mise en place et l’optimisation d’un procédé de frittage permettant une densification à basse température (120 °C) : le frittage à froid. Les processus de dissolution/précipitation sont rendus possible par l’ajout d’une phase liquide qui s’évapore en partie lors du frittage et par l’application d’une pression de plusieurs centaines de MPa. Nous avons montré que l’électrolyte solide LLZO peut être densifié en ajoutant du DMF comme phase liquide. La conductivité mesurée sur l’électrolyte peut être améliorée par l’ajout d’environ 4% en masse d’un mélange polymère/sel de lithium. Ainsi, une conductivité de 2,2 × 10-4 S.cm-1 peut être obtenue à 25°C. Ensuite nous avons montré qu’une température aussi faible que 120°C permet de co-fritter le LLZO et un matériau d’électrode sans la formation de phase secondaire
The first axis of this study focused on the increase in the critical current density achievable in symmetrical cells by modifying certain parameters such as the microstructure, the interface with lithium, or the pressure evaluated. We have shown that even a low pressure on the cells modifies the interface between the solid electrolyte and lithium even in the case of an oxide-based electrolyte; an improvement in ASR is observed when the pressure is increased. An ASR as low as 5 Ω.cm2 has been obtained and a critical current density of 350 µA.cm-2 has thus been achieved. The second axis of this work focused on the study, implementation, and optimization of a sintering process allowing densification at low temperature (120 °C): the cold sintering process. The dissolution/precipitation processes are made possible by the addition of a liquid phase that partly evaporates during sintering and by the application of a pressure of several hundred MPa. We have shown that LLZO solid electrolyte can be densified by adding DMF as the liquid phase. The conductivity measured on the electrolyte can be improved by adding about 4% by weight of a polymer/lithium salt mixture. Thus, a conductivity of 2.2 × 10-4 S.cm-1 can be obtained at 25 ° C. Then we showed that a temperature as low as 120 ° C allows LLZO and an electrode material to co-sinter without the formation of a secondary phase
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Solid electrode Interface"

1

Lum, Nancy Susan. Protein adsorption of human serum albumin at solid/liquid interfaces as monitored by electron spin resonance spectroscopy. Ottawa: National Library of Canada, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abad, Enrique. Energy Level Alignment and Electron Transport Through Metal/Organic Contacts: From Interfaces to Molecular Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

G, Compton R., and Hamnett A, eds. New techniques for the study of electrodes and their reactions. Amsterdam: Elsevier, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kharton, Vladislav V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley & Sons, Incorporated, John, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kharton, Vladislav V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley & Sons, Incorporated, John, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kharton, Vladislav V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley & Sons, Limited, John, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kharton, Vladislav V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley & Sons, Incorporated, John, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Polarized Electrons at Surfaces. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kirschner, J. Polarized Electrons at Surfaces. Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Polarized electrons at surfaces. Berlin: Springer-Verlag, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Solid electrode Interface"

1

Paolella, Andrea. "Interface at the Negative Electrode: The Solid Electrolyte Interface-SEI." In Green Energy and Technology, 33–42. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63713-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Breuer, N., U. Stimming, and R. Vogel. "Cluster Formation and Dissolution on Electrode Surfaces." In Nanoscale Probes of the Solid/Liquid Interface, 121–36. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8435-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ocko, B. M., O. M. Magnussen, J. X. Wang, and R. R. Adžić. "Surface X-ray Scattering and Scanning Tunneling Microscopy Studies at the Au(111) Electrode." In Nanoscale Probes of the Solid/Liquid Interface, 103–19. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8435-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kristoffersen, Henrik H., and Jin Hyun Chang. "Effect of Competitive Adsorption at the Interface between Aqueous Electrolyte and Solid Electrode." In ACS Symposium Series, 225–38. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1331.ch010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Keane, Michael, Atul Verma, and Prabhakar Singh. "Observations on the Air Electrode-Electrolyte Interface Degradation in Solid Oxide Electrolysis Cells." In Ceramic Engineering and Science Proceedings, 183–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118095249.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Monarkha, Yuriy, and Kimitoshi Kono. "Two-Dimensional Interface Electron Systems." In Springer Series in Solid-State Sciences, 1–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10639-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hofmann, Philip, Evgueni V. Chulkov, and Irina Yu Sklyadneva. "Electron-Phonon Interaction at Interfaces." In Dynamics at Solid State Surfaces and Interfaces, 145–65. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527633418.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lindsay, S. M., T. W. Jing, J. Pan, D. Lampner, A. Vaught, J. P. Lewis, and O. F. Sankey. "Electron Tunneling in Electrochemical STM." In Nanoscale Probes of the Solid/Liquid Interface, 25–43. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8435-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Torigoe, Kanjiro. "Electron Microscopy Observation of Solid Particles." In Measurement Techniques and Practices of Colloid and Interface Phenomena, 111–18. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5931-6_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kolb, D. M., A. S. Dakkouri, and N. Batina. "The Surface Structure of Gold Single-Crystal Electrodes." In Nanoscale Probes of the Solid/Liquid Interface, 263–84. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8435-7_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Solid electrode Interface"

1

Kala, C. Peferencial, D. John Thiruvadigal, and P. Aruna Priya. "Terminal group effect of electrode-molecule interface on electron transport." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fang, Xudong, and Donggang Yao. "An Overview of Solid-Like Electrolytes for Supercapacitors." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64069.

Повний текст джерела
Анотація:
Supercapacitors with an electric double-layer design have attracted great attention in the recent years because they are promising energy storage devices for a number of applications, particularly for portable electronics and electric automobiles. They utilize the interface between the electrode and the electrolyte to store energy, resulting in energy storage devices with high power density but low energy density compared to batteries. To improve the performance and reduce the cost, researchers have made significant progress in increasing energy density, electrode voltage, and cycle life. The increase of the energy density is considered to be achieved mainly by increasing the effective specific interface between the electrodes and the electrolyte. Various electrodes with porous structure have been attempted to increase the specific surface area. The increase of electrode voltage is realized primarily via the change of liquid electrolytes to gel, solid and composite ones. In this overview, they are summarized as solid-like electrolytes. This paper reviews the materials adopted and the processing methods developed for solid-like electrolytes, as well as the general characteristics of supercapacitors employing such electrolytes.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greene, Eric S., and Wilson K. S. Chiu. "Mass Transfer in Functionally Graded Solid Oxide Fuel Cell Electrodes." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82531.

Повний текст джерела
Анотація:
A 1-D computational model is presented in which performance of a solid oxide fuel cell with functionally graded electrodes can be predicted. The model calculates operational cell voltages with varying geometric and operational parameters. The model accounts for losses from mass transport through the porous electrodes, ohmic losses from current flow through the electrodes and electrolyte, and activation polarization. It also includes a model for the full or partial internal reforming of methane. The model was applied to investigate the effect of electrode porosity distribution on performance. Specifically the physical phenomena that occur when the electrode is designed with a change in microstructure along its thickness is studied. The general trends that occur are investigated to find the arrangement for which the minimal polarization occurs. Both diluted hydrogen fuel and partially reformed methane streams are investigated. It is concluded that performance benefits are seen when the electrodes are given an increase in porosity near the electrolyte interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sohal, M. S., J. E. O’Brien, C. M. Stoots, V. I. Sharma, B. Yildiz, and A. Virkar. "Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33332.

Повний текст джерела
Анотація:
Idaho National Laboratory (INL) is performing high-temperature electrolysis (HTE) research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of ongoing INL and INL-sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and issues that need to be addressed in the future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on HTE using solid oxide cells do not provide clear evidence as to whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the SOECs showed that the hydrogen electrode and interconnect get partially oxidized and become nonconductive. This is most likely caused by the hydrogen stream composition and flow rate during cooldown. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation because of large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. Virkar et al. [19–22] have developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic nonequilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kohama, Keiichi, Koji Kawamoto, Yasushi Tsuchida, Hidenori Miki, and Hideki Iba. "Research into All Solid Secondary Lithium Battery." In 1st International Electric Vehicle Technology Conference. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2011. http://dx.doi.org/10.4271/2011-39-7234.

Повний текст джерела
Анотація:
<div class="section abstract"><div class="htmlview paragraph">It may be possible to simplify the structure and control systems of a lithium-ion battery by replacing the conventional liquid electrolyte with a solid electrolyte, resulting in higher energy density. However, power performance is a development issue of batteries using a solid electrolyte. To increase battery power performance, in addition to lithium ionic conductivity within the bulk of the electrolyte, it is also necessary to boost the lithium ionic conductivity at the interface between the electrode active material and the electrolyte, and to boost electron and lithium ionic conductivity within the cathode and anode active material. This research studied the mechanism of resistance reduction by electrode surface modification. Subsequently, this research attempted to improve electron conductivity by simultaneously introducing oxygen vacancies and carrying out nitrogen substitution in the crystalline structure of the Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> anode active material.</div></div>
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Saito, Makoto, Nobuaki Takahashi, Jun Yoshida, Hiroaki Takahashi, Kazuki Kojima, Toshiki Hori, and Kazuhiro Suzuki. "Computational Design Optimization of All-Solid-State Lithium Ion Battery Electrode by Multi-Scale Simulation Based on Finite Element Method Combined with Density Functional Theory." In FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2021-dgt-039.

Повний текст джерела
Анотація:
One of the major challenges in all-solid-state lithium-ion battery (ASSLiB) developments for electronic vehicles is to prevent crack formation in electrodes during charge and discharge. The crack forms due to the volumetric expansion caused by lithium ion insertion to active materials. Although X-ray or electron beam based analysis can provide, the cracks in the electrodes can be analyzed using limited and heavy cost analysis, that can be a hurdle to optimize durable battery design. In order to accelerate the structural analysis and the design optimization, a simulation technology to predict the structural changes has been highly desired. The electrode degradation involves complicated phenomena such as powder deformations, volumetric expansion of active materials caused by the lithium insertion, interface peelings on the powder interfaces and the crack formation. This complexity has been the main reason why the practical simulation methodology has not emerged so far. To address the issue, we propose a new simulation methodology based on a finite element method (FEM) combined with a density functional theory (DFT). In the electrode degradation simulation, we take a new FEM approach called multi-particle FEM (MP-FEM). Since many FEM work treat compacted powders as a continuum body, they cannot describe the peelings at the particle interfaces or cracks in the electrode. On the other hand, MP-FEM can describe these phenomena since MP-FEM treats each particle structures explicitly. We apply a tiebreak model to the particle interfaces for accurate simulation. To perform MP-FEM, material properties must be set properly. In evaluating the material properties, we recommend to apply DFT simulation at the same time with experimental evaluations. Normally, material properties are evaluated by tests. However, the precise evaluation is challenging and time consuming because of several reasons such that the evaluation on normal test piece cannot be applied since the target materials are powders with the diameters around 0.1~100 micro meter. To demonstrate the advantage of our methodology, we built an electrode model containing an active material (AM) and a solid electrolyte (SE). In the first step of the simulation, the model electrode was pressed. After the removal of the all pressure, pore volume ratio was predicted as 20%, which showed a good agreement with experimental value of 18%. In the second step, the AM powders were controlled to expand and shrink representing charge and discharge. Our model reproduced the brake down of connected powder interfaces indicating decrease of lithium conduction paths. The volumetric ratio of pores in the electrode decreased during the charge process which also showed a good agreement with an experimental finding that internal resistance of the electrode decreased during charge processes. Based on these results, we believe that the methodology can predict electrode durability. In this paper, we will also compare several electrodes with varied design parameters and discuss design guidelines for durable electrode design.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Konno, Akio, Hiroshi Iwai, Motohiro Saito, and Hideo Yoshida. "Numerical Simulation of SOFC Performance Affected by Cathode Mesoscale-Structure Control." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65246.

Повний текст джерела
Анотація:
Increase of the current density is one of the most important topics in the development of solid oxide fuel cells. In this study we focus on the possibility of the current density enhancement by controlling the mesoscale structure of the electrodes. Modifications of the mesoscale structures increase the area of electrode-electrolyte interface and the volume of the electrode, reduce the electrolyte thickness, affect gas diffusion in the porous electrode and consequently influence the cell performance. To evaluate its effect on the cell performance, two-dimensional numerical simulation for SOFC with and without mesoscale grooves on the cathode-electrolyte interface is conducted to understand the effects of such cathode mesoscale structure on the cell performance. It is found that the electrochemical reaction in porous electrodes takes place in the region close to the electrode-electrolyte interface and the cell performance can be improved by applying cathode mesoscale structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dissado, L. A., and S. Le Roy. "The effect of Contact Charge upon the Injection Current at an Electrode-Insulator Interface." In 2007 IEEE International Conference on Solid Dielectrics. IEEE, 2007. http://dx.doi.org/10.1109/icsd.2007.4290745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Milobar, Daniel G., Peiwen Li, and James E. O’Brien. "Analytical Study, 1-D Optimization Modeling, and Testing of Electrode Supported Solid Oxide Electrolysis Cells." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18261.

Повний текст джерела
Анотація:
The need for an infrastructure to provide hydrogen as a next generation energy carrier is ever increasing. High temperature solid oxide electrolysis cells (SOECs) have been proven to be a viable technology in the production of hydrogen [1]. With the increasing use of SOECs in various operating environments it is important to be able to specify the best SOEC for any given situation. We have developed a straightforward model to estimate cell performance in a timely and inexpensive manner. Composite electrode planer type SOEC models have been developed previously. It is a common assumption that all electrochemical reactions in these cells occur at the interface of the electrolyte and the electrode [2]. It has been shown by S. Gewies et al. [3] that the reactions occurring throughout a Ni/YSZ cermet electrode occur in a nonlinear fashion. Our one dimensional model has been developed to optimize SOECs with composite electrodes. This model takes into account ohmic, activation, and concentration polarizations. The electrochemical reaction that occurs within the electrode functional layers has been accounted for in the calculation of the concentration polarization. This is believed to give a more realistic view of the mass transfer that occurs in SOECs with composite electrodes via a simple and straightforward 1-D model.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Qian, Z., H. Hashimoto, K. M. Lee, R. Yabuki, B. Du, H. Kino, T. Fukushima, K. Kiyoyama, and T. Tanaka. "1-Chip ExG Recording System with Electrode Interface Evaluation Functions for Biologically Safe Recording." In 2019 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2019. http://dx.doi.org/10.7567/ssdm.2019.a-5-02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Solid electrode Interface"

1

Yahnke, Mark S. The application of solid-state NMR spectroscopy to electrochemical systems: CO adsorption on Pt electrocatalysts at the aqueous-electrode interface. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/451231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Garofalini, Stephen. Solid Electrolyte/Electrode Interfaces: Atomistic Behavior Analyzed Via UHV-AFM, Surface Spectroscopies, and Computer Simulations Computational and Experimental Studies of the Cathode/Electrolyte Interface in Oxide Thin Film Batteries. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1036745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chueh, William, Farid El Gabaly Marquez, Josh A. Whaley, Kevin F. McCarty, Anthony H. McDaniel, and Roger L. Farrow. Mechanisms for charge-transfer processes at electrode/solid-electrolyte interfaces. Office of Scientific and Technical Information (OSTI), November 2011. http://dx.doi.org/10.2172/1035349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hoffer, Saskia. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/803862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії