Добірка наукової літератури з теми "Skeletal muscle satellite cells"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Skeletal muscle satellite cells".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Skeletal muscle satellite cells"
Yablonka-Reuveni, Zipora. "The Skeletal Muscle Satellite Cell." Journal of Histochemistry & Cytochemistry 59, no. 12 (December 2011): 1041–59. http://dx.doi.org/10.1369/0022155411426780.
Повний текст джерелаAzab, Azab. "Skeletal Muscles: Insight into Embryonic Development, Satellite Cells, Histology, Ultrastructure, Innervation, Contraction and Relaxation, Causes, Pathophysiology, and Treatment of Volumetric Muscle I." Biotechnology and Bioprocessing 2, no. 4 (May 28, 2021): 01–17. http://dx.doi.org/10.31579/2766-2314/038.
Повний текст джерелаShadrach, Jennifer L., and Amy J. Wagers. "Stem cells for skeletal muscle repair." Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1575 (August 12, 2011): 2297–306. http://dx.doi.org/10.1098/rstb.2011.0027.
Повний текст джерелаEržen, Ida. "PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY." Image Analysis & Stereology 23, no. 3 (May 3, 2011): 143. http://dx.doi.org/10.5566/ias.v23.p143-152.
Повний текст джерелаCIECIERSKA, ANNA, TOMASZ SADKOWSKI, and TOMASZ MOTYL. "Role of satellite cells in growth and regeneration of skeletal muscles." Medycyna Weterynaryjna 75, no. 11 (2019): 6349–2019. http://dx.doi.org/10.21521/mw.6349.
Повний текст джерелаBischoff, Richard. "Chemotaxis of skeletal muscle satellite cells." Developmental Dynamics 208, no. 4 (April 1997): 505–15. http://dx.doi.org/10.1002/(sici)1097-0177(199704)208:4<505::aid-aja6>3.0.co;2-m.
Повний текст джерелаJurdana, Mihaela. "EXERCISE EFFECTS ON MUSCLE STEM CELLS." Annales Kinesiologiae 8, no. 2 (January 26, 2018): 125–35. http://dx.doi.org/10.35469/ak.2017.134.
Повний текст джерелаYin, Hang, Feodor Price, and Michael A. Rudnicki. "Satellite Cells and the Muscle Stem Cell Niche." Physiological Reviews 93, no. 1 (January 2013): 23–67. http://dx.doi.org/10.1152/physrev.00043.2011.
Повний текст джерелаEnglund, Davis A., Bailey D. Peck, Kevin A. Murach, Ally C. Neal, Hannah A. Caldwell, John J. McCarthy, Charlotte A. Peterson, and Esther E. Dupont-Versteegden. "Resident muscle stem cells are not required for testosterone-induced skeletal muscle hypertrophy." American Journal of Physiology-Cell Physiology 317, no. 4 (October 1, 2019): C719—C724. http://dx.doi.org/10.1152/ajpcell.00260.2019.
Повний текст джерелаAdams, Gregory R. "Satellite cell proliferation and skeletal muscle hypertrophy." Applied Physiology, Nutrition, and Metabolism 31, no. 6 (December 2006): 782–90. http://dx.doi.org/10.1139/h06-053.
Повний текст джерелаДисертації з теми "Skeletal muscle satellite cells"
Blackwell, Danielle. "The role of Talpid3 in skeletal muscle satellite cells and skeletal muscle regeneration." Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/66948/.
Повний текст джерелаThompson, Steven Howard 1958. "The effect of trenbolone on skeletal muscle satellite cells." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276633.
Повний текст джерелаRathbone, Christopher R. "Mechanisms regulating skeletal muscle satellite cell cycle progression." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/5866.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "December 2006" Includes bibliographical references.
Collins, Charlotte Anne. "An investigation of the stem cell potential of skeletal muscle satellite cells." Thesis, University College London (University of London), 2004. http://discovery.ucl.ac.uk/1446604/.
Повний текст джерелаMorisi, F. "AUTOPHAGY AND SKELETAL MUSCLE WASTING: EFFECTS ON SATELLITE CELLS POPULATION." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/347854.
Повний текст джерелаJudson, Robert Neil. "The role of Yes-associated protein (YAP) in skeletal muscle satellite cells and myofibres." Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=189444.
Повний текст джерелаLindström, Mona. "Satellite cells in human skeletal muscle : molecular identification quantification and function." Doctoral thesis, Umeå universitet, Anatomi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-29817.
Повний текст джерелаBrandt, Amanda Maverick. "Regulation of satellite cells by extrinsic factors during recovery from exercise in horses." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/89089.
Повний текст джерелаDoctor of Philosophy
The horse is well-known as an athletic creature and is often used in amateur and professional athletic events. Despite its popularity as a pastime in low and high-stakes competition, certain facets directly related to performance during exercise remain relatively unstudied. One crucial component of recovery from exercise is the intrinsic ability of skeletal muscle to repair exercise-induced muscle damage. This is accomplished largely through the incorporation of new nuclei, which originate from a position orbiting the muscle, hence the name satellite cells. This cell is essential to muscle regeneration from injury as often demonstrated in rodent models, but the role of satellite cells in recovery from exercise remains elusive in all species, but particularly so in horses. For instance, whether satellite cells only contribute nuclei after exercise to stimulate gains in muscle mass or whether they may also play a role in the process of adaptation to exercise is not clearly understood. The purpose of my work was to define the response of satellite cells to hepatocyte growth factor, a factor present in skeletal muscle during exercise that is already well-studied in rodent models. Additionally, to determine whether the addition of the non-essential amino acid, citrulline, would influence satellite cells and nutrient reserves after a session of submaximal exercise. I found that hepatocyte growth factor does not influence satellite cells isolated from horses in the same way it influences those from rodents, nor through the same mechanisms. Additionally, I found that satellite cells were not stimulated after a session of submaximal exercise, but a factor involved in regulation of genetic expression that is associated with satellite cells and skeletal muscle was downregulated with the addition of citrulline. Together, these results suggest that satellite cells may behave like other species in some ways, such as some responses to hepatocyte growth factor and the lack of response to a submaximal bout of exercise, but that there is still much to be learned in order to begin to influence management and training decisions as regards skeletal muscle recovery.
Mofarrahi, Mahroo. "Regulation of skeletal muscle satellite cell proliferation by NADPH oxidase." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111521.
Повний текст джерелаCorrera, Rosa Maria. "Pw1/Peg3 regulates skeletal muscle growth and satellite cell self-renewal." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066339.
Повний текст джерелаPw1/Peg3 is a parentally imprinted gene expressed from the paternal allele. It is expressed in all adult progenitor/stem cell populations examined to date including muscle satellite cells. We examined the impact of loss-of-function of Pw1/Peg3 in skeletal muscle, a tissue that greatly contributes to body mass. We found that constitutive loss of Pw1/Peg3 results in reduced muscle mass resulting from a decrease in muscle fiber number. The reduced fiber number is present at birth. Mice lacking both the paternal and maternal alleles display a lower fiber number as compared to mice carrying the paternal deletion, suggesting that the maternal allele is functional during prenatal development. Hybrid analyses (C57BL6J and Cast/Ei) of muscle tissue reveal a bi-allelic expression of Pw1/Peg3 around 10%. Pw1/Peg3 is strongly up-regulated in response to muscle injury. Using the constitutive Pw1/Peg3 knock out mouse, we observed that satellite cells display a reduced self-renewal capacity following muscle injury. Pw1/Peg3 is expressed in satellite cells as well as a subset of muscle interstitial cells (PICs). To determine the specific role of Pw1/Peg3 in satellite cells, we crossed our conditional Pw1/Peg3 allele with the Pax7-CreER line. Interestingly, these mice displayed a more pronounced phenotype of impaired regeneration revealing a clear and direct role for Pw1/Peg3 in satellite cells. Taken together, our data show that Pw1/Peg3 plays a role during fetal development in the determination of muscle fiber number that is gene-dosage dependent and plays a specific role in muscle satellite cell self-renewal
Книги з теми "Skeletal muscle satellite cells"
Greg, Molnar, and United States. National Aeronautics and Space Administration., eds. Skeletal muscle satellite cells cultured in simulated microgravity. [Washington, DC: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаVandenburgh, Herman H. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Знайти повний текст джерелаHerman, Vandenburgh, and United States. National Aeronautics and Space Administration., eds. Tissue-engineered skeletal muscle organoids for reversible gene therapy: Brief report. [Washington, DC: National Aeronautics and Space Administration, 1996.
