Добірка наукової літератури з теми "Soil and Fractured Rocks"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Soil and Fractured Rocks".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Soil and Fractured Rocks"

1

Sai, Kolluru Venkata, V. V. N. Prabhakara Rao, and V. Mallikarjuna. "A Review on the Utilisation of Silica Fume and Metakaolin as Novel Grout Materials." IOP Conference Series: Earth and Environmental Science 1130, no. 1 (January 1, 2023): 012009. http://dx.doi.org/10.1088/1755-1315/1130/1/012009.

Повний текст джерела
Анотація:
Abstract One of the approaches for solving challenges related to foundations, open cut excavations, landslides, rock slopes, fractured rocks and tunnelling is enhancement of soil via grouting. Two main components of soil enhancement are reduced permeability and increase in strength. To overcome reduced strength and permeability in soils and rock fissures, it has always depended on cement and lime treatment. To replace cement and lime, chemical and ultra-fine cementitious grouts are often employed to break through highly fissured rocks or fine sands. This document gives a censorious evaluation of chosen studies that used unconventional cementitious grouts in order to assist practicing engineers and promote best practice. In sand and cohesive soils, sodium silicate, colloidal silica, metakaolin, silica fume, fly ash, resins, polymers, and microfine substitutes were evaluated as grouting material. The intent of the article is to procure effective data for consultants and contractors who will be building injection works that use non-cementitious fluids in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cacace, Mauro, and Antoine B. Jacquey. "Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks." Solid Earth 8, no. 5 (September 13, 2017): 921–41. http://dx.doi.org/10.5194/se-8-921-2017.

Повний текст джерела
Анотація:
Abstract. Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture–solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton–Raphson or by free Jacobian inexact Newton–Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bruckert, Sylvain, and Malika Bekkary. "Formation des horizons diagnostiques argiliques et de fragipan en fonction de la permeabilité des roches." Canadian Journal of Soil Science 72, no. 1 (February 1, 1992): 69–88. http://dx.doi.org/10.4141/cjss92-007.

Повний текст джерела
Анотація:
Leached soils (Alfisols) with either an argillic horizon or a fragipan were encountered close to each other on the marly-limestone and sandstone plateaus of Haute–Saône (France). Soils have formed under periglacial conditions during the Riss in a similar climatic environment. Because the soils occurring today are in the same geomorphic and topographic position, the objectives of the investigations were to study the influence of other pedogenic factors, such as parent materials and underlying rock type. The soil mantle, above the bedrock, is from one and a half to several meters thick. Four types of materials were identified through the pedons studied: sands, clays, clay-loams, loams. Their location being directly above either a rhetian sandstone or a sinemurian marly-limestone, sandy or clayey materials were accumulated as insoluble residue of the underlying rocks. Related to particle size distribution and mineralogy, the clay loamy materials were identified as eolian dusts. The loamy materials were also eolian deposits, but they were reworked and transported with sandy particles from sandstone of other high landscape positions. The surficial materials, encountered in all the sites studied, were texturally and mineralogically similar, which suggested that the parent materials were not the main factor controlling the formation of argillic horizons or fragipans. On the other hand, the effect of rock type has been established. Our data suggest: (1) significant relationships between the internal drainage of soil and the underlying geological substrata (type, joints and fracture planes, permeability, effect on hydrology), (2) rock effect on formation of an argillic or a fragipan horizon. In the case where meteoric waters can move through fractured rocks, soils can undergo drying and wetting cycles and clays swell and shrink. These processes induce favorable effects on genesis of soil structure, particularly of Bt structure. In the case of low-porosity and low-permeability rocks, soils dry from the surface downward and dessication cycles accomplish a vertical cleavage and polygonal cracking. We have concluded that the rock effect is a major factor involved in the development of leached soils with an argillic horizon or a fragipan. A major advantage of the rock factor hypothesis is that the formation of fragipans is possible in periglacial areas and far from glaciated regions, as proposed by the literature. Key words: Fragipans, argillic horizon, pedogenetic factors, rock effect, Alfisols
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xia, Lu, and Qingchun Yu. "Numerical Investigations of Blockiness of Fractured Rocks Based on Fracture Spacing and Disc Diameter." International Journal of Geomechanics 20, no. 3 (March 2020): 04020004. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0001596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rodríguez-Robles, Ulises, Tulio Arredondo, Elisabeth Huber-Sannwald, José Alfredo Ramos-Leal, and Enrico A. Yépez. "Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils." Biogeosciences 14, no. 23 (November 30, 2017): 5343–57. http://dx.doi.org/10.5194/bg-14-5343-2017.

Повний текст джерела
Анотація:
Abstract. While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil–bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Masciopinto, Costantino, and Maria Clementina Caputo. "Modeling Unsaturated-Saturated Flow and Nickel Transport in Fractured Rocks." Vadose Zone Journal 10, no. 3 (August 2011): 1045–57. http://dx.doi.org/10.2136/vzj2010.0087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Long, Lei Yang, Liding Chen, Fangkai Zhao, and Shoujuan Li. "Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock." Hydrology Research 50, no. 2 (October 10, 2018): 577–88. http://dx.doi.org/10.2166/nh.2018.086.

Повний текст джерела
Анотація:
Abstract Knowledge is limited on the changes in tree water uptake over short timescales in shallow soils underlain by fractured rocks under humid climate conditions. This study explored the changing patterns of tree water uptake at two forests (camphor) and two orchards (peach and tea) over multi-day timescales. We collected water isotopic samples (δD and δ18O) from rainfall, spring, tree branch, soil and fissure between two rain events (8-day duration). The trees in the forest lands exhibited a larger variability in stem water isotopic composition than the trees in the orchards. Significantly different changing patterns of stem water isotopic composition were found between the orchards and the forest lands. On average, the fissure contributed most of the tree water uptake (46.1 ± 20.8%) compared to the soil layer (33.9 ± 17.7%) and shallow groundwater (20.0 ± 13.5%). Main water sources for the trees in this study shifted at a daily timescale. Compared to orchards, forest trees had a relatively large range of source water and a good water use strategy in the shallow soil–rock profile under humid climate conditions. This study emphasizes the importance of characterization of the changing patterns of stem water isotopic composition over short timescales.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pan, L., Y. S. Wu, and K. Zhang. "A Modeling Study of Flow Diversion and Focusing in Unsaturated Fractured Rocks." Vadose Zone Journal 3, no. 1 (February 1, 2004): 233–46. http://dx.doi.org/10.2113/3.1.233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pan, Lehua, Yu-Shu Wu, and Keni Zhang. "A Modeling Study of Flow Diversion and Focusing in Unsaturated Fractured Rocks." Vadose Zone Journal 3, no. 1 (2004): 233. http://dx.doi.org/10.2136/vzj2004.0233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pan, Lehua, Yu-Shu Wu, and Keni Zhang. "A Modeling Study of Flow Diversion and Focusing in Unsaturated Fractured Rocks." Vadose Zone Journal 3, no. 1 (February 2004): 233–46. http://dx.doi.org/10.2136/vzj2004.2330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Soil and Fractured Rocks"

1

Felton, David Scott. "Theoretical dissolution coefficient for rock fractures." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/21505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Depner, Joseph Scott. "Estimation of the three-dimensional anisotropic spatial covariance of log permeability using single-hole and cross-hole packer test data from fractured granites." Thesis, The University of Arizona, 1985. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_1985_407_sip1_w.pdf&type=application/pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jarsjö, Jerker. "Hydraulic conductivity relations in soil and fractured rock : fluid component and phase interaction effects /." Stockholm : Tekniska högsk, 1998. http://www.lib.kth.se/abs98/jars0527.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Blake, Oshaine Omar. "Seismic transport properties of fractured rocks." Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569902.

Повний текст джерела
Анотація:
Fracture in rock is a major factor that affects the rock's physical properties and it also provides the route for the passage of fluids that can transport potentially hazardous substances and hydrothermal fluids. Assessment of the degree of fracture in rocks is important as they play an essential role in many geomechanical issues (stability of boreholes, stimulation of oil and geothermal reservoirs, the design of civil structures, tunnels and hazardous waste disposals), and in understanding a number of processes in the Earth's crust such as magmatic intrusions, plate tectonics, fault mechanics and sedimentary basins. The fundamental understanding of how seismic waves are altered when they pass through fractured rock are currently poorly understood, hence a comprehensive study is timely. An improved understanding of how fractures affect the physical properties (such as seismic velocity and attenuation) would significantly enhance our ability to predict the fracture state of rock at depth remotely. The main focus of this thesis is to characterize P and S wave velocity, their ratio, shear wave splitting and attenuation and their dependence on the fracture density of the rock. Laboratory experiments were carried out in uniaxial compressive condition to increase microfracture density and hydrostatic confining condition to close microfractures. Experiments were performed on a single rock type (Westerly granite) to keep the mineralogy, chemical composition, and grain size constant. The condition of the microfractures was dry to remove the complexity of saturation and fluid type. Through transmission technique was used to measure P and S wave velocities and spectral ratio technique was used to measure attenuation. P and S wave velocities were measured at 1.5MHz. Attenuation measurements were made in the frequency range of O.8MHz to 1.7MHz. Elastic properties can be measured statically where strain data are recorded and related to stress during slow loading of a specimen, or dynamically, where the elasticity can be calculated from the velocity of P and S waves. In order to understand the elastic properties of the crust at depth using seismology, the relationship between the static and dynamic properties must be known. Increasing-amplitude, uniaxial cyclic loading experiments were carried out to investigate and quantify the effect of microcracking on the elastic properties, and to establish a relationship between static and dynamic measurements. There is a linear relationship between static and dynamic Young's moduli, and a significant discrepancy between the static and dynamic Poisson's ratio. We attribute the differences in the static and dynamic elastic properties to the size distribution of the crack population relative to the amplitude and frequency of the applied stress, frictional sliding on closed cracks during loading/unloading, and the assumption of isotropic elasticity in the sample. Strong stress-dependency exists in the uniaxial compressive and hydrostatic confining conditions due to closure of microcracks. This resulted in: an increase in the P and S wave velocities, their ratio, static and dynamic Young's modulus, and static and dynamic Poisson's ratio; and a decrease in the P and S wave attenuation. The increase of fracture density caused: a decrease in the P and S wave velocities and static and dynamic Young's modulus; a small increase in the dynamic Poisson's ratio and VpNs; and a large increase in the static Poisson's ratio, and P and S wave attenuation. Seismic wave attenuation is more sensitive than seismic wave velocity to closure of microcracks and Increase of microfracture density. The effect of varying crack density on the P and S wave velocities and elastic properties under confining pressure (depth) were quantified. The elastic wave velocities and Young's modulus of samples that have a greater amount of microcrack damage required higher confining pressure to be equal to those of samples with no induced microcrack damage. We found that fractures are completely closed at ~5km (~130MPa) in crystalline rocks. At shallow depth (less than 5km), fracture density affects seismic wave velocities. We observed an overall 6% and 4% reduction in P and S wave velocities respectively due to an increase in the fracture density. The overall reduction in the P and S wave decreased to 2% and 1 % at ~2km. Consequently, assessing the degree of fracture between 2km and 5km using seismic wave velocities may be difficult
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Noorian-Bidgoli, Majid. "Strength and deformability of fractured rocks." Doctoral thesis, KTH, Mark- och vattenteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155719.

Повний текст джерела
Анотація:
This thesis presents a systematic numerical modeling framework to simulate the stress-deformation and coupled stress-deformation-flow processes by performing uniaxial and biaxial compressive tests on fractured rock models with considering the effects of different loading conditions, different loading directions (anisotropy), and coupled hydro-mechanical processes for evaluating strength and deformability behavior of fractured rocks. By using code UDEC of discrete element method (DEM), a series of numerical experiments were conducted on discrete fracture network models (DFN) at an established representative elementary volume (REV), based on realistic geometrical and mechanical data of fracture systems from field mapping at Sellafield, UK. The results were used to estimate the equivalent Young’s modulus and Poisson’s ratio and to fit the Mohr-Coulomb and Hoek-Brown failure criteria, represented by equivalent material properties defining these two criteria. The results demonstrate that strength and deformation parameters of fractured rocks are dependent on confining pressures, loading directions, water pressure, and mechanical and hydraulic boundary conditions. Fractured rocks behave nonlinearly, represented by their elasto-plastic behavior with a strain hardening trend. Fluid flow analysis in fractured rocks under hydro-mechanical loading conditions show an important impact of water pressure on the strength and deformability parameters of fractured rocks, due to the effective stress phenomenon, but the values of stress and strength reduction may or may not equal to the magnitude of water pressure, due to the influence of fracture system complexity. Stochastic analysis indicates that the strength and deformation properties of fractured rocks have ranges of values instead of fixed values, hence such analyses should be considered especially in cases where there is significant scatter in the rock and fracture parameters. These scientific achievements can improve our understanding of fractured rocks’ hydro-mechanical behavior and are useful for the design of large-scale in-situ experiments with large volumes of fractured rocks, considering coupled stress-deformation-flow processes in engineering practice.

QC 20141111

Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dong, Chengli. "Acidizing of naturally-fractured carbonate formations." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3031042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhao, Zhihong. "Stress Effects on Solute Transport in Fractured rocks." Doctoral thesis, KTH, Teknisk geologi och geofysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-42361.

Повний текст джерела
Анотація:
The effect of in-situ or redistributed stress on solute transport in fractured rocks is one of the major concerns for many subsurface engineering problems. However, it remains poorly understood due to the difficulties in experiments and numerical modeling. The main aim of this thesis is to systematically investigate the influences of stress on solute transport in fractured rocks, at scales of single fractures and fracture networks, respectively. For a single fracture embedded in a porous rock matrix, a closed-form solution was derived for modeling the coupled stress-flow-transport processes without considering damage on the fracture surfaces. Afterwards, a retardation coefficient model was developed to consider the influences of damage of the fracture surfaces during shear processes on the solute sorption. Integrated with particle mechanics models, a numerical procedure was proposed to investigate the effects of gouge generation and microcrack development in the damaged zones of fracture on the solute retardation in single fractures. The results show that fracture aperture changes have a significant influence on the solute concentration distribution and residence time. Under compression, the decreasing matrix porosity can slightly increase the solute concentration. The shear process can increase the solute retardation coefficient by offering more sorption surfaces in the fracture due to gouge generation, microcracking and gouge crushing. To study the stress effects on solute transport in fracture systems, a hybrid approach combing the discrete element method for stress-flow simulations and a particle tracking algorithm for solute transport was developed for two-dimensional irregular discrete fracture network models. Advection, hydrodynamic dispersion and matrix diffusion in single fractures were considered. The particle migration paths were tracked first by following the flowing fluid (advection), and then the hydrodynamic dispersion and matrix diffusion were considered using statistic methods. The numerical results show an important impact of stress on the solute transport, by changing the solute residence time, distribution and travel paths. The equivalent dispersion coefficient is scale dependent in an asymptotic or exponential form without stress applied or under isotropic compression conditions. Matrix diffusion plays a dominant role in solute transport when the hydraulic gradient is small. Outstanding issues and main scientific achievements are also discussed.
QC 20111011
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bennett, Richard Antony. "Impact fragmentation of boulders confined in soil." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khoshboresh, Amir Rahim. "A study on deformation of tunnels excavated in fractured rocks." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29831/29831.pdf.

Повний текст джерела
Анотація:
La déformation due au fluage d'un massif rocheux autour d'un tunnel a été rencontrée fréquemment. Ce phénomène est évident où il y a des tunnels creusés dans la roche tendre, des masses rocheuses faible et fortement cisaillées, ou des massifs rocheux soumis à des contraintes in-situ élevées. La déformation due au fluage se produit fréquemment au moment d’excavation des tunnels longs où il y a des failles et des zones fracturées et cisaillées. Ce phénomène peut causer différents dommages sur des systèmes de soutènement en raison de la déformation excessive et des effondrements. La déformation excessive impose une ré-excavation de la section du tunnel, qui monte le coût supplémentaire, la durée de la réalisation du projet et le risque de la sécurité sur le projet. En plus, comme la stabilité de terrain est dans un état critique durant la ré-excavation, une petite négligence peut conduire à une grande caverne. Bien que la déformation de fluage est commune dans un massif rocheux à une faible résistance dans un tunnel très profond, mais ce phénomène a été observé dans des tunnels peu profonds. Une bonne compréhension des déformations causées par une excavation souterraine requiert la connaissance de l'interaction roche-support et l'interprétation des données de terrain. Auparavant, l’objet principal de la surveillance effectuée durant la construction du tunnel était des mesures de la pression au terrain imposé sur le revêtement du tunnel. Mais aujourd’hui, les méthodes modernes de construction de tunnel se concentrent sur la surveillance des déplacements pendant et après la construction. Afin de déterminer des déformations dans les tunnels, Panet et Sulem ont supposé que "Le tunnel a une section transversale circulaire et le milieu est homogène et isotrope, aussi le tunnel est suffisamment profond pour considérer que la distribution des contraintes est homogène". Mais dans le cas quasi réel, la distribution de la contrainte autour du tunnel est hétérogène et anisotrope. Dans cette étude, pour la modification des équations Panet et Sulem, certaines équations sont proposées en cas de matériau hétérogène et anisotrope pour généraliser le problème. La galerie de force motrice Seymareh a été considérée comme l’étude de cas. Celle-ci est une partie du conduit d’eau dans le projet de centrale électrique du barrage Seymareh. Ce projet est situé à l'ouest de l'Iran. Les données de surveillance de la galerie de force motrice sont collectées au moment de l’excavation du tunnel, et sont comparées avec les résultats de la modélisation numérique et de la solution analytique. Cette comparaison montre que les résultats des données expérimentales obtenues par la surveillance sont très proches des résultats de la solution analytique, mais il y a une différence entre les deux et la modélisation numérique. Il était prévisible, car l’effet d’autres activités comme l’excavation des tunnels verticaux n’est pas prise en compte dans l’analyse numérique et aussi dans la solution analytique. Il est évident que les autres activités comme l’excavation des tunnels verticaux et l'excavation du tunnel principal vers deux directions opposées, peuvent affecter sur les résultats de la surveillance. D'autre part, les données initiales utilisées dans l'analyse numérique et la solution analytique ne sont pas tout à fait exactes, car elles sont obtenues en tant que représentatives du massif rocheux de la région, mais pas pour une section particulière. Toutefois, le but de cette étude est le développement d'une solution analytique de la déformation dans les tunnels sur les conditions générales et la poursuite de cette étude pourra être plus développée.
The creep deformation of a rock mass around a tunnel has been encountered frequently. It is particularly common in tunnels excavated in soft rock, heavily sheared weak rock masses or rock masses subjected to high in-situ stresses. Creep deformation in fault and shear fractured zones are one of the frequently encountered difficulties in long tunnel construction, which tend to cause failure of supporting systems due to excessive deformation and cavern. Excessive deformation would necessitate re-mining of the tunnel cross section, thus imposing impacts such as extra cost, extended time schedule and safety risk on the project. Furthermore, as the ground stability is in critical condition during re-mining, the slightest negligence would lead to major cavern. Although creep deformation is common to extremely poor rock mass under high overburden in a tunnel alignment, but however this phenomenon is not limited to tunnels with high overburden. A good understanding of the deformations caused by an underground excavation requires simultaneously knowledge of the rock-support interaction and interpretation of field data. Formerly, the main purpose of the monitoring carried out during tunnel construction was to measure the ground pressures acting on the tunnel lining. Modern tunneling practice emphasizes the monitoring of the displacements occurring during and after the construction. Panet and Sulem for determining of deformations in tunnels have assumed that "The tunnel has a circular cross section and around the tunnel, the rock is homogeneous and isotropic and also the tunnel is deep enough to consider that the stress distribution is homogenous". But in almost real cases, the stresses distribution around the tunnel is not homogeneous and isotropic. In this study, for modification of the Panet and Sulem equations, some equations are proposed in case of nonhomogeneous and anisotropic for generalizing of the problem. Seymareh power tunnel which is considered as a case study is a part of the powerhouse waterways system of the Seymareh dam and hydroelectric power plant project. The project is located in west of Iran. The monitoring data of power tunnel which are collected during excavation of tunnel is compared with the results of numerical modelling and analytical solution results as well as. The results obtained from comparison show although the field data, which are collected through the monitoring, are very close to the analytical solution results (approximately), but there is a significant difference between both of them and numerical modelling results. It was predictable; because the influence of the other activities such as excavation of shaft and surge tank in the numerical analysis and also analytical solution are not considered. It is obvious that other activities such as excavation of shaft and surge tank and also excavation of mean tunnel from other direction which were under operation at the same time can effect on the results of monitoring. On the other hand, the initial data which are used in numerical analysis and analytical solution are not quite accurate; because they are extracted as a representative of the rock mass of region, not for a particular section. However the goal of this study is development of analytical solution of deformation in tunnels on general conditions and pursuit of the study could be leaded to more development in this field.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hyun, Yunjung. "Multiscale anaylses of permeability in porous and fractured media." Diss., The University of Arizona, 2002. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2002_321_sip1_w.pdf&type=application/pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Soil and Fractured Rocks"

1

1960-, Zhao Jian, ed. Stability analysis and modelling of underground excavations in fractured rocks. Amsterdam: Elsevier, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hansen, Bruce P. Use of surface and borehole geophysical surveys to determine fracture orientation and other site characteristics in crystalline bedrock terrain, Millville and Uxbridge, Massachusetts. Marlborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Orekhov, V. G. Fracture mechanics of engineering structures and rocks. Rotterdam: Balkema, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Prof, Johnson Paul A., and Wiley online library, eds. Nonlinear mesoscopic elasticity: The complex behaviour of granular media including rocks and soil. Weinheim: Wiley-VCH, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1938-, Stephansson Ove, Hudson J. A, and Jing Lanru, eds. Coupled thermo-hydro-mechanical processes in geo-systems: Fundamentals, modelling, experiments, and applications. Boston: Elsevier, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

P, Hansen Bruce. Use of surface and borehole geophysical surveys to determine fracture orientation and other site characteristics in crystalline bedrock terrain, Millville and Uxbridge, Massachusetts. Marlborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

P, Hansen Bruce. Use of surface and borehole geophysical surveys to determine fracture orientation and other site characteristics in crystalline bedrock terrain, Millville and Uxbridge, Massachusetts. Marlborough, Mass: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carpenter, Philip J. Application of surface geophysics to detection and mapping of mine subsidence fractures in drift and bedrock. Champaign, Ill: Illinois State Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Singhal, B. B. S., and R. P. Gupta. Applied Hydrogeology of Fractured Rocks. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9208-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Singhal, B. B. S., and R. P. Gupta. Applied Hydrogeology of Fractured Rocks. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8799-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Soil and Fractured Rocks"

1

Coldewey, Wilhelm G., and Ludger Krahn. "Manual of Groundwater Investigation in Fractured Rocks in Connection with Contaminated Land." In Contaminated Soil ’90, 693–94. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3270-1_143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Berger, D. G., and C. Braester. "Problems of Flow Through Fractured Rock Formations Related to Contamination of Aquifers." In Soil and Aquifer Pollution, 274–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03674-7_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singhal, B. B. S., and R. P. Gupta. "Hydrogeology of crystalline rocks." In Applied Hydrogeology of Fractured Rocks, 241–60. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9208-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Singhal, B. B. S., and R. P. Gupta. "Hydrogeology of volcanic rocks." In Applied Hydrogeology of Fractured Rocks, 261–74. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9208-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Singhal, B. B. S., and R. P. Gupta. "Hydrogeology of carbonate rocks." In Applied Hydrogeology of Fractured Rocks, 275–93. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9208-6_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maltman, Alex. "The Rocks Change Shape: Folds, Faults, and Joints." In Vineyards, Rocks, and Soils. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190863289.003.0012.

Повний текст джерела
Анотація:
You may have looked at some rocky cliff and noticed sedimentary strata bent into huge curves, the shapes that geologists call folds. You may even have heard of terms like anticline and syncline. Almost certainly you will have heard of geological faults: the San Andreas Fault in California must be one of the best-known geological features there is. They are all examples of what geologists call geological structures. They can affect vineyards, and the names of examples appear around the world on wine labels. So how do these structures come about, and what decides whether rocks make folds or faults? We introduced the concept of tectonic stresses in the previous chapter. We learned that because they act in a particular direction they can induce foliations within metamorphic rocks, but of relevance here is that they can also cause rocks to change their overall shape. That is, the rocks deform, which gives rise to various geological structures. Any solid matter (unlike a liquid) that feels stresses, of whatever origin, will resist them up to a point before it starts to change shape. That point is what defines the strength of the material. The same principles apply when stresses are applied to a sediment or a soil, though rocks, with their constituent minerals firmly bonded together, resist much greater levels of stress before they deform. As one wag put it, the difference between a rock and a soil is that when you kick them a rock hurts your foot . . . So, focusing in on rocks, we see two ways in which they can deform: by flow and by fracture. Looking ahead to where this is going to lead, it’s flow that gives rise to folds, and faults result from fracture. A good analogy for the flow of rocks is glacial ice. The ice is solid to us, but given time, it can flow, to give the “river of ice” that is a glacier. If you leave a ball of silicone putty on a table top, after a few days it will have flowed, while still being a solid, to make a pool.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mutch, Robert D., and Joanna I. Scott. "Problems with the Remediation of Diffusion-Limited Fractured-Rock Systems." In Hazardous Waste Site Soil Remediation, 51–80. CRC Press, 2017. http://dx.doi.org/10.1201/9780203752258-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Scaling and Hierarchy of Models for Flow Processes in Unsaturated Fractured Rock." In Scaling Methods in Soil Physics, 391–436. CRC Press, 2003. http://dx.doi.org/10.1201/9780203011065-26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hinds, J., P. Witherspoon, G. Bodvarsson, and B. Faybishenko. "Scaling and Hierarchy of Models for Flow Processes in Unsaturated Fractured Rock." In Scaling Methods in Soil Physics, 373–417. CRC Press, 2003. http://dx.doi.org/10.1201/9780203011065.ch20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Power, T., B. J. Smith, and W. B. Whalley. "Fracture Patterns and Grain Release in Physically Weathered Granitic Rocks." In Soil Micro-Morphology: A Basic and Applied Science, Proceedings of the VIIIth International Working Meeting of Soil Micromorphology, 545–50. Elsevier, 1990. http://dx.doi.org/10.1016/s0166-2481(08)70371-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Soil and Fractured Rocks"

1

Dang, Faning. "Rock and soil damage-fracture space mechanics: Damage-fracture space." In International Conference on Intelligent Systems and Knowledge Engineering 2007. Paris, France: Atlantis Press, 2007. http://dx.doi.org/10.2991/iske.2007.261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schoenberg, M., and C. Sayers. "Seismic Anisotropy of Fractured Rocks." In 3rd International Congress of the Brazilian Geophysical Society. European Association of Geoscientists & Engineers, 1993. http://dx.doi.org/10.3997/2214-4609-pdb.324.1511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dang, Faning, Houqun Chen, Weihua Ding, and Xiaotao Yin. "Rock and soil damage-fracture space mechanics: The divisional damage-fracture theory." In International Conference on Intelligent Systems and Knowledge Engineering 2007. Paris, France: Atlantis Press, 2007. http://dx.doi.org/10.2991/iske.2007.263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dang, Faning, Houqun Chen, Weihua Ding, and Xiaotao Yin. "Rock and soil damage-fracture space mechanics: Physical state indexes." In International Conference on Intelligent Systems and Knowledge Engineering 2007. Paris, France: Atlantis Press, 2007. http://dx.doi.org/10.2991/iske.2007.262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rubino, J. G., T. M. Müller, L. Guarracino, and K. Holliger. "Seismic P-wave Attenuation in Fractured Rocks." In EAGE Workshop on Seismic Attenuation. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20131835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lambert, G., B. Gurevich, and M. Brajanovski. "Frequency Dependent Anisotropy of Fractured Porous Rocks." In 67th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.1.p162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jing, Yu, Ryan Armstrong, and Peyman Mostaghimi. "Deterministic Pipe Network Modelling for Fractured Rocks." In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/197960-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Raghavan, Rajagopal, and Chih-Cheng Chen. "Evaluation of Fractured Rocks through Anomalous Diffusion." In SPE Western Regional Meeting. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/195305-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rozanov, A., A. Zang, C. Wagner, and G. Dresen. "Acoustic Frequency Signatures of Laboratory Fractured Rocks." In 63rd EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2001. http://dx.doi.org/10.3997/2214-4609-pdb.15.p036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gage, Henry, and Carolyn Eyles. "CLIMATIC INFLUENCES ON THERMAL WEATHERING OF FRACTURED ROCK." In PRF2022—Progressive Failure of Brittle Rocks. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022pr-376117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Soil and Fractured Rocks"

1

Y.S. Wu, W. Zhang, L. Pan, J. Hinds, and G. Bodvarsson. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/860283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ladd, Anthony. Reaction-Infiltration Instabilities in Fractured and Porous Rocks. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1392514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

R. Salve, T.A. Ghezzehei, and R. Jones. Initiation and Persistence of Preferential Flow in Fractured Rocks. US: Yucca Mountain Project, Las Vegas, Nevada, August 2006. http://dx.doi.org/10.2172/899268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zimmerman, R. W., T. Hadgu, and G. S. Bodvarsson. Transient dual-porosity simulations of unsaturated flow in fractured rocks. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/70743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wood, James R., and William B. Harrison. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/805238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

James R. Wood and William B. Harrison. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN. Office of Scientific and Technical Information (OSTI), February 2002. http://dx.doi.org/10.2172/834671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

James R. Wood and William B. Harrison. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/834678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

James R. Wood and William B. Harrison. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/835050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seol, Yongkoo, Hui Hai Liu, and Gudmundur S. Bodvarsson. Effects of dry fractures on matrix diffusion in unsaturated fractured rocks. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/793765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

James R. Wood and William B. Harrison. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/826063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії