Добірка наукової літератури з теми "Skinks Classification"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Skinks Classification".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Skinks Classification"
Freitas, Elyse S., Aniruddha Datta-Roy, Praveen Karanth, L. Lee Grismer, and Cameron D. Siler. "Multilocus phylogeny and a new classification for African, Asian and Indian supple and writhing skinks (Scincidae: Lygosominae)." Zoological Journal of the Linnean Society 186, no. 4 (April 5, 2019): 1067–96. http://dx.doi.org/10.1093/zoolinnean/zlz001.
Повний текст джерелаHEDGES, S. BLAIR. "The high-level classification of skinks (Reptilia, Squamata, Scincomorpha)." Zootaxa 3765, no. 4 (February 19, 2014): 317. http://dx.doi.org/10.11646/zootaxa.3765.4.2.
Повний текст джерелаSHEA, GLENN M. "Nomenclature of supra-generic units within the Family Scincidae (Squamata)." Zootaxa 5067, no. 3 (November 11, 2021): 301–51. http://dx.doi.org/10.11646/zootaxa.5067.3.1.
Повний текст джерелаProkof’eva, Tatiana V. "Experience of the teaching of soil classification systems to students at different stages of education (Faculty of Soil Science, LMSU, Russia)." Bulletin of Geography. Physical Geography Series 14, no. 1 (June 1, 2018): 85–90. http://dx.doi.org/10.2478/bgeo-2018-0008.
Повний текст джерелаNuriddinova, Madinabonu. "Classification Of Genres In Multimedia Journalism." American Journal of Social Science and Education Innovations 02, no. 11 (November 23, 2020): 112–18. http://dx.doi.org/10.37547/tajssei/volume02issue11-19.
Повний текст джерелаRohman, Abdul. "Implementasi Teori Pembelajaran Blended Learning dalam Menyeimbangkan Kapabilitas Belajar pada Era Digital (Studi Kasus di Prodi PAI Universitas Alma Ata Yogyakarta)." An-Nuha : Jurnal Kajian Islam, Pendidikan, Budaya dan Sosial 7, no. 1 (July 15, 2020): 33–51. http://dx.doi.org/10.36835/annuha.v7i1.343.
Повний текст джерелаLavrentyeva, O. O. "TO THE CLASSIFICATION OF SKILLS." Educational Dimension 4 (December 26, 2002): 364–70. http://dx.doi.org/10.31812/educdim.5121.
Повний текст джерелаBelogurov, Anatoly, and Margarita Marushina. "Classification of corporate Executive training programs and clusters of competencies developed in them." KANT 35, no. 2 (June 2020): 189–95. http://dx.doi.org/10.24923/2222-243x.2020-35.39.
Повний текст джерелаSriwong, Kittipat, Supaporn Bunrit, Kittisak Kerdprasop, and Nittaya Kerdprasop. "Dermatological Classification Using Deep Learning of Skin Image and Patient Background Knowledge." International Journal of Machine Learning and Computing 9, no. 6 (December 2019): 862–67. http://dx.doi.org/10.18178/ijmlc.2019.9.6.884.
Повний текст джерелаBEKTAŞ, Nurettin, Sümeyra BEKTAŞ, and Arda ÖZTÜRK. "INVESTIGATION OF THE PROBLEM SOLVING AND DECISION-MAKING SKILLS OF KARATE REFEREES." International Refereed Journal of Humanities and Academic Sciences, no. 27 (2022): 0. http://dx.doi.org/10.17368/uhbab.2022.27.01.
Повний текст джерелаДисертації з теми "Skinks Classification"
Al-Anezi, Yousuf. "Computer based learning environment for mathematical classification skills." Thesis, University of Leeds, 1994. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.666890.
Повний текст джерелаViana, Joaquim Mesquita da Cunha. "Classification of skin tumours through the analysis of unconstrained images." Thesis, De Montfort University, 2009. http://hdl.handle.net/2086/2400.
Повний текст джерелаWan, Fengkai. "Deep Learning Method used in Skin Lesions Segmentation and Classification." Thesis, KTH, Medicinsk teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233467.