Знайти повний текст джерелаSarabia, Vivian E. Calcium homeostasis and regulation of glucose uptake in human skeletal muscle cells in culture. Ottawa: National Library of Canada, 1990.
Знайти повний текст джерелаPrud'homme, Renée. The Role of calmodulin and nuclear factor of activated T-cells in growth of mature skeletal muscle after injury or overload. Sudbury, Ont: Laurentian University, 2002.
Знайти повний текст джерелаSkeletal muscle satellite cells cultured in simulated microgravity. [Washington, DC: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаMolnar, Greg. Properties of satellite cells isolated from sheep skeletal muscle. 1993.
Знайти повний текст джерелаSkeletal Muscle Muscular Dystrophy A Visual Approach. Morgan & Claypool Publishers, 2011.
Знайти повний текст джерелаPinheiro, Carlos Hermano J., and Lucas Guimarães-Ferreira, eds. Frontiers in Skeletal Muscle Wasting, Regeneration and Stem Cells. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-832-0.
Повний текст джерелаFibre Types in Skeletal Muscles (Advances in Anatomy, Embryology and Cell Biology). Springer, 2002.
Знайти повний текст джерелаЧастини книг з теми "Skeletal muscle satellite cells"
Schultz, Edward, and Kathleen M. McCormick. "Skeletal muscle satellite cells." In Reviews of Physiology, Biochemistry and Pharmacology, 213–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0030904.
Повний текст джерелаMagovern, G. J. "Myocardial Regeneration with Skeletal Muscle Satellite Cells." In The Transplantation and Replacement of Thoracic Organs, 785–87. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-0-585-34287-0_88.
Повний текст джерелаMusarò, Antonio, and Silvia Carosio. "Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle." In Adult Stem Cells, 155–67. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6756-8_12.
Повний текст джерелаYablonka-Reuveni, Zipora, and Kenneth Day. "Skeletal Muscle Stem Cells in the Spotlight: The Satellite Cell." In Regenerating the Heart, 173–200. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-021-8_11.
Повний текст джерелаvon Maltzahn, Julia, C. Florian Bentzinger, and Michael A. Rudnicki. "Characteristics of Satellite Cells and Multipotent Adult Stem Cells in the Skeletal Muscle." In Stem Cells and Cancer Stem Cells, Volume 12, 63–73. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-017-8032-2_6.
Повний текст джерелаDumont, Nicolas A., and Michael A. Rudnicki. "Characterizing Satellite Cells and Myogenic Progenitors During Skeletal Muscle Regeneration." In Methods in Molecular Biology, 179–88. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6788-9_12.
Повний текст джерелаKrstić, Radivoj V. "Skeletal Musculature. White Muscle Fiber and Satellite Cell." In General Histology of the Mammal, 260–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_127.
Повний текст джерелаTedesco, Francesco Saverio, Louise A. Moyle, and Eusebio Perdiguero. "Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle." In Methods in Molecular Biology, 129–47. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6771-1_7.
Повний текст джерелаAlameddine, Hala S., and Michel Fardeau. "Regeneration of Skeletal Muscle Induced by Satellite Cell Grafts." In Myoblast Transfer Therapy, 159–66. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5865-7_18.
Повний текст джерелаAlameddine, Hala. "Regeneration of Skeletal Muscle Fibers by In Vitro Multiplied Autologous Satellite Cells." In Recent Trends in Regeneration Research, 169–71. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-9057-2_18.
Повний текст джерелаТези доповідей конференцій з теми "Skeletal muscle satellite cells"
Hoque, Sanzana, Krzysztof Kucharz, Marie Sjögren, Andreas Neueder, Michael Orth, Maria Björkqvist, and Rana Soylu Kucharz. "A21 Assessment of satellite progenitor cell differentiation in hd skeletal muscle in vitro." In EHDN Abstracts 2021. BMJ Publishing Group Ltd, 2021. http://dx.doi.org/10.1136/jnnp-2021-ehdn.20.
Повний текст джерелаLee, Raphael C., Stephanie M. Hammer, and Daniel J. Canaday. "Transient electropore lifetimes in skeletal muscle cells." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5760977.
Повний текст джерелаLee, Hammer, and Canaday. "Transient Electropore Lifetimes In Skeletal Muscle Cells." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.589732.
Повний текст джерелаHöckele, S., P. Huypens, C. Hoffmann, T. Jeske, M. Hastreiter, A. Böhm, J. Beckers, HU Häring, M. Hrabe de Angelis, and C. Weigert. "TGFß regulates metabolism of human skeletal muscle cells by miRNAs." In Diabetes Kongress 2018 – 53. Jahrestagung der DDG. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1641809.
Повний текст джерелаKogure, Tsukasa, Yoshitake Akiyama, Takayuki Hoshino, and Keisuke Morishima. "Fabrication of a controllable bio-micropump driven by skeletal muscle cells." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285549.
Повний текст джерелаGarcia, F., AM Jank, and TJ Schulz. "Age-related impairment of muscle resident progenitor cells affect the metabolic homeostasis of skeletal muscle." In Late Breaking Abstracts: – Diabetes Kongress 2017 – 52. Jahrestagung der DDG. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1603536.
Повний текст джерелаMcKeon-Fischer, K. D., D. H. Flagg, J. H. Rossmeisl, A. R. Whittington, and J. W. Freeman. "Electroactive, Multi-Component Scaffolds for Skeletal Muscle Regeneration." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93197.
Повний текст джерелаGokalp, G., D. Zhao, R. C. Atalay, Y. Tian, R. B. Hamanaka, and G. M. Mutlu. "Glutamine Is Required for Mitochondrial Respiration and Differentiation of Skeletal Muscle Cells." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5595.
Повний текст джерелаQin, Zhongya, Yanyang Long, Qiqi Sun, Zhenguo Wu, Jianan Y. Qu, Sicong He, Xuesong Li, and Congping Chen. "In vivo two-photon imaging of macrophage activities in skeletal muscle regeneration." In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVI, edited by Daniel L. Farkas, Dan V. Nicolau, and Robert C. Leif. SPIE, 2018. http://dx.doi.org/10.1117/12.2286834.
Повний текст джерелаJiao, Yang, Hananeh Derakhshan, Barbara St Pierre Schneider, Emma Regentova, and Mei Yang. "Automated quantification of white blood cells in light microscopic images of injured skeletal muscle." In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2018. http://dx.doi.org/10.1109/ccwc.2018.8301750.
Повний текст джерелаЗвіти організацій з теми "Skeletal muscle satellite cells"
Halevy, Orna, Sandra Velleman, and Shlomo Yahav. Early post-hatch thermal stress effects on broiler muscle development and performance. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597933.bard.
Повний текст джерелаYahav, Shlomo, John Brake, and Orna Halevy. Pre-natal Epigenetic Adaptation to Improve Thermotolerance Acquisition and Performance of Fast-growing Meat-type Chickens. United States Department of Agriculture, September 2009. http://dx.doi.org/10.32747/2009.7592120.bard.
Повний текст джерелаYahav, Shlomo, John McMurtry, and Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Повний текст джерелаShani, Moshe, and C. P. Emerson. Genetic Manipulation of the Adipose Tissue via Transgenesis. United States Department of Agriculture, April 1995. http://dx.doi.org/10.32747/1995.7604929.bard.
Повний текст джерелаFunkenstein, Bruria, and Shaojun (Jim) Du. Interactions Between the GH-IGF axis and Myostatin in Regulating Muscle Growth in Sparus aurata. United States Department of Agriculture, March 2009. http://dx.doi.org/10.32747/2009.7696530.bard.
Повний текст джерела