Добірка наукової літератури з теми "SoLi∂ detector"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "SoLi∂ detector".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "SoLi∂ detector"
Izumi, Yoshihiro, and Yasukuni Yamane. "Solid-State X-Ray Imagers." MRS Bulletin 27, no. 11 (November 2002): 889–93. http://dx.doi.org/10.1557/mrs2002.278.
Повний текст джерелаEbadi, Reza, Mason C. Marshall, David F. Phillips, Johannes Cremer, Tao Zhou, Michael Titze, Pauli Kehayias, et al. "Directional detection of dark matter using solid-state quantum sensing." AVS Quantum Science 4, no. 4 (December 2022): 044701. http://dx.doi.org/10.1116/5.0117301.
Повний текст джерелаZhang, Lei, Chenkai Qiao, Jingjun Zhu, Yu Liu, Yulu Yan, Shin-Ted Lin, Shukui Liu, Changjian Tang, and Haoyang Xing. "Preparation of Large Volume Solid Argon Crystal and Its Feasibility Test as a Scintillation Material." Crystals 12, no. 10 (October 7, 2022): 1416. http://dx.doi.org/10.3390/cryst12101416.
Повний текст джерелаNayak, A., M. K. Parida, V. Kumar, and G. Prasanna. "Investigation of thermal neutron detection efficiency of Boron Carbide converter material using GEANT4 simulation for different types of detector configurations." Journal of Instrumentation 17, no. 07 (July 1, 2022): P07012. http://dx.doi.org/10.1088/1748-0221/17/07/p07012.
Повний текст джерелаChatzakis, J., I. Rigakis, S. M. Hassan, E. L. Clark, and P. Lee. "Detection of pulsed neutrons with solid-state electronics." International Journal of Modern Physics: Conference Series 44 (January 2016): 1660229. http://dx.doi.org/10.1142/s2010194516602295.
Повний текст джерелаZhang, K., G. Rosenbaum, and G. Bunker. "Energy-Resolving X-ray Fluorescence Detection Using Synthetic Multilayers." Journal of Synchrotron Radiation 5, no. 4 (July 1, 1998): 1227–34. http://dx.doi.org/10.1107/s0909049597019535.
Повний текст джерелаZaluzec, Nestor J. "Detector Solid Angle Formulas for Use in X-Ray Energy Dispersive Spectrometry." Microscopy and Microanalysis 15, no. 2 (March 16, 2009): 93–98. http://dx.doi.org/10.1017/s1431927609090217.
Повний текст джерелаYuan, Jing, Panagiotis Barmpoutis, and Tania Stathaki. "Pedestrian Detection Using Integrated Aggregate Channel Features and Multitask Cascaded Convolutional Neural-Network-Based Face Detectors." Sensors 22, no. 9 (May 7, 2022): 3568. http://dx.doi.org/10.3390/s22093568.
Повний текст джерелаRadtke, J. L., and D. W. Beard. "A New Position Sensitive Detector for X-Ray Diffractometry." Advances in X-ray Analysis 36 (1992): 617–22. http://dx.doi.org/10.1154/s0376030800019261.
Повний текст джерелаLowdon, Matthew, Peter G. Martin, M. W. J. Hubbard, M. P. Taggart, Dean T. Connor, Yannick Verbelen, P. J. Sellin, and Thomas B. Scott. "Evaluation of Scintillator Detection Materials for Application within Airborne Environmental Radiation Monitoring." Sensors 19, no. 18 (September 4, 2019): 3828. http://dx.doi.org/10.3390/s19183828.
Повний текст джерелаДисертації з теми "SoLi∂ detector"
Yeresko, Mykhailo. "Search for antineutrino disappearance with the SoLi∂ detector : novel reconstruction, calibration and selection." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC127.
Повний текст джерелаThis thesis presents the search for active-to-sterile antineutrino oscillations with the SoLi∂ detector, which has an innovative concept based on a sandwich of composite polyvinyl-toluene and 6LiF:ZnS(Ag) scintillators. Three main contributions to this search are reported. The first one describes the new reconstruction method based on the ML-EM algorithm. It is aimed at transformation of the raw detector response to the list of positions (with dedicated energies) where actual physics interaction in the detector took place. The second one describes the energy calibration of the detector. It includes both relative calibration with the cosmic horizontal muons and exploration of several options for the absolute energy scale derivation. Finally, the thesis presents a novel method for selecting antineutrino candidates based on the analysis of the electromagnetic part of the inverse beta decay signal and categorising them according to the geometry of the events in the detector (topologies). The analysis was developed blindly and the method was validated with a small fraction of the data sample
Walsh, Susanne. "The development of gallium arsenide microstrip detectors for the ATLAS inner detector." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286518.
Повний текст джерелаL'Héréec, Frédéric. "Solid state chemical electronics." Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04062004-164713/unrestricted/lhereec%5Ffrederic%5F200312%5Fms.pdf.
Повний текст джерелаL'Hereec, Frederic. "Solid state chemical electronics." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5341.
Повний текст джерелаYin, Zaizhe. "Solid state detectors in radiotherapy dosimetry." Thesis, University of Birmingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288576.
Повний текст джерелаFernandes, Luís Olavo de Toledo 1978. "Desenvolvimento de fotômetros THz para observação de explosões solares." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259238.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-22T19:46:53Z (GMT). No. of bitstreams: 1 Fernandes_LuisOlavodeToledo_M.pdf: 8033391 bytes, checksum: 7b7a925bf8a485ca4f76b7c8380299b3 (MD5) Previous issue date: 2013
Resumo: O telescópio solar submilimétrico operando nas freqüências de 212 e 405 GHz detectou uma nova componente espectral das emissões de explosões solares, com máximo em algum ponto da faixa Terahertz, simultaneamente com a conhecida componente espectral em microondas, trazendo sérios desafios para interpretação. O diagnostico deste tipo de emissão transiente em freqüências THz traz desafios tecnológicos que são objetivo deste estudo. Este projeto consiste em um estudo das características de filtros e sensores não refrigerados para aplicação em projeto aeroespacial na faixa Terahertz do espectro eletromagnético. Foram estudados e caracterizados detectores bolométrico, piroeletrico, e optoacustico, precedidos por filtros passa-baixa que suprimem a radiação na faixa do visível e infravermelho próximo do espectro eletromagnético, filtros passa-banda centrados na freqüência THz desejada, e modulador mecânico. O detector a célula de Golay mostrou ser o mais sensível. Foi selecionado para o protótipo de fotômetro THz que serviu para definir parâmetros de projeto para o modelo de vôo, para observação solar fora da atmosfera terrestre, em balões estratosféricos, satélites, ou estações no solo com atmosfera excepcionalmente transparente. O sistema foi concebido para observar todo o disco solar e detectar pequenas variações relativas de temperatura causadas por explosões em regiões especifica do Sol. Obteve-se mínima detectabilidade de variações relativas de temperatura da ordem de 1 K com resolução temporal de subsegundo
Abstract: The solar submillimeter-wave telescope, operating at 212 and 405 GHz frequencies detected a new flare spectral component emission, peaking in the THz range, simultaneously with the well known microwaves component, bringing challenging constrains for interpretation. The diagnostics of this kind of transient emission at THz frequencies also bring technical challenges, which are the subject of this study. The project consists in a study of the characteristics of filters and uncooled detectors for aerospace project application at THz range of the electromagnetic spectrum. Three types of uncooled sensors were tested: bolometric, pyroelectric, and optoacoustic, proceeded by low-pass filters to suppress the visible and infrared radiation, band-pass filter centered at THz frequency, and a chopper. The Golay cell sensor was considered the most sensible detector of all, and was selected for the photometer prototype THz system to observe the Sun outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. The system was designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions of the Sun. The minimum relative temperature variation detected was about 1 K with subsecond time resolution
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
Mills, David J. "Fabrication process and characteristics of a silicon strip detector." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25120.
Повний текст джерелаScience, Faculty of
Physics and Astronomy, Department of
Graduate
Dias, Pedro Carvalhaes 1983. "Um novo sensor de umidade de solo de pulso de calor de alta sensibilidade, baseado em um único transistor bipolar de junção npn = A novel high sensitivity single probe heat pulse soil moisture sensor based on a single npn bipolar junction transistor = A novel high sensitivity single probe heat pulse soil moisture sensor based on a single npn bipolar junction transistor." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261867.
Повний текст джерелаTexto em inglês
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-20T11:54:01Z (GMT). No. of bitstreams: 1 Dias_PedroCarvalhaes_M.pdf: 7362254 bytes, checksum: dd839cf652cbbda17a2a5d9b6cecbdc3 (MD5) Previous issue date: 2012
Resumo: A constante preocupação em aumentar a produtividade das plantações de uma forma sustentável e otimizando o uso dos insumos agrícolas (água, fertilizantes, pesticidas e produtos para correção do PH) levou ao desenvolvimento da agricultura de precisão, que permite determinar a quantidade correta de insumos para cada região do solo (tipicamente um hectare), evitando o desperdício. Sensores de umidade de solo de baixo custo e fácil aplicação no campo são fundamentais para permitir um controle preciso da atividade de irrigação, sendo que os sensores que melhor atendem estes requisitos são os chamados sensores de dissipação de calor ou sensores de transferência de calor. Estes sensores, entretanto, apresentam um problema de baixa sensibilidade na faixa de umidade mais importante para as plantas (umidade de solo 'teta'v variando entre 5% e 35%), pois, para cobrir esta variação de 30% em 'teta'v com resolução de 1%, é necessário medir variações de temperatura de aproximadamente 0,026 ºC nos sensores de pulso de calor a duas pontas e 0,05 ºC para os sensores de pulso de calor de ponta simples. Neste trabalho foi desenvolvido um novo sensor de umidade de solo do tipo pulso de calor de ponta simples, baseado em um único elemento: um transistor bipolar de junção npn, que é usado tanto como aquecedor e como sensor de temperatura de alta precisão. Resultados experimentais, obtidos em medidas realizadas através de uma técnica de interrogação especialmente desenvolvida para este novo sensor mostram que neste trabalho foi possível obter uma sensibilidade cerca de uma ordem de grandeza maior do que nos sensores de pulso de calor com uma ponta e cerca de 20 vezes maior do que nos sensores de pulso de calor de duas pontas. Outra vantagem da técnica desenvolvida é que o aumento da sensibilidade não é obtido às custas do aumento da corrente drenada da bateria para aquecer o sensor. No sensor desenvolvido é utilizada uma corrente de apenas 6 mA para gerar o aquecimento (com energia dissipada de 1,5 J), enquanto que que os sensores de pulso de calor com ponta simples requerem cerca de 50 mA (com 2,4 J de energia dissipada) para operar. Os sensores de pulso de calor de ponta dupla também são fabricados com resistores que requerem cerca de 50 mA para o aquecimento (0.8 J de energia dissipada) para operar corretamente
Abstract: The concern regarding sustainable development and crop inputs optimization (such as water, fertilizers, pesticides and soil PH correction products) has led to the development of the precision agriculture concept, that allows to determine the exact amount of each input required on each ground section (typically one hectare), avoiding waste of inputs. Low-cost and easily handled soil moisture sensors are very important for allowing a precise irrigation control. The class of sensors which fulfill those requirements are the heat transfer sensors, where there are basically two types of devices: dual (or multi) probe heat pulse sensors and single probe heat pulse sensors. However, these sensors have a low sensitivity in the most important range of soil humidity 'teta'v for plants (usually from 5% ? 'teta'v ? 35%). To cover this 30% soil humidity range with 1% resolution it is necessary to measure temperature with a resolution of 0,026 ºC in the dual/multi probe heat pulse sensors and 0,05 ºC in the single probe heat pulse sensor. In this work it was developed a new type of single probe heat pulse sensor, comprised of a single element: an npn junction bipolar transistor, that plays the role of both the heating element and a high accuracy temperature sensor. Experimental results, obtained through an interrogation technique especially developed for this sensor, show sensitivity about one order of magnitude greater than the typical sensitivity of the single probe heat pulse sensors and 20 times greater than dual probe heat pulse sensors. Another great advantage of the developed interrogation technique is that the increase in sensibility is not obtained through a higher current being drained from the batteries that power the sensor. The developed sensor operates at a much lower current level than the other sensors, draining only 6 mA from the battery (with an energy of 150 mW). The single probe heat pulse sensor requires 50 mA and 1.5 J of energy to operate, whilst the dual probe heat pulse sensors are manufactured with resistors which also drain 50 mA from the battery with 0.8 J of dissipated energy
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
Melton, Andrew Geier. "Development of wide bandgap solid-state neutron detectors." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44752.
Повний текст джерелаMeier, William. "Development and testing of liquid to solid scintillating neutron detectors." Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54911.
Повний текст джерелаКниги з теми "SoLi∂ detector"
Elisabetta, Comini, Faglia Guido, and Sberveglieri G, eds. Solid state gas sensing. New York, NY: Springer, 2009.
Знайти повний текст джерелаMandelis, Andreas. Physics, chemistry, and technology of solid state gas sensordevices. New York, NY: Wiley, 1993.
Знайти повний текст джерелаRoy, Morrison S., ed. Chemical sensing with solid state devices. Boston: Academic Press, 1989.
Знайти повний текст джерелаConstantinos, Christofides, ed. Physics, chemistry, and technology of solid state gas sensor devices. New York: Wiley, 1993.
Знайти повний текст джерелаYin, Zaizhe. Solid state detectors in radiotherapy dosimetry. Birmingham: University of Birmingham, 2003.
Знайти повний текст джерелаJiří, Janata, and Huber Robert J, eds. Solid state chemical sensors. Orlando, Fla: Academic Press, 1985.
Знайти повний текст джерелаShur, Michael S., and Artūras Žukauskas, eds. UV Solid-State Light Emitters and Detectors. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2103-9.
Повний текст джерелаNATO Advanced Research Workshop (2003 Vilnius, Lithuania). UV solid-state light emitters and detectors. Boston: Kluwer Academic Publishers, 2004.
Знайти повний текст джерелаT, Moseley P., and Tofield B. C, eds. Solid-state gas sensors. Bristol: A. Hilger, 1987.
Знайти повний текст джерелаK, Bull R., ed. Solid state nuclear track detection: Principles, methods, and applications. Oxford: Pergamon Press, 1987.
Знайти повний текст джерелаЧастини книг з теми "SoLi∂ detector"
Lutz, G., and R. Klanner. "Solid State Detectors." In Particle Physics Reference Library, 137–200. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35318-6_5.
Повний текст джерелаLutz, G. "Solid State Detectors." In Detectors for Particles and Radiation. Part 1: Principles and Methods, 107–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-03606-4_5.
Повний текст джерелаTsai, Hsinhan, Jeremy Tisdale, Shreetu Shrestha, Fangze Liu, and Wanyi Nie. "Emerging Lead-Halide Perovskite Semiconductor for Solid-State Detectors." In Advanced X-ray Detector Technologies, 35–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-64279-2_2.
Повний текст джерелаShutt, T., N. Wang, B. Ellman, Y. Giraud-Heraud, C. Stubbs, P. D. Barnes, A. Cummings, et al. "Simultaneous Detection of Phonons and Ionization in a 60 g Germanium Detector." In Springer Series in Solid-State Sciences, 497–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_194.
Повний текст джерелаIlgner, Christoph J. "New Solid State Detectors." In Handbook of Particle Detection and Imaging, 519–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-13271-1_21.
Повний текст джерелаDennis, P. N. J. "Solid State Photon Detectors." In Photodetectors, 75–108. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2171-2_5.
Повний текст джерелаIlgner, Christoph J. "New Solid State Detectors." In Handbook of Particle Detection and Imaging, 669–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-93785-4_21.
Повний текст джерелаHelming, Kurt, and Uwe Preckwinkel. "Texture Analysis with Area Detectors." In Solid State Phenomena, 71–76. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-09-4.71.
Повний текст джерелаEickeler, Edgar. "Examination of Contaminated Soils with Detector Tubes." In Contaminated Soil ’90, 829–30. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3270-1_185.
Повний текст джерелаHerziger, Claudia. "Determination of Contaminants in Water with Detector Tubes." In Contaminated Soil ’90, 803–4. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3270-1_177.
Повний текст джерелаТези доповідей конференцій з теми "SoLi∂ detector"
Amzajerdian, Farzin, Brian F. Jones, and Michael J. Kavaya. "Characterization of Semiconductor Detectors for Operation in 2-micron Coherent Lidars." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/clr.1995.wc1.
Повний текст джерелаKillinger, Dennis K. "Advances in 1 to 2 μm Solid-State Lidar/Dial Technology: Laser Sources, Optical Detectors, and Fiber Amplifiers". У Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/orsa.1991.otha1.
Повний текст джерелаSugimoto, N., K. Chan, and D. K. Killinger. "Optical design criteria for optimization of Nd:YAG coherent lidar." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.thl3.
Повний текст джерелаUnz, Ronald J., Donna M. Rogers, Charles Jones, Jay P. McCown, and Charles A. Waggoner. "Use of Lanthanum Bromide Detectors to Augment Site Surveys for Depleted Uranium." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59169.
Повний текст джерелаPatterson, Oliver D., Hyoung H. Kang, Jay Strane, Christian Lavoie, Karl Barth, Xu Ouyang, and Kevin Wu. "Detection and Verification of Silicide Pipe Defects on SOI Technology Using Voltage Contrast Inspection." In ISTFA 2007. ASM International, 2007. http://dx.doi.org/10.31399/asm.cp.istfa2007p0270.
Повний текст джерелаHara, Kazuhiko. "SOI Pixel Development." In The 23rd International Workshop on Vertex Detectors. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.227.0033.
Повний текст джерелаZhang, Zi, Xiaoli Lin, and Bin Hu. "Algorithm design of traffic incident automatic detection based on mobile detection." In 2011 IEEE International Conference on Service Operations and Logistics and Informatics (SOLI). IEEE, 2011. http://dx.doi.org/10.1109/soli.2011.5986580.
Повний текст джерелаSlavinska, Irita, Vladimirs Jemeljanovs, and Maris Ziemelis. "Efficiency of autonomous smoke detectors depending on operation time period." In 22nd International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2023. http://dx.doi.org/10.22616/erdev.2023.22.tf210.
Повний текст джерелаONUKI, Yoshiyuki. "SOI detector developments." In The 20th Anniversary International Workshop on Vertex Detectors. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.137.0043.
Повний текст джерелаProsenc, Franja, Nigel Van de Velde, Ivan Jerman, and Janez Langus. "Automated Quantification of Microplastics – Challenges and Opportunities." In Socratic Lectures 7. University of Lubljana Press, 2022. http://dx.doi.org/10.55295/psl.2022.d12.
Повний текст джерелаЗвіти організацій з теми "SoLi∂ detector"
Conrady, Morgan, Markus Bauer, Kyoo Jo, Donald Cropek, and Ryan Busby. Solid-phase microextraction (SPME) for determination of geosmin and 2-methylisoborneol in volatile emissions from soil disturbance. Engineer Research and Development Center (U.S.), October 2021. http://dx.doi.org/10.21079/11681/42289.
Повний текст джерелаWagner, Anna, Arthur Gelvin, Jon Maakestad, Thomas Coleman, Dan Forsland, Sam Johansson, Johan Sundin, and Chandler Engel. Initial data collection from a fiber-optic-based dam seepage monitoring and detection system. Engineer Research and Development Center (U.S.), October 2023. http://dx.doi.org/10.21079/11681/47819.
Повний текст джерелаMaximillian J. Kieba. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/812028.
Повний текст джерелаMaximillian J. Kieba and Christopher J. Ziolkowski. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/833263.
Повний текст джерелаMaximillian J. Kieba and Christopher J. Ziolkowski. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/834183.
Повний текст джерелаMaximillian J. Kieba and Christopher J. Ziolkowski. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/837889.
Повний текст джерелаMaximillian J. Kieba. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/823037.
Повний текст джерелаMaximillian J. Kieba. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/823042.
Повний текст джерелаMaximillian J. Kieba. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/823043.
Повний текст джерелаMaximillian J. Kieba. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/823044.
Повний текст джерела