Повний текст джерелаDhinagar, Nikhil J. "Non-Invasive Skin Cancer Classification from Surface Scanned Lesion Images." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1366384987.
Повний текст джерелаMoulis, Armand. "Automatic Detection and Classification of Permanent and Non-Permanent Skin Marks." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138132.
Повний текст джерелаNär forensiker försöker identifiera förövaren till ett brott använder de individuella ansiktsmärken när de jämför den misstänkta med förövaren. Dessa ansiktsmärken identifieras och lokaliseras oftast manuellt idag. För att effektivisera denna process, är det önskvärt att detektera ansiktsmärken automatiskt. I rapporten beskrivs en framtagen metod som möjliggör automatiskt detektion och separation av permanenta och icke-permanenta ansiktsmärken. Metoden som är framtagen använder en snabb radial symmetri algoritm som en huvuddel i detektorn. När kandidater av ansiktsmärken har tagits, elimineras alla falska detektioner utifrån deras storlek, form och hårinnehåll. Utifrån studiens resultat visar sig detektorn ha en god känslighet men dålig precision. Eliminationsmetoderna av falska detektioner analyserades och olika attribut användes till klassificeraren. I rapporten kan det fastställas att färgskiftningar på ansiktsmärkena har en större inverkan än formen när det gäller att sortera dem i permanenta och icke-permanenta märken.
Ridell, Patric, and Henning Spett. "Training Set Size for Skin Cancer Classification Using Google’s Inception v3." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209443.
Повний текст джерелаDatorstödd diagnostik (CADx) är idag vanligt förekommande inom sjukvården. Med datorseende är det möjligt att undersöka huruvida bilder påvisar tecken för till exempel bröstcancer och lungsjukdomar. Träffsäkerheten för convolutional neural networks (CNN) klassificering av sjukdomar beror till viss del på hur mycket data det tränats på. Stora datamängder är en förutsättning för att CNN ska kunna ge pålitliga diagnoser. En stor mängd indata innebär dock att bräkningstiden ökar. Detta medför att det kan behöva göras en avvägning mellan träffsäkerhet och beräkningstid. Cho et al. har i en studie visat att träffsäkerhetens förbättring stagnerar när mängden indata ökar. Det finns därför ett intresse i att hitta den punkt där träffsäkerheten stagnerar, eftersom ytterligare ökning av indata skulle innebära längre beräkningstid men med liten förbättring i träffsäkerhet. I denna uppsats tränas Googles förtränade CNN om på varierade mängder bilder på hudfläckar, i syfte att avgöra om en bild föreställande en hudfläck visar tecken på malignt melanom eller om den bedöms vara godartad. Studiens resultat ger indikationer på att träffsäkerheten för klassificeraren förbättras när mängden träningsdata ökar. Däremot finns inte underlag för att fastställa en punkt då träffsäkerheten stagnerar.
Boman, Joakim, and Alexander Volminger. "Evaluating a deep convolutional neural network for classification of skin cancer." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229740.
Повний текст джерелаComputer-aided diagnosis (CAD) har blivit en viktigt del av det medi-cinska området. Hudcancer är en vanlig och dödlig sjukdom som ett CAD system potentiellt kan upptäcka. Den är klart synlig på hudenoch därför skulle endast bilder av hudskador kunna användas för attge en diagnos. År 2017 utvecklade en forskningsgrupp från StanfordUniversity ett deep convolutional neural network (CNN) som preste-rade bättre än dermatologer vid klassificering av hudskador. Detta kandidatexamensarbete gör ett försök till att implementerametoden tillhandahållen i Stanford rapporten och utvärdera CNN:etsresultat vid klassifikation av hudskador som inte testades i deras stu-die. De binära fall som tidigare inte har testas är melanoma emot solarlentigo och melanoma emot seborrheic keratosis. Med hjälp av transferlearning tränades Inception v3 för olika hudskador. CNN:et tränadesmed 16 typer av hudförändringar. I valideringsprocessen uppmättesen korrekthet på 68.3% under 3-vals klassifikation. I tester av sammatyp av jämförelser som i Stanford studien uppmätes en korrekthet på71% för melanoma emot nevus och 91% för seborrheic keratosis emotbasal and squamous cell carcinoma. Resultatet av de nya jämförelser-na var 84% för seborrheic keratosis emot melanoma och 83% för solarlentigo emot melanoma. Resultaten tyder på att av de binära klassificeringarna utförda idenna studie, är nevus emot melanoma den svårast för CNN:et. Detbör noteras att våra resultat skilde sig från Stanford studien och attmer stat
Sahlgren, Michaela, and Nour Alhunda Almajni. "Skin Cancer Image Classification with Pre-trained Convolutional Neural Network Architectures." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259622.
Повний текст джерелаI denna studie jämför vi hur väl olika förtränade konvolutionella neurala nätverksarkitekturer klassificerar bilder av potentiellt maligna födelsemärken. Detta med hjälp av datasetet ISIC, innehållande bilder av hudcancer. Våra resultat indikerar att alla arkitekturer som undersöktes gav likvärdiga resultat vad gäller hur väl de kan avgöra huruvida ett födelsemärke är malignt eller ej. Efter en femfaldig korsvalidering nådde de olika arkitekturerna ett ROC AUC-medelvärde mellan 0.82 och 0.89, där nätverket Vgg-11 gjorde allra bäst ifrån sig. Detta trots att samma nätvärk är avsevärt sämre på ILSVRC. Sammantaget indikterar våra resultat att valet av arkitektur kan vara mindre viktigt vid bildklassificering av hudcancer än vid klassificering av bilder på ImageNet.
Almasiri, osamah A. "SKIN CANCER DETECTION USING SVM-BASED CLASSIFICATION AND PSO FOR SEGMENTATION." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5489.
Повний текст джерелаInal, Aydin. "Practical science process skills in physics, with special reference to test item assessment and classification." Master's thesis, University of Cape Town, 2002. http://hdl.handle.net/11427/11566.
Повний текст джерелаThis study describes the development, validation, classification, administration and assessment of a compact programme of ten core practical task items chosen from a pool of 33 practical tasks developed for the purpose of this study in basic school physical science. The practical items encouraged and measured various science process skills laid out in the South African Revised National Curriculum Statement Draft. The derivation and classification of the specially designed diagnostic practical task items by experienced lecturers, teachers and academics constitutes an original and crucial part of the study. The objective is to assess the consensus of juries of four to eleven expert science educators on classification of the ten core practical activities, matching the categories. The investigation establishes whether there is a perceived relevant match or a perceived "irrelevant" mismatch between the science process skills tested by the current experimental programme of practical items and the descriptive theories of practical science and its classification schemes and criteria proposed by (a) Franus (1992), (b) Gardner (1983), (c) White (1988), (d) Solomon (1998), (e) Lock (1990), (t) Kapenda, Kandjeo-Marenga, Gaoseb, Kasanda and Lubben's (2001) the Cambridge-based International General Certificate of Education after Millar, Ie Marechal and Tiberghiea (1999), (g) Race (1997) and (h) OBE (Revised National Curriculum Statement Draft, 2001). Lock's assessment framework for practical tasks was found to be the most relevant scheme among the others. The study also identified eight process skills that are highly relevant to practical tasks of the compact programme. These skills included: (a) comprehension skills; (b) recognising given item of apparatus; (c) following instructions; (d) carrying out tasks and handling science apparatus; (e) observation skills; (t) interpretation of the observations; (g) making predictions; and (h) reporting and communicating scientific information.
Книги з теми "Skinks Classification"
Ouboter, Paul E. A revision of the genus Scincella (Reptilia, Sauria, Scincidae) of Asia, with some notes on its evolution. Leiden: Rijksmuseum van Natuurlijke Historie, 1986.
Знайти повний текст джерелаTowns, D. R. A field guide to the lizards of New Zealand. 2nd ed. Wellington: Dept. of Conservation, 1988.
Знайти повний текст джерелаZug, George R. Systematics of the Carlia "fusca" lizards (Squamata:Scincidae) of New Guinea and nearby islands. Honolulu: Bishop Museum Press, 2004.
Знайти повний текст джерелаZug, George R. Systematics of the Carlia "fusca" lizards (Squamata: Scincidae) of New Guinea and nearby islands. Honolulu: Bishop Museum Press, 2004.
Знайти повний текст джерелаFortune, Christopher Joseph. The investigation and classification of measurement skills. Salford: University of Salford, 1993.
Знайти повний текст джерелаClaybourne, Anna. Can you tell a skink from a salamander?: Classification. Chicago, Ill: Raintree, 2005.
Знайти повний текст джерелаZanzibar. Wizara ya Elimu, Utamaduni na Michezo. Second status report: Occupational analyses : technical support services for the establishment and operation skills development centres in Zanzibar. Zanzibar: Ministry of Education, Culture, and Sports, 2005.
Знайти повний текст джерелаClaybourne, Anna. Can you tell a skink from a salamander? Oxford: Raintree, 2006.
Знайти повний текст джерелаRoper, Clyde F. E. Comparative morphology and function of dermal structures in oceanic squids (Cephalopoda). Washington, D.C: Smithsonian Institution Press, 1990.
Знайти повний текст джерелаGoyhman, Oskar. Organization and holding of events. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1071381.
Повний текст джерелаЧастини книг з теми "Skinks Classification"
Obagi, Zein E. "Skin Classification." In Obagi Skin Health Restoration and Rejuvenation, 65–85. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-0-387-21801-4_5.
Повний текст джерелаHermanek, P., and L. H. Sobin. "Skin Tumours." In TNM Classification of Malignant Tumours, 83–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-82982-6_6.
Повний текст джерелаZhang, Susu, Jeff Douglas, Shiyu Wang, and Steven Andrew Culpepper. "Reduced Reparameterized Unified Model Applied to Learning Spatial Rotation Skills." In Handbook of Diagnostic Classification Models, 503–24. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05584-4_24.
Повний текст джерелаHassan, Rola, Hanan Faruqui, Reem Alquraa, Ayman Eissa, Fatma Alshaiki, and Mohamed Cheikh. "Classification Criteria and Clinical Practice Guidelines for Rheumatic Diseases." In Skills in Rheumatology, 521–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8323-0_25.
Повний текст джерелаHexsel, Doris, Camile L. Hexsel, and Fernanda Naspolini Bastos. "Cellulite: Classification and Scoring." In Measuring the Skin, 1–5. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26594-0_93-1.
Повний текст джерелаHumbert, Philippe. "Classification of Facial Wrinkling." In Measuring the skin, 698–703. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08585-1_74.
Повний текст джерелаHexsel, Doris, Camile L. Hexsel, and Fernanda Naspolini Bastos. "Cellulite: Classification and Scoring." In Agache's Measuring the Skin, 1385–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32383-1_93.
Повний текст джерелаXu, Xueli, and Matthias von Davier. "Applying the General Diagnostic Model to Proficiency Data from a National Skills Survey." In Handbook of Diagnostic Classification Models, 489–501. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05584-4_23.
Повний текст джерелаManzato, Emilia. "Classification of Eating Disorders." In Eating Disorders and the Skin, 3–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29136-4_1.
Повний текст джерелаBonham, Mary Ben. "Double-Skin Façade Classifications." In Bioclimatic Double-Skin Façades, 41–75. New York : Routledge, 2020.: Routledge, 2019. http://dx.doi.org/10.4324/9781315661384-3.
Повний текст джерелаТези доповідей конференцій з теми "Skinks Classification"
Zhmakina, N. L., and K. S. Zdorovenko. "THE THEORETICAL STUDY OF THIRD-GRADERS’ COGNITIVE UNIVERSAL LEARNING SKILLS FORMATION TO SOLVE PROBLEMS IN MATH LESSONS." In Культура, наука, образование: проблемы и перспективы. Нижневартовский государственный университет, 2021. http://dx.doi.org/10.36906/ksp-2021/48.
Повний текст джерелаKumar, Ayushi, Ari Kapelyan, and Avimanyou K. Vatsa. "Classification of Skin Phenotype: Melanoma Skin Cancer." In 2021 IEEE Integrated STEM Education Conference (ISEC). IEEE, 2021. http://dx.doi.org/10.1109/isec52395.2021.9763999.
Повний текст джерелаGinigaddara, B., S. Perera, Y. Feng, and P. Rahnamayiezekavat. "Offsite construction skills prediction: A conceptual model." In 10th World Construction Symposium. Building Economics and Management Research Unit (BEMRU), University of Moratuwa, 2022. http://dx.doi.org/10.31705/wcs.2022.52.
Повний текст джерелаBissoto, Alceu, and Sandra Avila. "Improving Skin Lesion Analysis with Generative Adversarial Networks." In Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/sibgrapi.est.2020.12986.
Повний текст джерелаDubal, Pratik, Sankirtan Bhatt, Chaitanya Joglekar, and Sonali Patil. "Skin cancer detection and classification." In 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI). IEEE, 2017. http://dx.doi.org/10.1109/iceei.2017.8312419.
Повний текст джерелаGouda, Niharika, and J. Amudha. "Skin Cancer Classification using ResNet." In 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA). IEEE, 2020. http://dx.doi.org/10.1109/iccca49541.2020.9250855.
Повний текст джерелаOjha, Mritunjay Kumar, Dilrose Reji Karakattil, Akshat Devendra Sharma, and Sneha Mary Bency. "Skin Disease Detection and Classification." In 2022 IEEE India Council International Subsections Conference (INDISCON). IEEE, 2022. http://dx.doi.org/10.1109/indiscon54605.2022.9862834.
Повний текст джерелаChen, Wei, Mohsen Ardabilian, Abdelmalek Zine, and Hassan Zahouani. "Reflectance spectra based skin and non-skin classification." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7350900.
Повний текст джерелаYoon, Sangho, Michael Harville, Harlyn Baker, and Nina Bhatii. "Automatic Skin Pixel Selection and Skin Color Classification." In 2006 International Conference on Image Processing. IEEE, 2006. http://dx.doi.org/10.1109/icip.2006.312630.
Повний текст джерелаGuo, Jiexin, and Prahlad G. Menon. "Feature Based Classification of Melanoma From Skin Images." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50055.
Повний текст джерелаЗвіти організацій з теми "Skinks Classification"
Sheehan, Kathleen, Kikumi Tatsuoka, and Charles Lewis. A Diagnostic Classification Model for Document Processing Skills. Fort Belvoir, VA: Defense Technical Information Center, October 1993. http://dx.doi.org/10.21236/ada273790.
Повний текст джерелаAltamirano, Álvaro, and Nicole Amaral. A Skills Taxonomy for LAC: Lessons Learned and a Roadmap for Future Users. Inter-American Development Bank, November 2020. http://dx.doi.org/10.18235/0002898.
Повний текст джерелаEvans, Julie, Kendra Sikes, and Jamie Ratchford. Vegetation classification at Lake Mead National Recreation Area, Mojave National Preserve, Castle Mountains National Monument, and Death Valley National Park: Final report (Revised with Cost Estimate). National Park Service, October 2020. http://dx.doi.org/10.36967/nrr-2279201.
Повний текст джерелаNechypurenko, Pavlo, Tetiana Selivanova, and Maryna Chernova. Using the Cloud-Oriented Virtual Chemical Laboratory VLab in Teaching the Solution of Experimental Problems in Chemistry of 9th Grade Students. [б. в.], June 2019. http://dx.doi.org/10.31812/123456789/3175.
Повний текст джерелаKumar, Indraneel, Lionel Beaulieu, Annie Cruz-Porter, Chun Song, Benjamin St. Germain, and Andrey Zhalnin. An Assessment of the Workforce and Occupations in the Highway, Street, and Bridge Construction Industries in Indiana. Purdue University, 2020. http://dx.doi.org/10.5703/1288284315018.
Повний текст джерелаKiianovska, N. M. The development of theory and methods of using cloud-based information and communication technologies in teaching mathematics of engineering students in the United States. Видавничий центр ДВНЗ «Криворізький національний університет», December 2014. http://dx.doi.org/10.31812/0564/1094.
Повний текст джерела