Добірка наукової літератури з теми "SIR Models"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "SIR Models".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "SIR Models"
Kaddar, Abdelilah, Abdelhadi Abta, and Hamad Talibi Alaoui. "A comparison of delayed SIR and SEIR epidemic models." Nonlinear Analysis: Modelling and Control 16, no. 2 (April 25, 2011): 181–90. http://dx.doi.org/10.15388/na.16.2.14104.
Повний текст джерелаKuznetsov, Yu A., and C. Piccardi. "Bifurcation analysis of periodic SEIR and SIR epidemic models." Journal of Mathematical Biology 32, no. 2 (January 1994): 109–21. http://dx.doi.org/10.1007/bf00163027.
Повний текст джерелаCiallella, Alessandro, Mario Pulvirenti, and Sergio Simonella. "Inhomogeneities in Boltzmann–SIR models." Mathematics and Mechanics of Complex Systems 9, no. 3 (December 31, 2021): 273–92. http://dx.doi.org/10.2140/memocs.2021.9.273.
Повний текст джерелаBartoszek, Krzysztof, Wojciech Bartoszek, and Michał Krzemiński. "Simple SIR models with Markovian control." Japanese Journal of Statistics and Data Science 4, no. 1 (February 16, 2021): 731–62. http://dx.doi.org/10.1007/s42081-021-00107-1.
Повний текст джерелаKloeden, P. E., and C. Pötzsche. "Nonautonomous bifurcation scenarios in SIR models." Mathematical Methods in the Applied Sciences 38, no. 16 (April 6, 2015): 3495–518. http://dx.doi.org/10.1002/mma.3433.
Повний текст джерелаZaman, Gul, and Il Hyo Jung. "Stability techniques in SIR epidemic models." PAMM 7, no. 1 (December 2007): 2030063–64. http://dx.doi.org/10.1002/pamm.200701147.
Повний текст джерелаShigemoto, Kazuyasu. "Various Logistic Curves in SIS and SIR Models." European Journal of Mathematics and Statistics 4, no. 1 (January 5, 2023): 1–6. http://dx.doi.org/10.24018/ejmath.2023.4.1.185.
Повний текст джерелаGuan, Li, Dong Li, Ke Wang, and Kun Zhao. "On a class of nonlocal SIR models." Journal of Mathematical Biology 78, no. 6 (January 2, 2019): 1581–604. http://dx.doi.org/10.1007/s00285-018-1320-0.
Повний текст джерелаUcakan, Yasin, Seda Gulen, and Kevser Koklu. "Analysing of Tuberculosis in Turkey through SIR, SEIR and BSEIR Mathematical Models." Mathematical and Computer Modelling of Dynamical Systems 27, no. 1 (January 2, 2021): 179–202. http://dx.doi.org/10.1080/13873954.2021.1881560.
Повний текст джерелаAvram, Florin, Rim Adenane, and David I. Ketcheson. "A Review of Matrix SIR Arino Epidemic Models." Mathematics 9, no. 13 (June 28, 2021): 1513. http://dx.doi.org/10.3390/math9131513.
Повний текст джерелаДисертації з теми "SIR Models"
Abdelsheed, Ismail Gad Ameen. "Fractional calculus: numerical methods and SIR models." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3422267.
Повний текст джерелаIl calcolo frazionario e` ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. L’ idea di generalizzare operatori differenziali ad un ordine non intero, in particolare di ordine 1/2, compare per la prima volta in una corrispondenza di Leibniz con L’Hopital (1695), Johann Bernoulli (1695), e John Wallis (1697), come una semplice domanda o forse un gioco di pensieri. Nei successive trecento anni molti matematici hanno contribuito al calcolo frazionario: Laplace (1812), Lacroix (1812), di Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand e Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), e molti altri. Eppure, è solo dopo la prima conferenza sul calcolo frazionario e le sue applicazioni che questo tema diventa una delle le aree più intensamente studiate dell’analisi matematica. Recentemente, molti matematici e ingegneri hanno cercato di modellare i processi reali utilizzando il calcolo frazionario. Questo a causa del fatto che spesso, la modellazione realistica di un fenomeno fisico non è locale nel tempo, ma dipende anche dalla storia, e questo comportamento può essere ben rappresentato attraverso modelli basati sul calcolo frazionario. In altre parole, la definizione dei derivata frazionaria fornisce un eccellente strumento per la modellazione della memoria e delle proprietà ereditarie di vari materiali e processi.
Almeida, Priscila Roque de. "Modelos epidêmicos SIR, contínuos e discretos, e estratégias de vacinação." Universidade Federal de Viçosa, 2014. http://locus.ufv.br/handle/123456789/4933.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The main Objective Of this Work is to study and discretize the epidemic SIR model (Susceptible-Infected-Recovered) developed by Kermack and MCKendrick in 1927 [11], between its Consider the simple models With Vital dynamics and Constant and Vaccination strategies pulses, as a method Of epidemic ControL The study of the stability of Continuous-time models With pulse Vaccination is done by means of the Floquet theory. Already the rnethod Of ñnite difference appro- Ximation is used to forward discretize Continuous systems and the analysis On the stability of the new systems found is displayed The theoretical results are Conñrmed by numerical simulations.
O Objetivo principal desde trabalho é estudar e discretizar os modelos epidêmi- COS SIR (Suscetíveis-Infectados-Recuperados) desenvolvidos por MCKendrick e Kermack em 1927, [11], entre eles Consideramos os modelos simples Com dinâmica Vital e Com estratégias de Vacinação Constante e em pulsos, Como método de Con- trole epidêmico. O estudo da estabilidade dos modelos em tempo Contínuos Com Vacinação em pulsos é feito por meio, da Teoria de Floquet. Já 0 rnétodo de aproximação de diferenças ñnitas para frente é utilizado para discretizar os siste- mas Contínuos e é apresentada a análise sobre a estabilidade dos novos sistemas encontrados. Os resultados teóricos são Conñrmados por simulações numéricas.
Estrada, López Mario Andrés 1989. "Teoremas limiares para o modelo SIR estocástico de epidemia." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307035.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T01:18:53Z (GMT). No. of bitstreams: 1 EstradaLopez_MarioAndres_M.pdf: 691310 bytes, checksum: c03e392b197051a7368585d6c09a7835 (MD5) Previous issue date: 2015
Resumo: Este trabalho tem como objetivo estudar o modelo SIR (suscetível-infectado-removido) de epidemia nas versões determinística e estocástica. Nosso objetivo é encontrar limitantes para a probabilidade de que o tamanho da epidemia não sobrepasse certa proporção do número inicial de suscetíveis. Iniciamos apresentando as definições e a dinâmica do processo de epidemia determinístico. Obtemos um valor limiar para o número inicial de suscetíveis para que a epidemia exploda ou não. Consideramos o modelo de epidemia estocástico SIR assumindo que não há período latente, isto é, que um infectado pode transmitir a infecção ao instante de ser contagiado. O modelo é considerado com uma configuração inicial de suscetíveis e infectados e é feita especial ênfases no estudo da variável aleatória ''tamanho da epidemia'', que é definida como a diferença entre o número de suscetíveis ao começar e ao terminar a propagação da doença. Como na parte determinística, obtemos teoremas limiares para o modelo de epidemia estocástico. Os métodos usados para encontrar os limitantes são os de análise da cadeia de Markov imersa e de comparação estocástica
Abstract: This work has as objective to study the SIR (susceptible-infected-removed) epidemic model in the deterministic and stochastic version. Our objective is to find bounds for the probability that the size of the epidemic does not exceed certain proportion of the initial number of susceptible individuals. We begin presenting the definitions and the dynamics for the deterministic model for a general epidemic. We obtain a threshold value for the initial number of susceptible individuals for the epidemic to build up or not. As fundamental part of this work, we consider a stochastic epidemic SIR model assuming there is no latent period, that is, one infected can transmit the infection at the moment of being infected. The model is considered with an initial configuration of susceptible and infected individuals and the study is focused on the random variable ''size of the epidemic'', which is defined as the difference between the number of susceptible individuals at the start and at the end of the propagation of the epidemic. As in the deterministic part, we obtain a threshold theorem for the stochastic epidemic. The methods used to prove the theorem are analysis of the embedded chain and the stochastic comparison
Mestrado
Estatistica
Mestre em Estatística
Medlock, Jan P. "The effect of stochastic migration on an SIR model for the transmission of HIV." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30547.
Повний текст джерелаOzanne, Marie Veronica. "Bayesian compartmental models for zoonotic visceral leishmaniasis in the Americas." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/6825.
Повний текст джерелаTerefe, Yibeltal Adane. "Bifurcation analysis and nonstandard finite difference schemes for Kermack and McKendrick type epidemiological models." Diss., University of Pretoria, 2012. http://hdl.handle.net/2263/24917.
Повний текст джерелаDissertation (MSc)--University of Pretoria, 2012.
Mathematics and Applied Mathematics
unrestricted
Tosun, Kursad. "QUALITATIVE AND QUANTITATIVE ANALYSIS OF STOCHASTIC MODELS IN MATHEMATICAL EPIDEMIOLOGY." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/dissertations/732.
Повний текст джерелаGraf, Brolund Alice. "Compartmental Models in Social Dynamics." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448163.
Повний текст джерелаMatematiska modeller kan hjälpa oss att förstå många typer av sociala fenomen, som ryktesspridning, spridning av memes, gruppbeslut, segregation och radikalisering. Det finns idag otaliga modeller för sociala beteenden hos människor och djur, och fler presenteras kontinuerligt. Det stora antalet modeller försvårar navigering inom forskningsfältet, och många av modellerna är dessutom komplicerade och svåra att verifiera genom experiment. I detta arbete föreslås ett ramverk av grundläggande modeller, som var och en modellerar en aspekt av socialt beteende; det gäller sociala epidemier, cykler, gemensamt handlande, gruppbeslut, segregation och polarisering. Vi menar att dessa modeller utgör majoriteten av de verifierbara aspekter av socialt beteende som studeras, och att de bör behandlas som en utgångspunkt när en ny modell ska introduceras. Vilka av mekanismerna från utgångspunkten finns representerade i modellen? Skiljer den sig ens nämnvärt från utgångspunkten? Genom att ha en god förståelse för grundmodellerna, och genom att förklara på vilket sätt en ny modell skiljer sig från dem, kan forskare undvika att presentera modeller som i praktiken är mer komplicerade varianter av sådana som redan finns. I detta arbete visar vi hur dessa grundläggande modeller kan formuleras och studeras. Modellerna bygger på enkla regler om vad som händer när individer i en befolkning möter varandra. Till exempel, om en person som har vetskap om ett rykte träffar någon som inte har det, kan ryktet spridas vidare. Därför har antaganden om vilka personer som kan träffa varandra stor påverkan på de resultat som modellerna ger. I detta arbete studeras varje modell med två olika metoder: i den ena har alla personer i befolkningen samma sannolikhet att träffa varandra, i den andra representeras befolkningen av ett rutnät, där varje plats motsvarar en individ. I den senare har alltså varje person ett begränsat antal grannar att interagera med. Vilken av dessa två metoder man väljer har stor betydelse för vilka beteenden modellerna förutspår. Som ett komplement till detta arbete presenteras ett verktyg i form av ett Python-program som utför analysen av modellerna. Detta kan användas för att undersöka grundmodellerna som presenteras i detta arbete, men också för att formulera och analysera nya modeller på samma sätt. På det viset kan nya modeller enkelt jämföras mot grundmodellerna. Verktyget är användbart både som introduktion för de som är nya inom social dynamik, men också för de forskare som som vill ta fram nya modeller och föra forskningsfältet vidare.
Bourdin, Félicien. "Modélisation macroscopique de mouvements de foule à deux types, modèles SIR condensés." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASM013.
Повний текст джерелаWe study in this thesis the macroscopic modelling of crowd motion in the case of a population divided in several types that may have different behaviours, as well as the development of SIR models in order to analyse the spread of an infectious disease in a school. These two issues were studied separetely. As the original topic of this thesis was crowd motion, we answered to a proposition of MODCOV19 - a platform created by CNRS and INSMI to centralize and coordinate modeling projects on the COVID-19 outbreak - to design epidemiological models adapted to school media. This work is thus composed of two independent parts. On the one hand we analyse the convergence of several numerical schemes that stem from different standpoints on the macroscopic crowd motion equation - optimal transport, gradient flow, finite volumes. We study as well the homogenization of microscopic models of particles towards the macroscopic model. We eventually investigate the inverse problem of identifying of the parameters of a model, being observed the motion of a crowd. On the other hand, we develop a class of ``condensed'' SIR models, where the epidemiological quantities are defined at the scale of groups of individuals. We formally analyse the quality of the condensation process when a full description of the interaction within the population is available. We then detail the implementation carried out in collaboration with MODCOV19
Bouzalmat, Ibrahim. "Modélisation probabiliste de la dynamique de transmission de la fièvre typhoïde à Mayotte avec étude de risques épidémiques." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS064.
Повний текст джерелаThe aim of this thesis manuscript is to study the transmission of typhoid fever in Mayotte using mathematical modelling approaches. We first introduce the context of our study, the associated issues, and the objectives of the thesis. A state-of-the-art review on mathematical modeling of typhoid fever transmission is presented, highlighting the specificity of our approach. We propose an initial model in two versions, deterministic and stochastic, to describe the transmission dynamics of the disease in Mayotte. We explore the behavior of the model through numerical simulations in different scenarios, highlighting key factors of transmission. However, due to the limitations of the available dataset, we propose a simplified stochastic model and a parametric estimation method. This approach enables us to fit the model to the available data and to estimate the key characteristics of typhoid fever transmission in Mayotte. In enriching our model, we are introducing new extensions. We include a compartment for individuals exposed, taking into account the incubation period of the disease. The theoretical properties of this model are studied and illustrated by numerical simulations. In addition, we propose a parameter estimation methodology adapted to this new model, and numerical simulations have been carried out to evaluate the performance of our estimation approach. We then examine the impact of rainfall on the transmission of typhoid fever in Mayotte, using publicly available precipitation data. We identify rainfall seasonality and estimate model parameters under different regimes. The results highlight the importance of this meteorological variable in the spread of the epidemic.This manuscript opens up research perspectives, such as the extension of the model to other infectious diseases present in Mayotte and its generalisation to other territories. This work will contribute to a better understanding and management of infectious diseases in Mayotte and other similar regions
Книги з теми "SIR Models"
Kingman, J. F. C. (John Frank Charles), ed. Probability and mathematical genetics: [papers in honour of Sir John Kingman]. Cambridge, UK: Cambridge University Press, 2010.
Знайти повний текст джерелаCathedral, Canterbury, and Sir John Soane's Museum, eds. The petrified music of architecture: Sir Herbert Oakley's collection of cathedral models, Canterbury Cathedral. London: Sir John Soane's Museum, 2011.
Знайти повний текст джерелаIntercambio sin ser conocido: Austausch unbekannterweise. Saarbrücken: Saarländisches Künstlerhaus, 2000.
Знайти повний текст джерелаHellwig, Marcus. SIR - Modell durch eine neue Dichte unterstützt. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-36476-2.
Повний текст джерелаHellwig, Marcus. Das probabilistische SIR-Modell (PSIR) im Pandemieprozess. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-39596-4.
Повний текст джерелаMontesinos, Gustavo. Un general sin modelo. Cuenca, Ecuador: Núcleo del Azuay de la Casa de la Cultura Ecuatoriana, 2004.
Знайти повний текст джерелаInmigración: ¿integración sin modelo? Madrid: Alianza, 2013.
Знайти повний текст джерелаKazar, Baris M., and Mete Celik. Spatial AutoRegression (SAR) Model. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-1842-9.
Повний текст джерелаHellwig, Marcus. The Probabilistic SIR Model (PSIR) in the Pandemic Process. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31190-1.
Повний текст джерелаAn assessment of contemporary models of forgiveness. New York: P. Lang, 2010.
Знайти повний текст джерелаЧастини книг з теми "SIR Models"
Kiss, István Z., Joel C. Miller, and Péter L. Simon. "Hierarchies of SIR models." In Interdisciplinary Applied Mathematics, 255–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50806-1_7.
Повний текст джерелаMilgroom, Michael G. "Epidemiology and SIR Models." In Biology of Infectious Disease, 253–68. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38941-2_16.
Повний текст джерелаMarques, Joao Alexandre Lobo, Francisco Nauber Bernardo Gois, José Xavier-Neto, and Simon James Fong. "Epidemiology Compartmental Models—SIR, SEIR, and SEIR with Intervention." In Predictive Models for Decision Support in the COVID-19 Crisis, 15–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61913-8_2.
Повний текст джерелаMickens, Ronald E. "SIR Models for Disease Spread." In Mathematical Modelling with Differential Equations, 161–80. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003178972-8.
Повний текст джерелаAndersson, Håkan, and Tom Britton. "The standard SIR epidemic model." In Stochastic Epidemic Models and Their Statistical Analysis, 11–18. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1158-7_2.
Повний текст джерелаHincapié P., Doracelly, Juan Ospina G., Anthony Uyi Afuwape, and Ruben D. Gómez A. "Epidemic Thresholds in SIR and SIIR Models Applying an Algorithmic Method." In Lecture Notes in Computer Science, 119–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89746-0_12.
Повний текст джерелаda Costa, Walley, Líliam Medeiros, and Sandra Sandri. "A Fuzzy Cellular Automata for SIR Compartmental Models." In Fuzzy Logic and Applications, 234–47. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03200-9_24.
Повний текст джерелаBritton, Tom, and Etienne Pardoux. "Chapter 4 Inference for Continuous Time SIR models." In Lecture Notes in Mathematics, 417–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30900-8_15.
Повний текст джерелаMilazzo, Paolo. "Analysis of COVID-19 Data with PRISM: Parameter Estimation and SIR Modelling." In From Data to Models and Back, 123–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70650-0_8.
Повний текст джерелаHollman, Arthur. "War injuries used as research models · The triple response of the skin to injury, the H substance · Monograph on blood vessels of the human skin · Physiology and medicine · Third edition of The Mechanism · Nobel Prize for Einthoven · Death of Mackenzie · Controversy over dog experiments." In Sir Thomas Lewis, 109–24. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0927-3_8.
Повний текст джерелаТези доповідей конференцій з теми "SIR Models"
Cherian, Jacob P., and Jubilant J. Kizhakkethottam. "A Technical Assessment of SIR, SIR-V and SEIR Epidemic Models." In 2023 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE). IEEE, 2023. http://dx.doi.org/10.1109/rasse60029.2023.10363532.
Повний текст джерелаGanti, Radha Krishna, and Martin Haenggi. "SIR asymptotics in general cellular network models." In 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282607.
Повний текст джерелаAlutto, Martina, Leonardo Cianfanelli, Giacomo Como, and Fabio Fagnani. "Multiple peaks in network SIR epidemic models." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9992408.
Повний текст джерелаBuhrii, Khrystyna, and Yuriy Golovaty. "SIR Models on Complex Networks and Impact of Vaccination." In 2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT). IEEE, 2023. http://dx.doi.org/10.1109/elit61488.2023.10310758.
Повний текст джерелаBicher, Martin, Gunter Schneckenreither, and Niki Popper. "Mean-Field based comparison of two age-dependent SIR models." In 2015 Winter Simulation Conference (WSC). IEEE, 2015. http://dx.doi.org/10.1109/wsc.2015.7408469.
Повний текст джерелаHansson, Jonas, Alain Govaert, Richard Pates, Emma Tegling, and Kristian Soltesz. "Limitations of time-delayed case isolation in heterogeneous SIR models." In 2022 American Control Conference (ACC). IEEE, 2022. http://dx.doi.org/10.23919/acc53348.2022.9867465.
Повний текст джерелаDunyak, Alex, and Peter E. Caines. "Large Scale Systems and SIR Models: A Featured Graphon Approach." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683048.
Повний текст джерелаIsabel, Laurencia, Kie Van Ivanky Saputra, and Helena Margaretha. "Predicting BPJS health insurance premiums using SIR-like participant models and frequency–severity model." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2022 (MATHTECH 2022): Navigating the Everchanging Norm with Mathematics and Technology. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0192491.
Повний текст джерелаViskic, I., and R. Domer. "A Flexible, Syntax Independent Representation (SIR) for System Level Design Models." In 9th EUROMICRO Conference on Digital System Design (DSD'06). IEEE, 2006. http://dx.doi.org/10.1109/dsd.2006.6.
Повний текст джерелаAlutto, Martina, Giacomo Como, and Fabio Fagnani. "On SIR epidemic models with feedback-controlled interactions and network effects." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683007.
Повний текст джерелаЗвіти організацій з теми "SIR Models"
Ellison, Glenn. Implications of Heterogeneous SIR Models for Analyses of COVID-19. Cambridge, MA: National Bureau of Economic Research, June 2020. http://dx.doi.org/10.3386/w27373.
Повний текст джерелаWallace, Sean, Scott Lux, Constandinos Mitsingas, Irene Andsager, and Tapan Patel. Performance testing and modeling of a transpired ventilation preheat solar wall : performance evaluation of facilities at Fort Drum, NY, and Kansas Air National Guard, Topeka, KS. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42000.
Повний текст джерелаDunn, Tim. Briefing on DUO2 SFR Models. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1554226.
Повний текст джерелаAcemoglu, Daron, Victor Chernozhukov, Iván Werning, and Michael Whinston. Optimal Targeted Lockdowns in a Multi-Group SIR Model. Cambridge, MA: National Bureau of Economic Research, May 2020. http://dx.doi.org/10.3386/w27102.
Повний текст джерелаWhinston, Michael D., Ivàn Werning, Victor Chernozhukov, and Daron Acemoglu. A Multi-Risk SIR Model with Optimally Targeted Lockdown. The IFS, May 2020. http://dx.doi.org/10.1920/wp.cem.2020.1420.
Повний текст джерелаDudley, J. P., and S. V. Samsonov. SAR interferometry with the RADARSAT Constellation Mission. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329396.
Повний текст джерелаAtkeson, Andrew, Karen Kopecky, and Tao Zha. Estimating and Forecasting Disease Scenarios for COVID-19 with an SIR Model. Cambridge, MA: National Bureau of Economic Research, June 2020. http://dx.doi.org/10.3386/w27335.
Повний текст джерелаFaillace, E. R., J. J. Cheng, and C. Yu. RESRAD benchmarking against six radiation exposure pathway models. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10194337.
Повний текст джерелаCarin, Lawrence. Efficient Electromagnetic Scattering Models for UWB SAR Calibration. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada572039.
Повний текст джерелаWalker, David T. SAR Assimilation for Near-Shore Spectral Wave Models. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada620256.
Повний текст джерела