Добірка наукової літератури з теми "Simulation of magnetic fields"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Simulation of magnetic fields".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Simulation of magnetic fields"

1

Schnack, D. D., Z. Mikić, D. C. Barnes, and G. Van Hoven. "Magnetohydrodynamic simulation of coronal magnetic fields." Computer Physics Communications 59, no. 1 (May 1990): 21–37. http://dx.doi.org/10.1016/0010-4655(90)90153-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Uetake, H., N. Hirota, Y. Ikezoe, K. Kitazawa, and K. Miyoshi. "Magnetic-field simulation for shielding from high magnetic fields." Journal of Applied Physics 91, no. 10 (2002): 6991. http://dx.doi.org/10.1063/1.1452672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Füzi, J. "Simulation of neutron motion in magnetic fields—magnetic monochromator." Measurement Science and Technology 19, no. 3 (January 30, 2008): 034013. http://dx.doi.org/10.1088/0957-0233/19/3/034013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Virtanen, I. O. I., A. A. Pevtsov, I. I. Virtanen, and K. Mursula. "Reconstructing solar magnetic fields from historical observations." Astronomy & Astrophysics 652 (August 2021): A79. http://dx.doi.org/10.1051/0004-6361/202140656.

Повний текст джерела
Анотація:
Context. The evolution of the photospheric magnetic field can be simulated with surface flux transport (SFT) simulations, which allow for the study of the evolution of the entire field, including polar fields, solely using observations of the active regions. However, because only one side of the Sun is visible at a time, active regions that emerge and decay on the far-side are not observed and not included in the simulations. As a result, some flux is missed. Aims. We construct additional active regions and apply them to the far-side of the Sun in an SFT simulation to assess the possible effects and the magnitude of error that the missing far-side flux causes. We estimate how taking the missing far-side flux into account affects long-term SFT simulations. Methods. We identified active regions from synoptic maps of the photospheric magnetic field between 1975 and 2019. We divided them into solar cycle wings and determined their lifetimes. Using the properties of observed active regions with sufficiently short lifetimes, we constructed additional active regions and inserted them into an SFT simulation. Results. We find that adding active regions with short lifetimes to the far-side of the Sun results in significantly stronger polar fields in minimum times and slightly delayed polarity reversals. These results partly remedy the earlier results, which show overly weak polar fields and polarity reversals that are slightly too early when far-side emergence is not taken into account. The far-side active regions do not significantly affect poleward flux surges, which are mostly caused by larger long-living active regions. The far-side emergence leads to a weak continuous flow of flux, which affects polar fields over long periods of time.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Padoan, Paolo, Tuomas Lunttila, Mika Juvela, Åke Nordlund, David Collins, Alexei Kritsuk, Michael Normal, and Sergey Ustyugov. "Magnetic Fields in Molecular Clouds." Proceedings of the International Astronomical Union 6, S271 (June 2010): 187–96. http://dx.doi.org/10.1017/s1743921311017601.

Повний текст джерела
Анотація:
AbstractSupersonic magneto-hydrodynamic (MHD) turbulence in molecular clouds (MCs) plays an important role in the process of star formation. The effect of the turbulence on the cloud fragmentation process depends on the magnetic field strength. In this work we discuss the idea that the turbulence is super-Alfvénic, at least with respect to the cloud mean magnetic field. We argue that MCs are likely to be born super-Alfvénic. We then support this scenario based on a recent simulation of the large-scale warm interstellar medium turbulence. Using small-scale isothermal MHD turbulence simulation, we also show that MCs may remain super-Alfvénic even with respect to their rms magnetic field strength, amplified by the turbulence. Finally, we briefly discuss the comparison with the observations, suggesting that super-Alfvénic turbulence successfully reproduces the Zeeman measurements of the magnetic field strength in dense MC clouds.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stacy, Athena, Christopher F. McKee, Aaron T. Lee, Richard I. Klein, and Pak Shing Li. "Magnetic fields in the formation of the first stars – II. Results." Monthly Notices of the Royal Astronomical Society 511, no. 4 (February 11, 2022): 5042–69. http://dx.doi.org/10.1093/mnras/stac372.

Повний текст джерела
Анотація:
ABSTRACT Beginning with cosmological initial conditions at z = 100, we simulate the effects of magnetic fields on the formation of Population III stars and compare our results with the predictions of Paper I. We use gadget-2 to follow the evolution of the system while the field is weak. We introduce a new method for treating kinematic fields by tracking the evolution of the deformation tensor. The growth rate in this stage of the simulation is lower than expected for diffuse astrophysical plasmas, which have a very low resistivity (high magnetic Prandtl number); we attribute this to the large numerical resistivity in simulations, corresponding to a magnetic Prandtl number of order unity. When the magnetic field begins to be dynamically significant in the core of the minihalo at z = 27, we map it on to a uniform grid and follow the evolution in an adaptive mesh refinement, MHD simulation in orion2. The non-linear evolution of the field in the orion2 simulation violates flux-freezing and is consistent with the theory proposed by Xu & Lazarian. The fields approach equipartition with kinetic energy at densities ∼1010–1012 cm−3. When the same calculation is carried out in orion2 with no magnetic fields, several protostars form, ranging in mass from ∼1 to 30 M⊙; with magnetic fields, only a single ∼30 M⊙ protostar forms by the end of the simulation. Magnetic fields thus suppress the formation of low-mass Pop III stars, yielding a top-heavy Pop III initial mass function and contributing to the absence of observed Pop III stars.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xu, Yi, Junhua Wang, Haoli Hou, and Jianwei Shao. "Simulation analysis of coupled magnetic-temperature fields in magnetic fluid hyperthermia." AIP Advances 9, no. 10 (October 2019): 105317. http://dx.doi.org/10.1063/1.5127919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dilmieva, E. T., A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, J. Cwik, and I. S. Tereshina. "Experimental simulation of a magnetic refrigeration cycle in high magnetic fields." Physics of the Solid State 58, no. 1 (January 2016): 81–85. http://dx.doi.org/10.1134/s1063783416010108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brandenburg, A., R. L. Jennings, Å. Nordlund, M. Rieutord, R. F. Stein, and I. Tuominen. "Magnetic structures in a dynamo simulation." Journal of Fluid Mechanics 306 (January 10, 1996): 325–52. http://dx.doi.org/10.1017/s0022112096001322.

Повний текст джерела
Анотація:
We use three-dimensional simulations to study compressible convection in a rotating frame with magnetic fields and overshoot into surrounding stable layers. The, initially weak, magnetic field is amplified and maintained by dynamo action and becomes organized into flux tubes that are wrapped around vortex tubes. We also observe vortex buoyancy which causes upward flows in the cores of extended downdraughts. An analysis of the angles between various vector fields shows that there is a tendency for the magnetic field to be parallel or antiparallel to the vorticity vector, especially when the magnetic field is strong. The magnetic energy spectrum has a short inertial range with a slope compatible with k+1/3 during the early growth phase of the dynamo. During the saturated state the slope is compatible with k−1. A simple analysis based on various characteristic timescales and energy transfer rates highlights important qualitative ideas regarding the energy budget of hydromagnetic dynamos.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

NISHIKAWA, K. I., J. NIMIEC, M. MEDVEDEV, B. ZHANG, P. HARDEE, Y. MIZUNO, Å. NORDLUND, et al. "RADIATION FROM RELATIVISTIC SHOCKS WITH TURBULENT MAGNETIC FIELDS." International Journal of Modern Physics D 19, no. 06 (June 2010): 715–21. http://dx.doi.org/10.1142/s0218271810016865.

Повний текст джерела
Анотація:
Using our new 3D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron–positron jet propagating in an unmagnetized ambient electron–positron plasma. We have also performed simulations with electron-ion jets. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability for electron–positron jets and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks for pair plasma case. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value for pair plasmas. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time-dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on simulations with a small system with two different cases for Lorentz factors (15 and 100). We obtained spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields with red noise. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Simulation of magnetic fields"

1

Schumacher, Kristopher Ray. "Direct numerical simulation of ferrofluid turbulence in magnetic fields /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/9892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andreu, Segura Jordi. "Statistical Mechanics of Superparamagnetic Colloidal Dispersions Under Magnetic Fields." Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/113485.

Повний текст джерела
Анотація:
Les dispersions col·loïdals, un terme encunyat pel científic escocès Thomas Graham el 1861, han estat objecte d’interès en diferents àrees científiques durant més d'un segle. Una dispersió col·loïdal es caracteritza per l’existència d'una fase dispersa uniformement distribuïda dins un medi dispersiu. Diferents compostos entren dins aquesta categoria, com els aerosols (fum, boira, núvols o pols), les escumes, les emulsions (maionesa o llet) o els gels (mantega o melmelada). Les millores recents en la síntesi de partícules i l'estabilitat col·loïdal han impulsat la millora en el disseny de nous col·loides, conferint-los les propietats requerides en cada aplicació. Entre la gran varietat de dispersions col·loïdals (existents en la naturalesa o dissenyades per l'home), hem estudiat un tipus singular de dispersions on les partícules col·loïdals mostren un comportament superparamagnetic anomenades dispersions col·loïdals superparamagnètiques. En aquestes dispersions, sorgeixen característiques sorprenents quan un camp magnètic extern és aplicat, com a conseqüència del balanç entre les interaccions característiques entre col·loides i la interacció magnètica anisotròpica dipol-dipol entre les partícules col·loïdals constituents. Al llarg d'aquesta tesi s'ha utilitzat diferents models teòrics i de simulació per tractar diferents fenòmens que apareixen en aquestes dispersions col·loïdals superparamagnètiques. Per una banda, hem mostrat com l’aplicació de camps magnètics uniformes a aquestes dispersions indueix l’agregació reversible de les partícules superparamagnètiques. A la vista dels models teòrics i simulacions, hem proposat un nou criteri basat en les propietats físiques de les dispersions col·loïdals per predir la formació d'agregats, i la seva validesa s'ha discutit comparant el comportament predit amb resultats experimentals. Hem aportat evidencies de la existència d'un estat d'equilibri on els agregats assoleixen una distribució de mides estable, un fet ja suggerit amb anterioritat però establert sense prou claredat. També ens hem centrat en la descripció de la cinètica de creixement d'aquests agregats i en la seva implicació en diferents fenòmens observats experimentalment. La necessitat d'assolir escales de temps grans, com en certes situacions experimentals, ha motivat el desenvolupament de nous models i estratègies de simulació per reduir els temps de càlcul requerits en simulacions estàndard. Hem presentat un nou model de simulació que proporciona un mètode fiable i més ràpid per descriure la formació d'estructures en forma de cadena que apareixen en dispersions superparamagnètiques. El model ha estat validat comparant-ne els resultats obtinguts amb altres resultats de simulacions estàndard de Dinàmica de Langevin i s'ha aplicat a situacions experimentals, com ara el temps de relaxació T2 dels protons en solucions aquoses de nanopartícules superparamagnètiques. Mencionar també que aquest model de simulació ha estat implementat i el corresponent programari s’ha posat a disposició de la comunitat científica de forma gratuïta, concebut com una eina de simulació que pot ser ampliada fàcilment per resoldre altres problemes d’interès. Per altra banda, també hem discutit diferents efectes que sorgeixen com a conseqüència de l’aplicació de camps magnètics inhomogenis a aquestes dispersions superparamagnètiques. En concret, hem estudiat el moviment de les partícules magnètiques disperses en fluids a través de camps magnètics inhomogenis, el que es coneix com magnetoforesi. Per a tal efecte, hem centrat els esforços en la descripció de la separació magnètica de col·loides mitjançant l’aplicació de gradients de camp magnètic uniformes, des de dispersions superparamagnètiques a mescles de col·loides amb diferent resposta magnètica. Hem validat aquests models teòrics comparant-los amb simulacions per ordinador i n’hem discutit la seva utilitat comparant-ne les prediccions amb resultats experimentals. L’anàlisi racional d'aquests resultats proporciona un marc idoni per a millorar el disseny i el rendiment de diferents separadors magnètics, així com plantejar noves estratègies de separació, com per exemple la separació cooperativa en dispersions superparamagnètiques. Existeixen, encara, problemes oberts que esperem que aquest treball ajudi a afrontar com, per exemple, entendre la interconnexió entre les estructures induïdes en dispersions superparamagnètiques i la seva dinàmica d’agregació. Aquest és un aspecte important en una gran varietat d'aplicacions industrials i de laboratori com són els processos de separació magnètica, tractament d’aigües residuals i eliminació de contaminants, immunoassaigs en aplicacions clíniques o la creació de nous materials supramoleculars. Tanmateix, esperem que els resultats que es presenten al llarg d'aquest document encoratgin nous estudis dins el camp de col·loides magnètics, ja sigui perfeccionant els resultats i mètodes aquí presentats o contribuint al desenvolupament de noves estratègies per afrontar problemes encara per resoldre.
Colloidal dispersions, a term coined by the Scottish scientist Thomas Graham in 1861, have been the subject of interest in different scientific areas during more than a century. A colloidal dispersion is characterized by the existence of a dispersed phase uniformly distributed throughout a dispersion medium. Many different compounds fall in this category like aerosols (smog, fog, clouds or dust), foams, emulsions (mayonnaise or milk) or gels (butter or jelly). Recent improvements in particle synthesis and colloidal stability have boosted the controlled design of new colloids on demand, targeting the required properties for each application. Among the large variety of different colloidal dispersions (either found in nature or man-made), we have studied a singular type of such dispersions where the colloids have a superparamagnetic behavior called superparamagnetic colloidal dispersions. In these dispersions, surprising features arise under the application of an external magnetic field, as a consequence of the interplay between characteristic colloidal interactions and the anisotropic magnetic dipole-dipole interaction between their constituent colloidal particles. Along this thesis we have used different theoretical and simulation methods to discuss a number of phenomena appearing in superparamagnetic colloidal dispersions. On the one hand, we have shown that the application of a uniform magnetic field to such dispersions may induce the reversible aggregation of superparamagnetic particles. In view of theoretical models and computer simulations, a new criterion based on the physical properties of the colloidal dispersion has been proposed to predict the formation of aggregates, and its validity has been discussed by comparing the predicted behavior with experimental results. We have provided evidences of the existence of an equilibrium state, where aggregate sizes acquire a steady distribution, an issue previously suggested but unclear up to now. We have also focused our attention on the growth kinetics of the aggregates and its implications in different phenomena observed in experiments. The need to reach the large time scales of some experiments has motivated the development of new models and simulation strategies to overcome the large time consuming calculations required in standard simulations. We have presented a new simulation model that provides a faster and reliable approach to address the formation of chain-like structures in superparamagnetic dispersions. The model has been validated by direct comparison with standard Langevin Dynamics simulations and has been applied to experimental situations like the T2 relaxation time of protons in aqueous solutions of superparamagnetic nanoparticles. Let us mention that the simulation model has been implemented and the corresponding computer code is free and available to the scientific community, envisaged as a new modeling tool readily extensible to other problems of interest. On the other hand, we have analyzed different effects arising as a consequence of the application of inhomogeneous magnetic fields to such superparamagnetic dispersions. Specifically, we have studied the controlled motion of magnetic particles dispersed in a liquid medium by using inhomogeneous magnetic fields, what is known as magnetophoresis. To do so, we have focused the efforts on the description of the magnetic separation of colloids by the application of uniform magnetic field gradients, from superparamagnetic dispersions to mixtures of colloids with different magnetic response. We have validated the theoretical models adopted against computer simulations and we have discussed their usefulness by comparing the predictions obtained with experimental results. The rational analysis of these results provides a proper starting framework to enhance the design and performance of different magnetic separators, as well as to shape new separation strategies, like the cooperative magnetophoretic separation in superparamagnetic dispersions. There exists, of course, open problems that we hope this work will help to deal with. For instance, a better understanding of the interplay between the induced structures in superparamagnetic dispersions and their aggregation kinetics. This is an important issue in a vast variety of industrial and lab applications as, for example, in magnetic separation-based processes, waste-water treatment and pollutant removal, immunoassays in clinical applications or in the assisted assembly of new supramolecular materials. Nevertheless, we hope that the results presented along this document could encourage further studies in magnetic colloids science, either refining the results and approaches provided here or developing new strategies to face unsolved problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ueda, Hiroyuki. "Studies on low-field functional MRI to detect tiny neural magnetic fields." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263666.

Повний текст джерела
Анотація:
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」
京都大学
新制・課程博士
博士(工学)
甲第23205号
工博第4849号
京都大学大学院工学研究科電気工学専攻
(主査)教授 小林 哲生, 教授 松尾 哲司, 特定教授 中村 武恒
学位規則第4条第1項該当
Doctor of Philosophy (Engineering)
Kyoto University
DFAM
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cook, Graeme Robert. "Magnetic flux transport simulations : applications to solar and stellar magnetic fields." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2072.

Повний текст джерела
Анотація:
Magnetic fields play a key role in a wide variety of phenomena found on the Sun. One such phenomena is the Coronal Mass Ejection (CME) where a large amount of material is ejected from the Sun. CME’s may directly affect the earth, therefore understanding their origin is of key importance for space weather and the near-Earth environment. In this thesis, the nature and evolution of solar magnetic fields is considered through a combination of Magnetic Flux Transport Simulations and Potential Field Source Surface Models. The Magnetic Flux Transport Simulations produce a realistic description of the evolution and distribution of the radial magnetic field at the level of the solar photosphere. This is then applied as a lower boundary condition for the Potential Field Source Surface Models which prescribe a coronal magnetic field. Using these two techniques, the location and variation of coronal null points, a key element in the Magnetic Breakout Model of CMEs, are determined. Results show that the number of coronal null points follow a cyclic variation in phase with the solar cycle. In addition, they preferentially form at lower latitudes as a result of the complex active latitude field. Although a significant number of coronal nulls may exist at any one time (≈ 17), it is shown that only half may satisfy the necessary condition for breakout. From this it is concluded that while the Magnetic Breakout Model of CMEs is an important model in understanding the origin of the CMEs, other processes must occur in order to explain the observed number of CMEs. Finally, the Magnetic Flux Transport Simulations are applied to stellar magnetic fields and in particular to the fast rotating star HD171488. From this speculative study it is shown that the Magnetic Flux Transport Simulations constructed for the Sun may be applied in very different stellar circumstances and that for HD171488 a significantly higher rate of meridional flow (1200-1400 ms⁻¹) is required to match observed magnetic field distributions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cui, Han. "Modeling, Implementation, and Simulation of Two-Winding Plate Inductor." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78301.

Повний текст джерела
Анотація:
Design of magnetic component is a key factor in achieving high frequency, high power-density converters. Planar magnetics are widely used in bias power supplies for the benefits of low profile and their compatibility with printed-circuit boards (PCB). The coupled inductors with winding layers sandwiched between two core plates are studied in this dissertation in order to model the self-inductance, winding loss, and core loss. The most challenging task for the plate-core inductor is to model the magnetic field with finite core dimensions, very non-uniform flux pattern, and large fringing flux. The winding is placed near the edge of the core to maximize the energy within the limited footprint and the amount of energy stored outside the core volume is not negligible. The proportional-reluctance, equal-flux (PREF) model is developed to build the contours with equal amount of flux by governing the reluctance of the flux path. The shapes of the flux lines are modeled by different functions that guided by the finite-element simulation (FES). The field from the flux lines enables calculation of inductance, winding loss, and core loss, etc. The inductance matrix including self-inductance and mutual inductance of a coupled inductor is important for circuit simulation and evaluation. The derivation of the inductance matrix of inductors with plate-core structure is described in Chapter 2. Two conditions are defined as common-mode (CM) field and differential-mode (DM) field in order to compute the matrix parameters. The proportional-reluctance, equal-flux (PREF) model introduced is employed to find the CM field distribution, and the DM field distribution is found from functions analogous to that of a solenoid's field. The inductance calculated are verified by flex-circuit prototypes with various dimensions, and the application of the inductance model is presented at the last with normalized parameters to cover structures within a wide-range. In circuit where coupled inductors are used instead of transformers, the phase shift between the primary and secondary side is not always 180 degrees. Therefore, it is important to model the winding loss for a coupled inductor accurately. The winding loss can be calculated from the resistance matrix, which is independent of excitations but only relates to the frequency and geometry. The methodology to derive the resistance matrix from winding losses of coupled inductors is discussed. Winding loss model with 2D magnetic field is improved by including the additional eddy current loss for better accuracy for the plate-core structures. The resistance matrix calculated from the model is verified by both measurement results and finite-element simulation (FES) of coupled-inductor prototypes. Accurate core loss model is required for designing magnetic components in power converters. Most existing core loss models are based on frequency domain calculation and they cannot be implemented in SPICE simulations. The core loss model in the time domain is discussed in Chapter 5 for arbitrary current excitations. An effective ac flux density is derived to simplify the core loss calculation with non-uniform field distribution. A sub-circuit for core loss simulation is established in LTSPICE that is capable of being integrated to the power stage simulation. Transient behavior and accurate simulation results from the LTSPICE matches very well with the FES results. An equivalent circuit for coupled windings is developed for inductors with significant fringing effect. The equivalent circuit is derived from a physical model that captures the flux paths by having a leakage inductor and two mutual inductors on the primary and secondary side. A mutual resistor is added to each side in parallel with one mutual inductor to model the winding loss with open circuit and phase-shift impact. Two time-varying resistors are employed to represent the core loss in the time-domain. The equivalent circuit is verified by both finite-element simulation (FES) and prototypes fabricated with flexible circuit.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Younas, Irfan. "Simulations of magnetic properties of short superconducting cylinders and coils." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sturrock, Zoe. "Numerical simulations of sunspot rotation driven by magnetic flux emergence." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/10129.

