Добірка наукової літератури з теми "Soild State Physics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Soild State Physics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Soild State Physics"

1

Isenberg, Cyril. "Solid State Physics." Physics Bulletin 39, no. 3 (March 1988): 121. http://dx.doi.org/10.1088/0031-9112/39/3/041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bardeen, J. "Solid State Physics—1947." Microelectronics International 5, no. 3 (March 1988): 6–7. http://dx.doi.org/10.1108/eb044332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Keeler, Graham, Roger Rollins, Steven Spicklemire, Dale Syphers, Susan R. McKay, and Wolfgang Christian. "Solid State Physics Simulations." Computers in Physics 10, no. 3 (1996): 260. http://dx.doi.org/10.1063/1.4822399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maddox, John. "Solid-state physics resurgent." Nature 328, no. 6125 (July 1987): 11. http://dx.doi.org/10.1038/328011a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Paufler, P. "Introductory Solid State Physics." Zeitschrift für Kristallographie 195, no. 1-2 (January 1991): 160. http://dx.doi.org/10.1524/zkri.1991.195.1-2.160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Husinsky, W. "Solid state physics simulations." Simulation Practice and Theory 5, no. 3 (March 1997): P35. http://dx.doi.org/10.1016/s0928-4869(97)82828-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nofziger, David L., and Jinquan Wu. "Soil Physics Teaching Tools: Steady-State Water Movement in Soils." Journal of Natural Resources and Life Sciences Education 29, no. 1 (2000): 130–34. http://dx.doi.org/10.2134/jnrlse.2000.0130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

HAN, Jung Hoon. "Solid State Physics, Condensed Matter Physics, and Topological Physics!" Physics and High Technology 25, no. 12 (December 30, 2016): 2–6. http://dx.doi.org/10.3938/phit.25.060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dobrzynski, Ludwik, Konrad Blinowski, and David Long Price. "Neutrons and Solid State Physics." Physics Today 48, no. 9 (September 1995): 93–94. http://dx.doi.org/10.1063/1.2808171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cahn, Robert W. "Solid State Physics and Metallurgy." Physics Bulletin 36, no. 5 (May 1985): 205–7. http://dx.doi.org/10.1088/0031-9112/36/5/022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Soild State Physics"

1

Egan, John Mathew. "Solid state diffusion in Pd₂Si." Master's thesis, University of Cape Town, 1986. http://hdl.handle.net/11427/22141.

Повний текст джерела
Анотація:
The atomic transport processes ocurring in the Pd/Si system have been investigated. The Pd₂Si system has been studied to try and establish the mechanism(s) of diffusion by which the growth of Pd₂Si proceeds under thermal annealing. Using a deposited Ti marker, the dominant moving species during Pd₂Si formation in the temperature range 250-400°C has been determined to be silicon. Palladium transport appears to occur during the initial stages of formation of Pd₂Si. Once several hundred angstrom of Pd₂Si has been formed, palladium transport seems to be replaced by silicon transport. Silicon tracer experiments, in conjunction with Si selfdiffusion measurements. indicate that silicon mobility is exceptionally high during the formation of Pd₂Si on Si substrate. During growth. the mobility of silicon is orders of magnitude higher than under equilibrium conditions. This is thought to suggest a vacancy mechanism of diffusion, and is expected that large numbers of vacancies are generated at the growth interface during silicide formation. Silicon self-diffusion in Pd₂Si has been investigated. The results indicate that grain-boundary diffusion could be operative under equilibrium conditions. Under the assumption that grain-boundary diffusion does occur during thermal annealing in the range 350-550°C, it is deduced that at all times the grain-boundary diffusivity is so much greater than the lattice diffusivity, that the grain-boundaries are effectively able to act as sources for the grains. The activation energy for lattice self-diffusion of silicon in Pd₂Si which has grown on Si<100> substrate, has been determined to be 0.8±0.3eV. This value is thought to support recent kinetic results which indicate that the activation energy for growth of Pd₂Si is in the region of 1eV.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Prakash, Arati Prakash. "Magneto Thermal Coupling in Solid State Transport." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1514502118670282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Esser, M. J. Daniel. "Diode-end-pumped solid-state lasers." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jackson, P. "Dipolar coupling in solid-state NMR." Thesis, Durham University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Canessa, E. "Statistical physics of colloidal dispersions." Thesis, University of East Anglia, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brown, Marco J. "Selective inversion in solid-state deuteron NMR." W&M ScholarWorks, 1996. https://scholarworks.wm.edu/etd/1539623900.

Повний текст джерела
Анотація:
Deuteron NMR selective inversion (SI) is developed to study slow molecular motions in solids. Theoretical and practical aspects of selective inversion of spin-1 nuclei in solids are presented. Differences between powdered solids and liquids are considered. Double sideband modulated (DSBM) shaped pulses are shown to improve the performance of SI pulses. DSBM and DANTE selective pulses are compared for off-resonance SI applications. Common spin-{dollar}{lcub}1{rcub}\over{lcub}2{rcub}{dollar} shaped pulses are tested for suitability to solid state deuteron NMR. Simple, short pulses are shown to be most effective due to fast spin-spin relaxation and large underlying homogeneous linewidths in solids.;The power and utility of selective inversion is demonstrated by investigating the molecular dynamics of polycrystalline dimethylsulfone-{dollar}\rm d\sb6{dollar} (DMS). Quantitative information on the slow two-site jump motion in DMS is obtained. The complementary nature of selective inversion and quadrupolar echo lineshape (QELS) experiments is explored. Combination of QELS and SI extends the range of rates observed, increasing the accuracy of the information obtained. For DMS, motional rates were measured over a 80 K range (motional rates of {dollar}\rm 3\times 10\sp1{lcub}-{rcub}5\times 10\sp{lcub}4{rcub}\ s\sp{lcub}-1{rcub}),{dollar} permiting the barrier to slow rotation to be accurately characterized. SI was also used to observe the limiting homogeneous linewidth as a function of resonance offset and temperature. The temperature dependence of the homogeneous linewidth is shown to be sensitive to motion in the kilohertz range.;SI was used to quantify the molecular dynamics in some complex systems. SI and QELS experiments were performed on host urea-{dollar}d\sb4{dollar} in different urea inclusion compounds (UIC). Rotation rates about both the CO and CN bonds of urea-{dollar}d\sb4{dollar} in the UICs were determined as a function of temperature. Activation energies were obtained, and the results are discussed with respect to guest-host interactions in the UICs. Preliminary results are presented on quadrupolar echo lineshape simulations which include empirical, anisotropic homogeneous linewidth corrections. The modified simulations give significantly different best-fit motional rates than conventional QELS analysis. This allows some of the systematic errors of QELS analysis to be evaluated.;SI experiments were conducted, over a 125 K range, to study backbone motion in bisphenol-A polycarbonate. These experiments failed to detect the presence of any large angle slow motion of methyl groups in the isopropylidene moiety. This negative result suggests that cis-trans isomerization of the carbonate group is not the origin of the backbone motion.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vlassarev, Dimitar. "DNA Characterization with Solid-State Nanopores and Combined Carbon Nanotube across Solid-State Nanopore Sensors." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10310.

Повний текст джерела
Анотація:
A DNA molecule passing through a nanopore in a liner and sequential fashion allows for unprecedented interrogation of the polymer. Adding transverse electrodes that are comparable in size and sensitive to the DNA molecule, can further the attempts to rapidly sequence DNA. Carbon nanotubes are comparable in size and interact strongly with the DNA molecule. This makes them an excellent choice for integration with nanopores. Only the section of the carbon nanotube in immediate proximity to the nanopore should be sensitive to the DNA molecules. Atomic layer deposition of metal-oxides passivates the sections of the carbon nanotube that are not to interact with the DNA molecule. The coating also protects the thin film interconnects leading to the carbon nanotube. Hafnium oxide is superior to aluminum oxide in chemical resistance and electrical insulation but leads to a high failure rate of the carbon nanotube across nanopore devices. Aluminum oxide, combined with gold thin film interconnects to the carbon nanotube, produced the first functioning devices in electrolyte. These devices had concurrently functioning ionic (current across the nanopore) and transverse (current through the carbon nanotube) channels. No concurrent DNA translocation signal was recorded on the ionic and nanotube current traces. Analyzing the translocation events recorded on the ionic channel indicated that double-stranded DNA (dsDNA) passed through the carbon nanotube articulated nanopore an order of magnitude slower than it would have through a comparable unarticulated nanopore. The slower translocation observed is a necessary condition for sequencing. Investigating dsDNA translocation under various experimental conditions led to the discovery of a new interaction between the molecule and small nanopores. A dsDNA molecule is trapped when the electric field near the nanopore attracts and immobilizes a non-end segment of the molecule at the nanopore orifice without inducing folded translocation. In this work, the expression “trapped dsDNA” will exclusively refer to the immobilization of a dsDNA molecule at the orifice of the nanopore. The ionic current through the nanopore decreases when the dsDNA molecule is trapped by the nanopore. By contrast, a translocating dsDNA molecule under the same conditions causes an ionic current increase. Finite element modeling results predict this behavior for the conditions of the experiment.
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Johnson, D. R. "The microstructure of all-solid-state batteries." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Elder, Ian F. "Diode-pumped two micron solid-state lasers." Thesis, University of Strathclyde, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Soild State Physics"

1

B, Palmer Stuart, ed. Solid state physics. Amsterdam, The Netherlands: Gordon and Breach Science Publishers, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jain, Vimal Kumar. Solid State Physics. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96017-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ibach, Harald, and Hans Lüth. Solid-State Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97230-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ibach, Harald, and Hans Lüth. Solid-State Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-93804-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ibach, Harald, and Hans Lüth. Solid-State Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05342-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Patterson, James, and Bernard Bailey. Solid-State Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02589-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ibach, Harald, and Hans Lüth. Solid-State Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-88199-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Quinn, John J., and Kyung-Soo Yi. Solid State Physics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73999-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Quinn, John J., and Kyung-Soo Yi. Solid State Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92231-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Patterson, James D., and Bernard C. Bailey. Solid-State Physics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75322-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Soild State Physics"

1

Hanke, Werner. "Solid State Physics." In High Performance Computing in Science and Engineering ’98, 93–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58600-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hanke, Werner. "Solid State Physics." In High Performance Computing in Science and Engineering ’01, 115–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56034-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Soukoulis, Costas M., and Eleftherios N. Economou. "Solid State Physics." In AIP Physics Desk Reference, 725–55. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kamal, Ahmad A. "Solid State Physics." In 1000 Solved Problems in Modern Physics, 291–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04333-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Patil, S. H. "Solid State Physics." In Elements of Modern Physics, 255–315. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70143-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Basu, Prabir K., and Hrishikesh Dhasmana. "Quantum Physics." In Solid State Engineering Physics, 35–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10940-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kobayashi, Hiroshi. "Physics and Applications of Electroluminescent Materials." In Solid State Materials, 169–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09935-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ibach, Harald, and Hans Lüth. "Chemical Bonding in Solids." In Solid-State Physics, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-93804-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ibach, Harald, and Hans Lüth. "Superconductivity." In Solid-State Physics, 291–369. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-93804-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ibach, Harald, and Hans Lüth. "Dielectric Properties of Materials." In Solid-State Physics, 371–418. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-93804-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Soild State Physics"

1

Mittal, R., A. K. Chauhan, and R. Mukhopadhyay. "Preface: Solid State Physics." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chauhan, A. K., Chitra Murli, and S. C. Gadkari. "Preface: Solid State Physics Symposium." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4790890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Murli, Chitra, Dibyendu Bhattacharyya, and S. C. Gadkari. "Preface: DAE Solid State Physics Symposium." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gurevich, Yuri G., Mauricio Carbajal, Luis Manuel Montaño, Oscar Rosas-Ortiz, Sergio A. Tomas Velazquez, and Omar Miranda. "Nonlinearity in Solid State." In Advanced Summer School in Physics 2007. AIP, 2007. http://dx.doi.org/10.1063/1.2825121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Han, Zhiyong. "Teaching Reform of Solid State Physics Course for Material Physics." In 2015 Conference on Education and Teaching in Colleges and Universities. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/cetcu-15.2016.41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Preface: 61st DAE-Solid State Physics Symposium." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Committees: 61st DAE-Solid State Physics Symposium." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Preface: 62nd DAE Solid State Physics Symposium." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Committees: 62nd DAE Solid State Physics Symposium." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Preface: DAE Solid State Physics Symposium 2018." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Soild State Physics"

1

Terminello, L. J., P. G. Allen, D. K. Shuh, and J. Terry. Solid state physics of transuranics. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/15003394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Freericks, J. K. Electron correlations in solid state physics. Office of Scientific and Technical Information (OSTI), April 1991. http://dx.doi.org/10.2172/5756021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alfano, R. R., V. Petricevic, and S. G. Demos. Photodynamics and Physics behind Tunable Solid-State Lasers. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada238365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Busby, Ryan, H. Torbert, and Stephen Prior. Soil and vegetation responses to amendment with pulverized classified paper waste. Engineer Research and Development Center (U.S.), May 2022. http://dx.doi.org/10.21079/11681/44202.

Повний текст джерела
Анотація:
The United States Army produces a significant amount of classified paper waste that is pulverized to a fine consistency unsuitable for recycling. However, cheap, high quality organic materials such as classified paper waste are useful as soil amendments. The objective of this research was to evaluate the utilization of pulverized classified paper waste as a soil amendment to improve soil health and increase establishment of desirable native grasses on degraded Army training lands. Paper was applied at rates of 9 to 72 Mg ha⁻¹ to two soil types at Fort Polk, LA: an alfisol (very fine sandy loam - Fine, smectitic, thermic Chromic Vertic Hapludalfs) and an ultisol (loamy fine sandy - Loamy, siliceous, semiactive, thermic Arenic Paleudults). These are common soil orders found on military training lands nationwide and represent fertile (alfisol) and unfertile (ulitsol) soils. Vegetation and soils were monitored over 2 growing seasons. No increase in heavy metals were observed in soils. Extensive analysis showed very low levels of regulated contaminants in the paper, but most were below detection limits. The ultisol site showed improved soil physical and chemical properties, while desirable vegetation benefitted from nutrient immobilization at the alfisol site. Based on the results of this study, applying pulverized paper waste to soil at a rate of 35.9 Mg ha⁻¹ is recommended. Application of paper waste to soils had no adverse environmental effects, improved soil physiochemical properties, and facilitated establishment of desirable native vegetation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maynard, Julian D. Innovative Acoustic Techniques for Studying New Materials and New Developments in Solid State Physics. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada327870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maynard, Julian D. Innovative Acoustic Techniques for Studying New Materials and New Developments in Solid State Physics. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada297396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maynard, Julian D. Innovative Acoustic Techniques for Studying New Materials and New Developments in Solid State Physics (Includes ASSERT). Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada309803.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Huatian, Xu, and Bi Wuxi. PR469-183600-R01 The Influence of Solid State Decouplers on Pipeline CP Surveys. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2020. http://dx.doi.org/10.55274/r0011935.

Повний текст джерела
Анотація:
The objectives of this research are to figure out how solid state decouplers (SSDs) influence the surveys related to pipeline cathodic protection (CP) and provide corresponding field guidelines on how to mitigate the adverse effects of SSDs. Firstly, by combining the classical capacitor discharge theory and the equivalent circuit of the CP system, a four-stage physical model is built to explain how SSDs' discharge current pulse influences the CP related readings. From the physical model, we can obtain the following conclusions: (1) The driving force behind the discharging of an SSD's capacitor, after CP currents are cut off, is the voltage drop in the pipeline; (2)There are two contributors to the CP instant-off potential spikes: self-induced pipeline current and SSD discharge current; (3) The time constant ( and tau;=RC) of an SSD installation determines how fast the SSD finishes its discharging process; (4) The adverse effects of SSDs can be mitigated by making the SSD discharge time constant and tau; small enough (3 and tau; Before performing numerical modeling, some commonly used SSDs are tested for their capacitances in the lab according to the classical capacitor impedance theory. The test results show that the typical SSD capacitance is between 0.15 F and 0.36 F. The target pipeline for numerical modeling is a 50 km pipeline with different levels of coating quality, SSD grounding resistance, and SSD capacitance. An equivalent circuit model with ten parallel branches is built accordingly, and solved by an open-source electrical circuit software module. The numerical modeling results firmly support the primary conclusions drawn from the four-stage physical model. Moreover, the parallel analog circuit tests in the lab further prove the rationality of the four-stage model. Finally, comprehensive field tests are performed to study how SSDs influence the CP install-off potential survey, close interval potential survey, direct current voltage gradient, and alternating current voltage gradient. Practical field guidelines on how to mitigate SSDs' influence are proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tsur, Yacov, David Zilberman, Uri Shani, Amos Zemel, and David Sunding. Dynamic intraseasonal irrigation management under water scarcity, water quality, irrigation technology and environmental constraints. United States Department of Agriculture, March 2007. http://dx.doi.org/10.32747/2007.7696507.bard.

Повний текст джерела
Анотація:
In this project we studied optimal use and adoption of sophisticated irrigation technologies. The stated objectives in the original proposal were to develop a conceptual framework for analyzing intra-season timing of water application rates with implications for crop and irrigation technology selection. We proposed to base the analysis on an intra-seasonal, dynamic, agro-economic model of plants' water demand, paying special attention to contamination of groundwater and soil in intensively cultivated areas that increasingly rely on water of lesser quality. The framework developed in the project integrates (i) a bio-physical model of water flow in the vadose zone and water uptake by plants and yield response with (ii) a dynamic management model to determine the optimal intra-season irrigation policy. It consists of a dynamic optimization model to determine irrigation rates at each point of time during the growing season and aggregation relating harvested yield with accumulated water input. The detailed dynamic approach provides a description of yield production processes at the plant’s level, and serves to determine intra-season irrigation decisions. Data derived from extensive field experiments were used to calibrate the model's parameters. We use the framework to establish the substitution between irrigation technology (capital) and water inputs; this is an important property of irrigation water productivity that has been overlooked in the literature. Another important feature investigated is the possibility to substitute fresh and saline water with a minimal productivity loss. The effects of soil properties and crop characteristics on optimal technology adoption have also been studied. We find that sandy soil, with low water holding capacity, is more conducive to adoption of sophisticated drip irrigation, as compared to heavier soils in which drainage losses are significantly smaller.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Inc., Kellogg Brown and Root. L51989 Submarine Pipeline On-Bottom Stability-Volume 1-Analysis and Design Guidelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2002. http://dx.doi.org/10.55274/r0011168.

Повний текст джерела
Анотація:
The state-of-the-art in Pipeline stability design has been changing very rapidly recently. The physics governing on-bottom stability are much better understood now than they were eight years ago. This is due largely because of research and large scale model tests sponsored by PRCI. Analysis tools utilizing this new knowledge have been developed. These tools provide the design engineer with a rational approach for weight coating design, which he can use with confidence because the tools have been developed based on full scale and near full scale model tests. These tools represent the state-of-the-art in stability design and model the complex behavior of pipes subjected to both wave and current loads. These include; hydrodynamic forces which account for the effect of the wake (generated by flow over the pipe) washing back and forth over the pipe in oscillatory flow; and, the embedment (digging) which occurs as a pipe resting on the seabed is exposed to oscillatory loadings and small oscillatory deflections. This report has been developed as a reference handbook for use in on-bottom pipeline stability analysis and design. It consists of two volumes. Volume one is devoted to descriptions of the various aspects of the problem: the pipeline design process ocean physics, wave mechanics, hydrodynamic forces, and meteorological data determination geotechnical data collection and soil mechanics stability design procedures. Volume two describes, lists, and illustrates the analysis software. Diskettes containing the software and examples of the software are also included in Volume two. This publication was formally titled: AGA On Bottom Stability Software.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії