Добірка наукової літератури з теми "Single cell mRNA sequencing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Single cell mRNA sequencing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Single cell mRNA sequencing"
Xu, Yunbo, Hongliang Hu, Jie Zheng, and Biaoru Li. "Feasibility of Whole RNA Sequencing from Single-Cell mRNA Amplification." Genetics Research International 2013 (December 23, 2013): 1–8. http://dx.doi.org/10.1155/2013/724124.
Повний текст джерелаDhar, Manjima, Reem Khojah, Andy Tay, and Dino Di Carlo. "Research highlights: microfluidic-enabled single-cell epigenetics." Lab on a Chip 15, no. 21 (2015): 4109–13. http://dx.doi.org/10.1039/c5lc90101d.
Повний текст джерелаD’avola, D., C. Villacorta, S. N. Martins-Filho, A. Craig, I. Labgaa, J. V. Felden, A. Kimaada, et al. "Single-cell mRNA sequencing to characterize circulating tumor cells in hepatocellular carcinoma." Journal of Hepatology 68 (April 2018): S445—S446. http://dx.doi.org/10.1016/s0168-8278(18)31131-0.
Повний текст джерелаNakamoto, Margaret, Mirko Corselli, Ian Taylor, and Suraj Saksena. "Single cell multiomic analysis of chronically stimulated T cells displaying hallmarks of T-cell exhaustion." Journal of Immunology 202, no. 1_Supplement (May 1, 2019): 189.18. http://dx.doi.org/10.4049/jimmunol.202.supp.189.18.
Повний текст джерелаLee, Jeongwoo, Do Young Hyeon, and Daehee Hwang. "Single-cell multiomics: technologies and data analysis methods." Experimental & Molecular Medicine 52, no. 9 (September 2020): 1428–42. http://dx.doi.org/10.1038/s12276-020-0420-2.
Повний текст джерелаShi, Xiaoshan, Imteaz Siddique, Margaret Nakamoto, and Stefanie Mortimer. "Simultaneous mRNA, protein, and immune repertoire profiling of antigen-specific T cells by single cell sequencing." Journal of Immunology 204, no. 1_Supplement (May 1, 2020): 246.17. http://dx.doi.org/10.4049/jimmunol.204.supp.246.17.
Повний текст джерелаLiu, Wendao, and Noam Shomron. "Analysis of MicroRNA Regulation and Gene Expression Variability in Single Cell Data." Journal of Personalized Medicine 12, no. 10 (October 21, 2022): 1750. http://dx.doi.org/10.3390/jpm12101750.
Повний текст джерелаSchoettle, Louis, Xixi Wei, Marlene Garcia-Neurer, Veronkia Zarnitsyna, Rustom Antia, Hao Yan, and Joseph Blattman. "DNA origami: single cell analysis of T cell receptors without single cell sorting. (LYM7P.719)." Journal of Immunology 192, no. 1_Supplement (May 1, 2014): 193.7. http://dx.doi.org/10.4049/jimmunol.192.supp.193.7.
Повний текст джерелаLi, Jiawei, Yi Zhang, Cheng Yang, and Ruiming Rong. "Discrepant mRNA and Protein Expression in Immune Cells." Current Genomics 21, no. 8 (December 21, 2020): 560–63. http://dx.doi.org/10.2174/1389202921999200716103758.
Повний текст джерелаBattich, Nico, Joep Beumer, Buys de Barbanson, Lenno Krenning, Chloé S. Baron, Marvin E. Tanenbaum, Hans Clevers, and Alexander van Oudenaarden. "Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies." Science 367, no. 6482 (March 5, 2020): 1151–56. http://dx.doi.org/10.1126/science.aax3072.
Повний текст джерелаДисертації з теми "Single cell mRNA sequencing"
Johnson, Travis Steele. "Integrative approaches to single cell RNA sequencing analysis." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586960661272666.
Повний текст джерелаBorgström, Erik. "Technologies for Single Cell Genome Analysis." Doctoral thesis, KTH, Genteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181059.
Повний текст джерелаQC 20160127
La, Forest Divonne Sébastien De. "Caractérisation constitutive et en condition d'infection bactérienne des populations hémocytaires par une approche intégrative cytologiques, transcriptomiques et fonctionnelles chez l'huitre creuse Crassostrea (Magallana) gigas." Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0025.
Повний текст джерелаThe Pacific oyster, Crassostrea (Magallana) gigas, is a bivalve mollusk of significant ecological and economic importance, and it has recently emerged as a model species for studying the innate immunity of bivalves. In recent years, oyster farming has been confronted with episodes of massive mortality, exacerbated by climate change and human activities. These mortalities, though multifactorial, share a common factor: the ability of pathogens (viruses and bacteria) to evade the oysters' immune defenses, often leading to fatal septicemia. While immune cells in vertebrates, particularly humans, are well characterized, the diversity and functional specialization of hemocytes in C. gigas remain a black box and are hotly debated within the scientific community. This knowledge gap hampers our understanding of host-pathogen interactions, thus limiting the development of strategies to reduce oyster mortality in aquaculture. In this context, the main objective of my thesis project was to characterize the circulating hemocyte types in C. gigas using cytological, functional, and single-cell transcriptomic approaches (scRNA-seq). These methods first allowed us to identify seven distinct constitutive hemocyte types in naïve animals. These hemocyte populations were characterized based on their morphological properties, gene expression profiles, and specific biological functions. Furthermore, we established a hemocyte ontology, suggesting potential differentiation pathways for the cell lineages. Using this hemocyte atlas, we then assessed the differential impact of Vibrio aestuarianus infection on hemocyte populations, both from a cytological and transcriptomic perspective, revealing alterations dependent on the circulating bacterial load. This work provides a significant contribution to the understanding of immunity in C. gigas, by offering a precise definition of hemocyte types. Our results propose a reference hemocyte atlas and emphasize the importance of studying hemocyte homeostasis in mollusks to better understand and anticipate oyster mortality crises during epizootic episodes
Raoux, Corentin. "Review and Analysis of single-cell RNA sequencing cell-type identification and annotation tools." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297852.
Повний текст джерелаKindblom, Marie, and Hakim Ezeddin Al. "Phylogenetic fatemapping: estimating allelic dropout probability in single cell genomic sequencing." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186453.
Повний текст джерелаHenao, Diaz Emanuela. "Towards single-cell exome sequencing with spatial resolution in tissue sections." Thesis, KTH, Skolan för bioteknologi (BIO), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150564.
Повний текст джерелаEvrony, Gilad David. "Single-cell Sequencing Studies of Somatic Mutation in the Human Brain." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10747.
Повний текст джерелаKe, Rongqin. "Detection and Sequencing of Amplified Single Molecules." Doctoral thesis, Uppsala universitet, Molekylära verktyg, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183141.
Повний текст джерелаTu, Ang A. (Ang Andy). "Recovery of T cell receptor variable sequences from 3' barcoded single-cell RNA sequencing libraries." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127888.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 107-112).
Heterogeneity of the immune system has increasingly necessitated the use of high-resolution techniques, including flow cytometry, RNA-seq, and mass spectrometry, to decipher the immune underpinnings of various diseases such as cancer and autoimmune disorders. In recent years, high-throughput single-cell RNA sequencing (scRNA-seq) has gained popularity among immunologists due to its ability to effectively characterize thousands of individual immune cells from tissues. Current techniques, however, are limited in their ability to elucidate essential immune cell features, including variable sequences of T cell antigen receptors (TCRs) that confer antigen specificity. Incorporation of TCR sequencing into scRNA-seq data could identify cells with shared antigen-recognition, further elucidating dynamics of antigen-specific immune responses in T cells.
In the first part of this thesis work, we develop a strategy that enables simultaneous analysis of TCR sequences and corresponding full transcriptomes from 32 barcoded scRNA-seq samples. This approach is compatible with common 32 scRNA-seq methods, and adaptable to processed samples post hoc. We applied the technique to identify transcriptional signatures associated with clonal T cells from murine and human samples. In both cases, we observed preferential phenotypes among subsets of expanded T cell clones, including cytotoxic T cell states associated with immunization against viral peptides. In the second part of the thesis, we apply the strategy to a 12-patient study of peanut food allergy to characterize T helper cell responses to oral immunotherapy (OIT). We identified clonal T cells associated with distinct subsets of T helper cells, including Teff, Treg, and Tfh, as well as Th1, Th2, and Th17 signatures.
We found that though the TCR repertoires of the patients were remarkably stable, regardless of their clinical outcomes, Th1 and Th2 clonotypes were phenotypically suppressed while Tfh clonotypes were not affected by therapy. Furthermore, we observed that highly activated clones were less likely to be suppressed by OIT than less activated clones. Our work represents one of the most detailed transcriptomic profiles of T helper cells in food allergy. In the last part of the thesis, we leverage the simplicity and adaptability of the method to recover TCR sequences from previously processed scRNA-seq samples derived from HIV patients and a nonhuman primate model of TB. In the HIV study, we recovered expanded clonotypes associated with activated T cells from longitudinal samples from patients with acute HIV infections. In the TB study, we modified the primers used in the method to T cells from TB granulomas of cynomolgus macaques.
We identified not only expanded clonotypes associated with cytotoxic functions, but also clonotypes shared by clusters of activated T cells. In total, these results demonstrate the utility of our method when studying diseases in which clonotype-driven responses are critical to understanding the underlying biology.
by Ang A. Tu.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biological Engineering
Lefebvre, Keely. "Resolving the Taxonomy and Phylogenetics of Benthic Diatoms from Single Cell Sequencing." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34553.
Повний текст джерелаКниги з теми "Single cell mRNA sequencing"
Suzuki, Yutaka, ed. Single Molecule and Single Cell Sequencing. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6037-4.
Повний текст джерелаYu, Buwei, Jiaqiang Zhang, Yiming Zeng, Li Li, and Xiangdong Wang, eds. Single-cell Sequencing and Methylation. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4494-1.
Повний текст джерелаWang, Xiangdong, ed. Single Cell Sequencing and Systems Immunology. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9753-5.
Повний текст джерелаDing, Hongxu. Understand Biology Using Single Cell RNA-Sequencing. [New York, N.Y.?]: [publisher not identified], 2018.
Знайти повний текст джерелаLevitin, Hanna M. Biological Inference from Single Cell RNA-Sequencing. [New York, N.Y.?]: [publisher not identified], 2020.
Знайти повний текст джерелаSuzuki, Yutaka. Single Molecule and Single Cell Sequencing. Springer, 2019.
Знайти повний текст джерелаMenon, Swapna. Single Cell Sequencing Essentials in Brief: Single Cell RNA Sequencing and Orthogonal Omics Technologies. Independently Published, 2021.
Знайти повний текст джерелаWang, Xiangdong. Single Cell Sequencing and Systems Immunology. Springer, 2015.
Знайти повний текст джерелаWang, Xiangdong. Single Cell Sequencing and Systems Immunology. Springer, 2016.
Знайти повний текст джерелаProserpio, Valentina. Single Cell Methods: Sequencing and Proteomics. Springer New York, 2019.
Знайти повний текст джерелаЧастини книг з теми "Single cell mRNA sequencing"
Livak, Kenneth J. "Eukaryotic Single-Cell mRNA Sequencing." In Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing, 343–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31350-4_14.
Повний текст джерелаShum, Eleen Y., Elisabeth M. Walczak, Christina Chang, and H. Christina Fan. "Quantitation of mRNA Transcripts and Proteins Using the BD Rhapsody™ Single-Cell Analysis System." In Single Molecule and Single Cell Sequencing, 63–79. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6037-4_5.
Повний текст джерелаVanlandewijck, Michael, and Christer Betsholtz. "Single-Cell mRNA Sequencing of the Mouse Brain Vasculature." In Methods in Molecular Biology, 309–24. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8712-2_21.
Повний текст джерелаDe Simone, Marco, Grazisa Rossetti, and Massimiliano Pagani. "Chromium 10× Single-Cell 3′ mRNA Sequencing of Tumor-Infiltrating Lymphocytes." In Methods in Molecular Biology, 87–110. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9240-9_7.
Повний текст джерелаMeyer, Michelle, and Palaniappan Ramanathan. "Droplet-Based Single-Cell 3′ mRNA Sequencing of Marburg Virus-Infected Samples." In Methods in Molecular Biology, 387–405. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4256-6_27.
Повний текст джерелаSanada, Chad D., and Aik T. Ooi. "Single-Cell Dosing and mRNA Sequencing of Suspension and Adherent Cells Using the PolarisTM System." In Methods in Molecular Biology, 185–95. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9240-9_12.
Повний текст джерелаDurruthy-Durruthy, Robert, and Manisha Ray. "Using Fluidigm C1 to Generate Single-Cell Full-Length cDNA Libraries for mRNA Sequencing." In Methods in Molecular Biology, 199–221. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7471-9_11.
Повний текст джерелаBarreby, Emelie, and Connie Xu. "Kupffer Cell mRNA Sequencing." In Methods in Molecular Biology, 27–44. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0704-6_5.
Повний текст джерелаZhu, Chenxu, Yun Gao, Jinying Peng, Fuchou Tang, and Chengqi Yi. "Single-Cell 5fC Sequencing." In Methods in Molecular Biology, 251–67. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9240-9_16.
Повний текст джерелаKohn, Andrea B., Tatiana P. Moroz, Jeffrey P. Barnes, Mandy Netherton, and Leonid L. Moroz. "Single-Cell Semiconductor Sequencing." In Methods in Molecular Biology, 247–84. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-556-9_18.
Повний текст джерелаТези доповідей конференцій з теми "Single cell mRNA sequencing"
Barmpas, Petros, Sotiris K. Tasoulis, Spiros V. Georaakonoulos, and Vassilis P. Plagianakos. "Hyperdimensional Computing Approaches in Single Cell RNA Sequencing Classification." In 2024 IEEE Congress on Evolutionary Computation (CEC), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/cec60901.2024.10612207.
Повний текст джерелаHu, Can, and Yuxia Sheng. "Hypergraph-based Clustering for Single-Cell RNA Sequencing Data." In 2024 43rd Chinese Control Conference (CCC), 3529–34. IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10662510.
Повний текст джерелаDong, Bowen, Sarabjot Pabla, Vincent Giamo, Weijian Jiang, Kiyomi Taniguchi, Sean T. Glenn, Masataka Shirai, and Pawel Kalinski. "Abstract 968: Distinct pathways of DC-induced CD8+T cell differentiation revealed by single-cell mRNA sequencing analysis." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-968.
Повний текст джерелаSiddique, Imteaz, Xiaoshan Shi, Margaret Nakamoto, and Stefanie Mortimer. "Abstract 1344: Simultaneous mRNA, protein, and immune repertoire profiling of antigen-specific T cells by single cell sequencing." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1344.
Повний текст джерелаTrump, S., J. Loske, M. T. Völker, O. Debnath, S. Lukassen, N. Ishaque, M. Messingschlager, et al. "Single cell mRNA sequencing of nasal swabs indicate an impaired ciliated cell function in COVID-19 convalescents with persisting dyspnea." In ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.4377.
Повний текст джерелаEgidio, Camila, Michael Gonzales, Joel Brockman, Shuwen Chen, Robert Durruthy-Durruthy, Clare Rogers, and Manisha Ray. "Abstract LB-078: Improved single-cell mRNA sequencing for transcriptome and paired-chain TCR analysis of primary human CD3+ T cells." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-lb-078.
Повний текст джерелаSeinstra, D., L. Kester, D. Van der Velden, J. Wesseling, E. Voest, A. Van Oudenaarden, and J. Van Rheenen. "PO-337 Single cell mRNA sequencing reveals the presence of the gene expression signature of all major molecular subtypes in individual breast cancers." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.849.
Повний текст джерелаGiamo, Vincent, Melissa Grimm, Sarabjot Pabla, Ellen Karasik, Jesse Luce, Sean T. Glenn, Jeffrey Conroy та ін. "Abstract 970: Single-cell mRNA sequencing analysis of the synergistic impact of double-stranded RNA (dsRNA) and IFNα on human monocyte-derived macrophages". У Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-970.
Повний текст джерелаAlrhmoun, S., O. Yu Perik-Zavodskaia, M. O. Volynets, Yu A. Lopatnikova, Yu A. Shevchenko, M. S. Fisher, R. Yu Perik‑Zavodskii, V. V. Kurilin, A. N. Silkov, and S. V. Sennikov. "OBTAINING FULL SEQUENCES OF CD8+ T-CELL RECEPTORS SPECIFIC TO THE TUMOR-ASSOCIATED ANTIGEN HER-2/NEU USING SINGLE CELL MRNA SEQUENCING AND ERGO-II NEURAL NETWORK." In OpenBio-2023. ИПЦ НГУ, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-9.
Повний текст джерелаBaker, J. B., M. P. McGrogan, C. Simonsen, R. L. Gronke, and B. W. Festoff. "STRUCTURE AND PROPERTIES OF PROTEASE NEXIN I." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644765.
Повний текст джерелаЗвіти організацій з теми "Single cell mRNA sequencing"
Oskolkov, Nikolay. Single Cell Data Analysis. Instats Inc., 2024. http://dx.doi.org/10.61700/23nmyqoprtfw01698.
Повний текст джерелаHarouaka, Ramdane. Platform for Single-Cell Dual RNA Sequencing of Host-Pathogen Interactions. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1832283.
Повний текст джерелаFung, N. DNA sequencing with capillary electrophoresis and single cell analysis with mass spectrometry. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/348902.
Повний текст джерелаHovav, Ran, Peggy Ozias-Akins, and Scott A. Jackson. The genetics of pod-filling in peanut under water-limiting conditions. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597923.bard.
Повний текст джерелаTucker, Mark L., Shimon Meir, Amnon Lers, Sonia Philosoph-Hadas, and Cai-Zhong Jiang. Elucidation of signaling pathways that regulate ethylene-induced leaf and flower abscission of agriculturally important plants. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597929.bard.
Повний текст джерелаBacharach, Eran, and Sagar Goyal. Generation of Avian Pneumovirus Modified Clones for the Development of Attenuated Vaccines. United States Department of Agriculture, November 2008. http://dx.doi.org/10.32747/2008.7696541.bard.
Повний текст джерелаHansen, Peter J., and Zvi Roth. Use of Oocyte and Embryo Survival Factors to Enhance Fertility of Heat-stressed Dairy Cattle. United States Department of Agriculture, August 2011. http://dx.doi.org/10.32747/2011.7697105.bard.
Повний текст джерелаPalmer, Guy, Varda Shkap, Wendy Brown, and Thea Molad. Control of bovine anaplasmosis: cytokine enhancement of vaccine efficacy. United States Department of Agriculture, March 2007. http://dx.doi.org/10.32747/2007.7695879.bard.
Повний текст джерелаFahima, Tzion, and Jorge Dubcovsky. Map-based cloning of the novel stripe rust resistance gene YrG303 and its use to engineer 1B chromosome with multiple beneficial traits. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598147.bard.
Повний текст джерела