Повний текст джерела
Анотація:
Magnetic flux continually emerges from the Sun, rising through the solar interior, emerging at the photosphere in the form of sunspots and expanding into the atmosphere. Observations of sunspot rotations have been reported for over a century and are often accompanied by solar eruptions and flaring activity. In this thesis, we present 3D numerical simulations of the emergence of twisted flux tubes from the uppermost layers of the solar interior, examining the rotational movements of sunspots in the photospheric plane. The basic experiment introduces the mechanism and characteristics of sunspot rotation by a clear calculation of rotation angle, vorticity, magnetic helicity and energy, whereby we find an untwisting of the interior portion of the field, accompanied by an injection of twist into the atmospheric field. We extend this model by altering the initial field strength and twist of the sub-photospheric tube. This comparison reveals the rotation angle, helicity and current show a direct dependence on field strength. An increase in field strength increases the rotation angle, the length of fieldlines extending into the atmosphere, and the magnetic energy transported to the atmosphere. The fieldline length is crucial as we predict the twist per unit length equilibrates to a lower value on longer fieldlines, and hence possesses a larger rotation angle. No such direct dependence is found when varying the twist but there is a clear ordering in rotation angle, helicity, and energy, with more highly twisted tubes undergoing larger rotation angles. We believe the final angle of rotation is reached when the system achieves a constant degree of twist along the length of fieldlines. By extrapolating the size of the modelled active region, we find rotation angles and rates comparable with those observed. In addition, we explore sunspot rotation caused by sub-photospheric velocities twisting the footpoints of flux tubes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Flaux, Pierrick. "Measurement of the neutron electric dipole moment at the Paul Scherrer Institute : production of magnetic fields." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC222/document.

Повний текст джерела
Анотація:
Le travail réalisé au cours de cette thèse concerne le développement du système de bobines de l'expérience n2EDM à l'Institut Paul Sherrer (PSI). Le but de cette expérience est de mettre en évidence de nouvelles sources de violation CP à travers la mesure du moment dipolaire électrique du neutron. L'actuelle limite supérieure sur la mesure de nEDM, $2.9 \cross 10^{-26}$ e.cm (90\% C.L.) à été obtenue par la collaboration RAL-Sussex-ILL en 2006.L'expérience n2EDM vise à améliorer d'un ordre de grandeur la sensibilité statistique en gardant sous contrôle les effets systématiques. Cela requiert la production d'un champ magnétique très uniforme. Les non-uniformités de ce dernier sont en effet responsable de la dépolarisation des neutrons et impliqués dans plusieurs effets systématiques.Dans le premier chapitre, les motivations physiques sont discutées.Le second chapitre décrit le principe de mesure de l'expérience n2EDM, ainsi que l'importance de l'uniformité du champ magnétique. Le chapitre s'achève par une présentation globale du dispositif expérimental.Le troisième chapitre présente le logiciel COMSOL et discute du design et des performances de la bobine B$_{0}$, en charge de la production du champ magnétique principal.Dans le quatrième chapitre, le système de bobines correctrices chargées de corriger les non-uniformités du champ magnétique et celles devant produire des gradients spécifiques sont présentées.Finalement, le cinquième et dernier chapitre présente l'étude des dipôles magnétiques localisés et de leur influence sur l'expérience
This work presents the design of the coils system developed for the n2EDM experiment at the Paul Sherrer Institute (PSI). The goal of this experiment is to reveal new sources of CP violation through the measurement of the neutron electric dipole moment. The current upper limit of the nEDM measurement, $2.9 \cross 10^{-26}$ e.cm (90\% C.L.) was achieved by the RAL-Sussex-ILL collaboration in 2006.The n2EDM experiment aims at improving by one order of magnitude the statistical sensitivity while keeping under control the systematics effects. It requires to produce a very uniform field, its non-uniformities being responsible of the neutron's depolarization and of severals systematic effects.In the first chapter, the theoretical motivation are discussed.The second chapter describes the measurement principle of the n2EDM experiment, as well as the importance of the magnetic field uniformity. This chapter ends by an overview of the apparatus.The third chapter introduces the COMSOL software and discuss the design and the performances of the B0 coil, in charge of the production of the main magnetic field.In the fourth chapter, the correcting coils used to suppress the non-uniformities of the magnetic field and the ones which produce specific gradients are presented.Finally, the fifth and last chapter talks about the study of localised magnetic dipoles and their influence on the experiment
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Geng, Annette Monika [Verfasser]. "Numerical Simulations of Magnetic Fields in Interacting Galaxies / Annette Monika Geng." München : Verlag Dr. Hut, 2013. http://d-nb.info/1031845003/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jocher, Agnès. "Control of soot formation in laminar flames by magnetic fields and acoustic waves." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066043.

Повний текст джерела
Анотація:
Cette thèse consiste en l'étude expérimentale et numérique des processus de formation des particules de suie au sein des flammes laminaires non-pré-mélangées et partiellement prémélangées sous l'influence d'un champ magnétique ou d'une stimulation acoustique. Dans une premiére étape, la capacité du code CIAO à prédire la fraction volumique de suie dans une flamme axisymétrique est étudiée. Par la suite, deux flammes subissant une stimulation acoustique ont été étudiées. Les résultats peuvent être utilisés pour améliorer les modèles de suie futurs, en particulier concernant les différentes échelles temporelles de la chimie en phase gazeuse, et la formation d'hydrocarbures polyaromatiques (PAH) et de suie couplée avec des flux transitoires. Pour étudier la formation des particules de suie sous l'influence de gradients de champ magnétique, un brûleur de type Santoro est utilisé. Les techniques de mesure utilisées dans le cadre de cette thèse sont l'imagerie directe à haute cadence, la technique Background Oriented Schlieren (BOS) et la méthode d'Absorption/Emission Modulée (MAE). Une augmentation de la fraction volumique de suie intégrée a été mise en évidence lorsque le gradient de champ magnétique est ascendant. Une analyse de stabilité linéaire locale appliquée à l'écoulement non-visqueux est présentée pour une flamme sous l'influence de la perturbation magnétique envisagée. Le gradient de champ magnétique provoque alors une réduction du taux d'amplification. De fait, l'étude est complété par l'identification d'un domaine où les flammes qui oscillent naturellement peuvent être stabilisées et contrôlées par des gradients de champ magnétique
In this thesis light is shed on the soot formation processes in laminar coflow flames influenced by magnetic field gradients and acoustic forcing. Both influences have been assessed experimentally and numerically. First, the CIAO in-house code's ability to predict soot volume fraction fields in a steady coflow flame is studied. Then, two acoustically forced cases were studied. These findings are used to improve future soot models, especially, concerning the different time scales of gas phase chemistry and the formation of polycyclic aromatic hydrocarbons (PAH) and soot coupled with unsteady flows. To investigate soot formation under magnetic field gradients, a Santoro type burner is used. The measurement techniques applied in the course of this thesis are high-speed luminosity measurements, Background Oriented Schlieren (BOS) and one- and two-color Modulated Absorption/Emission (MAE) techniques. The magnetic field impact on soot formation was first studied experimentally in steady laminar flames. A scaling of soot production similar to the increased integrated soot volume fraction with increased oxygen content in the coflow was documented. A local inviscid stability analysis is presented for an ethylene coflow flame to investigate the flame's response to small perturbations of the mean velocity, temperature, fuel, and oxygen massfraction under magnetic field exposure. The magnetic field is found to reduce the perturbations' growth rate. The magnetic field study is completed by identifying a domain where naturally oscillating flames can be stabilized and controlled by magnetic field gradients
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Simulation of magnetic fields"

1

Looi, Thomas. Magnetic field simulator for microsatellite attitude testing. [Downsview, Ont.]: University of Toronto, Institute for Aerospace Studies, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Looi, Thomas. Magnetic field simulator for microsatellite attitude testing. Ottawa: National Library of Canada, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rüdiger, G. Magnetic processes in astrophysics: Theory, simulations, experiments. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Japan-Hungary Joint Seminar on Applied Electromagnetics in Materials and Computational Technology (5th 1998 Budapest, Hungary). Applied electromagnetics and computational technology II: Proceedings of the 5th Japan-Hungary Joint Seminar on Applied Electromagnetics in Materials and Computational Technology : Budapest, Hungary, September 24-26, 1998. Amsterdam: IOS Press, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Anwane, S. W. Fundamentals of electromagnetic fields: A computer approach. Hingham, MA: Infinity Science Press, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Japan-Hungary Joint Seminar on Applied Electromagnetics in Materials and Computational Technology (4th 1996 Fukuyama, Japan). Applied electromagnetics and computational technology: Proceedings of the 4th Japan-Hungary Joint Seminar on Applied Electromagnetics in Materials and Computational Technology, Fukuyama, Japan, July 1-3, 1996. Amsterdam: IOS Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Breton, André. The magnetic fields. London: Atlas Press, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Asseo, Estelle. Extragalactic magnetic fields. Amsterdam: Elsevier, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stenflo, Jan Olof. Solar Magnetic Fields. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8246-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Berthier, C., L. P. Lévy, and G. Martinez, eds. High Magnetic Fields. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45649-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Simulation of magnetic fields"

1

Yoshida, Kinjiro, Hiroshi Takami, Shinichi Ogusa, and Dai Yokota. "FEM Dynamics Simulation of Controlled-PM LSM Maglev Vehicle." In Electric and Magnetic Fields, 327–30. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1961-4_75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nabeta, Silvio I., Albert Foggia, Marcel Ivanes, Jean-Louis Coulomb, and Gilbert Reyne. "A Finite-Element Simulation of an Out-of-Phase Synchronization of a Synchronous Machine." In Electric and Magnetic Fields, 127–30. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1961-4_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bishop, Robert C., Paul R. Shapiro, and Daniel C. Barnes. "Magnetohydrodynamic Simulation of the Evolution of Large-Scale Magnetic Fields in Disk Galaxies." In Galactic and Intergalactic Magnetic Fields, 151–52. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0569-6_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lipatov, Alexander S. "Magnetic Field Reconnection Simulation." In The Hybrid Multiscale Simulation Technology, 255–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05012-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hardee, Philip E., and Michael L. Norman. "Numerical Simulation of Weakly Magnetized Propagating Slab Jets." In Accretion Disks and Magnetic Fields in Astrophysics, 203–6. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2401-7_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stone, James M., Michael L. Norman, and Dimitri Mihalas. "Numerical Simulation of Mass Outflows from Star Forming Regions." In Accretion Disks and Magnetic Fields in Astrophysics, 207–21. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2401-7_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Molteni, D. A. P., and G. Giannone. "Three Dimensional Simulation of Accretion Disks with Smoothed Particle Hydrodynamics." In Accretion Disks and Magnetic Fields in Astrophysics, 145–50. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2401-7_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zaninetti, L. "Contour Simulations of Astrophysical Jets." In Galactic and Intergalactic Magnetic Fields, 446. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0569-6_144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Haugen, N. E. L., A. Brandenburg, and W. Dobler. "High-Resolution Simulations of Nonhelical MHD Turbulence." In Magnetic Fields and Star Formation, 53–60. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-017-0491-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kurgan, Eugeniusz. "Numerical Simulation of Anisotropic Shielding of Weak Magnetic Fields." In Computational Science - ICCS 2004, 252–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24687-9_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Simulation of magnetic fields"

1

Wong, Denise, Jeremy Wang, Edward Steager, and Vijay Kumar. "Control of Multiple Magnetic Micro Robots." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47683.

Повний текст джерела
Анотація:
A magnetic micro robot is a microscopic magnet that is controlled by a system of electromagnetic coils that generate a magnetic field to manipulate the magnetic robot. A major challenge for manipulating multiple magnets at microscale is that the applied field affects the entire workspace, making it difficult to address individual magnets. In this paper, we propose a system where electromagnetic coils are close to the magnets being manipulated to exploit spatial non-uniformities in the magnetic field. Our model considers the magnetic field generated by the electromagnetic coils and the magnetic fields present from neighboring magnetic robots to generate the desired force on each magnet. This approach is demonstrated on a macroscopic, one-dimensional system with two magnets controlled by two electromagnets using visual feedback control. Additionally, simulation results for a linear system with three magnets and three electromagnets are shown. While demonstrated at the macroscale, our results suggest that our methods can be extended for microscale manipulation, where it is advantageous to control multiple identical magnets with global fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chukwuemeka, Edison E., and Ingmar M. Schoegl. "Numerical Simulation of the Effect of Magnetic Fields on Soot Formation in Laminar Non-Premixed Flames." In ASME 2021 Power Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/power2021-64859.

Повний текст джерела
Анотація:
Abstract Characteristics of non-premixed flames such as flame height and lift-off height are affected by the presence of magnetic fields due to the paramagnetic properties of some combustion species. However, it is unknown whether magnetic fields can be used to reduce the emission of pollutants in non-premixed flames. In general, pollutant emissions are reduced in combustion systems if the mixing of combustion species is enhanced during the process. Since paramagnetic combustion species such as O2, O, OH, HO2, etc have a preferential motion direction in the presence of magnetic fields, there is a potential to harness this effect of mixing by imposing a magnetic field on the flame. This study seeks to provide some insights on the effect of magnetic field on pollutants generated in a laminar non-premixed flame numerically. The non-premixed flame is simulated using a detailed chemical mechanism for propane-air combustion and a modified Moss-Brookes soot model. To simulate the effect of magnetism on the paramagnetic chemical species, the species paramagnetic susceptibility is computed using the Curie relation. The non-premixed flame is placed at three different locations within the magnetic field. The computation predicted that the amount of average pollutants reduction is dependent on the location of the flames within the magnetic fields with respect to magnetic gradients. The mass weighted average of the soot volume fraction over the computational domain decreased when the non-premixed flame is located at certain locations within the magnetic field of the solenoid with respect to the absence of the magnetic fields, but increases in other locations.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Heft, Sara, Günter Bärwolff, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Crystal Melt Modeling and Simulation with Magnetic Fields." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Özbey, Arzu, Mehrdad Karimzadehkhouei, Evrim Kurtoğlu, and Ali Koşar. "Simulation of Magnetic Actuation of Ferrofluids in Microtubes." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73153.

Повний текст джерела
Анотація:
Magnetic actuation of ferrofluids with dynamic magnetic fields is one of the most promising research areas with its wide and different potential application areas such as biomedical and micropumping applications. Ferrofluid has the potential of opening up new possibilities. To have more understanding about various fields of engineering, more research should be conducted by considering both the experimental and modeling aspects. The most important parameters determining the flow property, flow rates and overall system efficiency are the quality and the topology of magnetic fields used in these systems. Therefore, the methods of dynamic magnetic field generation constitute a central problem to obtain desired performance. This study includes modeling and simulation of ferrofluid actuation with dynamic magnetic fields by using the COMSOL software and reports that ferrofluid actuation can be successfully used and the simulation results agree well with the experimental results.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Uesaka, Y. "Recorded magnetizations and magnetic fields in media derived by computer simulation." In International Magnetics Conference. IEEE, 1989. http://dx.doi.org/10.1109/intmag.1989.690117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lonkar, Amrita K., Francisco Palacios, and Juan J. Alonso. "Simulation of Reacting Flows in Magnetic Fields with Preconditioning." In 44th AIAA Plasmadynamics and Lasers Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Afanas'ev, V. P., A. M. Chaly, V. A. Kuptsov, and S. M. Shkol'nik. "Numerical Simulation of Cathode Spot Motion in Magnetic Fields." In 2006 International Symposium on Discharges and Electrical Insulation in Vacuum. IEEE, 2006. http://dx.doi.org/10.1109/deiv.2006.357297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guoguang, Zhang, and Jiao Yuheng. "Calculation and Simulation of Magnetic Dipole Fields in Seawater." In 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). IEEE, 2020. http://dx.doi.org/10.1109/iicspi51290.2020.9332465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Amano, R. S., Zhenyu Xu, and Chun-Hian Lee. "Numerical Simulation of Supersonic MHD Channel Flows." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35129.

Повний текст джерела
Анотація:
A compressible magneto hydrodynamic (MHD) model composed of MHD Navier-Stokes (N-S) equations and magnetic induction equations is proposed in the present study for analyzing the magneto hydrodynamic characteristics in the MHD generator and MHD accelerator channels of the Magneto-Plasma-Chemical propulsion system. Baldwin-Lomax turbulence model is utilized. A splitting algorithm based on an alternative iteration is also developed for solving the two sets of equations. As a test case, a supersonic MHD flow in a square duct was simulated. The numerical results are compared with the results computed by solving the classical N-S equations for the perfect gas flow, together with the results computed utilizing the degenerate MHD N-S equations for the same channel flow with constant applied magnetic field. The thermo-electro-magnetic performances of the test cases with constant and variable applied fields are then discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xu, Z., C. Lee, and R. S. Amano. "Numerical Simulation of Thermo-Electro-Magnetic Performances in Supersonic Channel Flow." In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96105.

Повний текст джерела
Анотація:
A compressible magnetohydrodynamic (MHD) model composed of MHD Navier-Stokes (N-S) equations and magnetic induction equations is proposed in the present study for analyzing the magnetohydrodynamic characteristics in MHD generator and MHD accelerator channels of Magneto-Plasma-Chemical propulsion system [10∼12]. A splitting algorithm based on an alternative iteration is also developed for solving the two sets of equations [9]. As a test case, a supersonic MHD flow in a square duct was simulated. The numerical results are compared with the results computed by solving the classical N-S equations for the perfect gas flow, together with the results computed utilizing the degenerate MHD N-S equations for the same channel flow with constant applied magnetic field. The thermo-electro-magnetic performances of the test cases with constant and variable applied fields are then discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Simulation of magnetic fields"

1

Novokhatski, A. Simulation of Electron Cloud Multipacting in Solenoidal Magnetic Field. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/826697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tzeferacos, Petros. Simulations of Laser Experiments to Study the Origin of Cosmic Magnetic Fields. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1637538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Romanov, Gennady, and Vladimir Kashikhin. Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/992658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lee, Jyeching, and Shana Groeschler. Transient Simulation of a Rotating Conducting Cylinder in a Transverse Magnetic Field. Fort Belvoir, VA: Defense Technical Information Center, September 2016. http://dx.doi.org/10.21236/ad1016771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smolin, J. A. Simulation and measurement of an electron beam in a wiggler magnetic field. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5866535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lin, Yu. COLLABORATIVE RESEARCH: PARTICLE SIMULATION OF COLLISIONLESS MAGNETIC RECONNECTION UNDER FINITE GUIDE FIELD. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1843577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Glatzmaier, G. A., R. Hollerbach, and P. H. Roberts. A study by computer simulation of the generation and evolution of the Earth`s magnetic field. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/200713.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

H. Qin and X. Guan. Variational Symplectic Integrator for Long-Time Simulations of the Guiding-Center Motion of Charged Particles in General Magnetic Fields. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/960290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Laties, V., and S. Stern. Magnetic fields and behavior. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/6866669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jaime, Marcelo. Magnetic Quantum Matter in Extreme Magnetic Fields. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1561066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії