Добірка наукової літератури з теми "Silicon cycle"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Silicon cycle".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Silicon cycle"
Ittekkot, Venugopalan, Lars Rahm, Dennis P. Swaney, and Christoph Humborg. "Perturbed silicon cycle discussed." Eos, Transactions American Geophysical Union 81, no. 18 (2000): 198. http://dx.doi.org/10.1029/00eo00135.
Повний текст джерелаWang, Jing, Xiao Hang Yang, Yue Feng Su, Shi Chen, and Feng Wu. "Effect of Fluorine-Containing Additive on the Electrochemical Properties of Silicon Anode for Lithium-Ion Batteries." Materials Science Forum 944 (January 2019): 699–704. http://dx.doi.org/10.4028/www.scientific.net/msf.944.699.
Повний текст джерелаStruyf, Eric, Adriaan Smis, Stefan Van Damme, Patrick Meire, and Daniel J. Conley. "The Global Biogeochemical Silicon Cycle." Silicon 1, no. 4 (October 2009): 207–13. http://dx.doi.org/10.1007/s12633-010-9035-x.
Повний текст джерелаIkeda, Takeshi. "Bacterial biosilicification: a new insight into the global silicon cycle." Bioscience, Biotechnology, and Biochemistry 85, no. 6 (April 20, 2021): 1324–31. http://dx.doi.org/10.1093/bbb/zbab069.
Повний текст джерелаKoraag, Pierre Yosia Edward, Arief Muhammad Firdaus, Naufal Hanif Hawari, Andam Deatama Refino, Wibke Dempwolf, Ferry Iskandar, Erwin Peiner, Hutomo Suryo Wasisto, and Afriyanti Sumboja. "Covalently Bonded Ball-Milled Silicon/CNT Nanocomposite as Lithium-Ion Battery Anode Material." Batteries 8, no. 10 (October 7, 2022): 165. http://dx.doi.org/10.3390/batteries8100165.
Повний текст джерелаChan, Kwai S., Michael A. Miller, Carol Ellis-Terrell, and Candace K. Chan. "Synthesis and Characterization of Empty Silicon Clathrates for Anode Applications in Li-ion Batteries." MRS Advances 1, no. 45 (2016): 3043–48. http://dx.doi.org/10.1557/adv.2016.434.
Повний текст джерелаde Tombeur, F., B. L. Turner, E. Laliberté, H. Lambers, G. Mahy, M. P. Faucon, G. Zemunik, and J. T. Cornelis. "Plants sustain the terrestrial silicon cycle during ecosystem retrogression." Science 369, no. 6508 (September 3, 2020): 1245–48. http://dx.doi.org/10.1126/science.abc0393.
Повний текст джерелаMa, Kai. "Silicon-Based Anode with High Capacity and Performance Produced by Magnesiothermic Coreduction of Silicon Dioxide and Hexachlorobenzene." Journal of Electrochemical Science and Technology 12, no. 3 (August 31, 2021): 317–22. http://dx.doi.org/10.33961/jecst.2020.01662.
Повний текст джерелаFu, Qiang Wei, and Xun Yong Jiang. "Lithium Storage Property of Metallic Silicon Treated by Mechanical Alloying." Materials Science Forum 847 (March 2016): 29–32. http://dx.doi.org/10.4028/www.scientific.net/msf.847.29.
Повний текст джерелаSarracino Martínez, O., J. Escorcia-Garcia, J. M. Gracia-Jiménez, and V. Agarwal. "Photoluminescent Photonic Devices from Nanostructured Porous Silicon Fabricated Using Lightly Doped Silicon." Journal of Nano Research 4 (January 2009): 11–17. http://dx.doi.org/10.4028/www.scientific.net/jnanor.4.11.
Повний текст джерелаДисертації з теми "Silicon cycle"
Neu, Silke, Jörg Schaller, and E. Gert Dudel. "Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-221008.
Повний текст джерелаFripiat, François. "Isotopic approaches in the silicon cycle: the Southern Ocean case study." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210187.
Повний текст джерела(1) A new mass spectrometer method (HR-SF-ICPMS) has been developed for 30Si-isotopic abundance measurements. This methodology is faster and easier than the previous available methodologies and has the same precision. A complete set of incubation was coupled with parallel 32Si-incubations and the two methodologies give not significantly different bSiO2 production rates. In the Southern Ocean, especially in the southern Antarctic Circumpolar Current, the large silicic acid concentration degrades the sensitivity of the method with Si dissolution fluxes staying generally below the detection limit. In contrast, the 28Si-isotopic dilution was sensitive enough to assess low biogenic silica dissolution rates in silicic acid poor waters of the northern ACC. We show that large accumulation of detrital dissolving biogenic silica after productive period implies really efficient silicon loop with integrated (euphotic layer) dissolution:production ratio equal or larger than 1.
(2) We largely expand the silicic acid isotopic data in the open ocean. Relatively simple mass and isotopic balances have been performed in the Antarctic Zone and have allowed to apply for the first time ä30Si in a quantitative way to estimate regional net silica production and quantify source waters fueling bSiO2 productivity. We observe that at the end of the productive period as suggested with 30Si-incubation, large accumulation of detrital biogenic silica in the surface waters increase the D:P ratio and subsequently dampens the bSiO2 production mediated isotopic fractionation with residual biogenic silica carrying heavier ä30Si than expected. Seasonal isotopic evolution is simulated and seems in agreement with our observations. These simulations strongly suggest working with non-zero order equations to fully assess the seasonal expression of the different processes involved: mixing, uptake, dissolution. Si-isotopes are also tracking the origin and fates of the different ACC pools across the Southern Ocean meridional circulation. Moreover during the circumpolar eastward pathway, the bSiO2 dissolution in deep water decreases the corresponding ä30Si values and this imprint is further transmitted via the upper limb of the meridional circulation in the intermediate water masses.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Frost, Sean. "Applying an environmental life-cycle approach to a silicon photovoltaic system." Thesis, Frost, Sean (2009) Applying an environmental life-cycle approach to a silicon photovoltaic system. Masters by Coursework thesis, Murdoch University, 2009. https://researchrepository.murdoch.edu.au/id/eprint/2531/.
Повний текст джерелаNeu, Silke, Jörg Schaller, and E. Gert Dudel. "Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)." Nature Publishing Group, 2016. https://tud.qucosa.de/id/qucosa%3A30213.
Повний текст джерелаDelvigne, Camille. "The Archaean silicon cycle insights from silicon isotopes and Ge/Si ratios in banded iron formations, palaeosols and shales." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209652.
Повний текст джерелаFirst, this study focuses on Si inputs and outputs to ocean over a limited time period (~2.95 Ga Pongola Supergroup, South Africa) through the study of a palaeosol sequence and a contemporaneous banded iron formation. The palaeosol study offers precious clues in the comprehension of Archaean weathering processes and Si transfer from continent to ocean. Desilication and iron leaching were shown to be the major Archaean weathering processes. The occurrence of weathering residues issued of these processes as major component in fine-grained detrital sedimentary mass (shales) attests that identified weathering processes are widely developed and suggest an important dissolved Si flux from continent to the ocean. In parallel, banded iron formations (BIFs), typically characterised by alternation of iron-rich and silica-rich layers, represent an extraordinary record of the ocean-derived silica precipitation throughout the Precambrian. A detailed study of a 2.95 Ga BIF with excellent stratigraphic constraints identifies a seawater reservoir mixed with significant freshwater and very limited amount of high temperature hydrothermal fluids as the parental water mass from which BIFs precipitated. In addition, the export of silicon promoted by the silicon adsorption onto Fe-oxyhydroxides is evidenced. Then, both Si- and Fe-rich layers of BIFs have a common source water mass and a common siliceous ferric oxyhydroxides precursor. Thus, both palaeosols and BIFs highlight the significance of continental inputs to ocean, generally under- estimated or neglected, as well as the close link between Fe and Si cycles.
In a second time, this study explores secular changes in the Si cycle along the Precambrian. During this timespan, the world ocean underwent a progressive decrease in hydrothermal inputs and a long-term cooling. Effects of declining temperature over the oceanic Si cycle are highlighted by increasing δ30Si signatures of both chemically precipitated chert and BIF through time within the 3.8-2.5 Ga time interval. Interestingly, Si isotope compositions of BIF are shown to be kept systematically lighter of about 1.5‰ than contemporaneous cherts suggesting that both depositions occurred through different mechanisms. Along with the progressive increase of δ30Si signature, a decrease in Ge/Si ratios is attributed to a decrease in hydrothermal inputs along with the development of large and widespread desilication during continental weathering.
Le cycle externe du silicium au précambrien (4.5-0.5 Ga) reste mal compris malgré sa position clé dans la compréhension des processus opérant à la surface de la Terre primitive. En l’absence d’organismes sécrétant un squelette externe en silice, le cycle précambrien du silicium était vraisemblablement très différent de celui que nous connaissons à l’heure actuelle. Notre conception de l’océan archéen est limitée à l’hypothèse d’une concentration en silicium proche de la saturation en silice amorphe. Cette thèse vise à une meilleure compréhension des processus qui contrôlaient le cycle géochimique externe du silicium à l’archéen (3.8-2.5 Ga). Dans cette optique, le rapport germanium/silicium (Ge/Si) et les isotopes stables du silicium (δ30Si) représentent des traceurs idéaux pour démêler les différents processus contrôlant le cycle du Si.
Dans un premier temps, cette étude se focalise sur les apports et les exports de silicium à l’océan sur une période de temps restreinte (~2.95 Ga Pongola Supergroup, Afrique du Sud) via l’étude d’un paléosol et d’un dépôt sédimentaire de précipitation chimique quasi-contemporain. L’étude du paléosol apporte de précieux indices quant aux processus d’altération archéens et aux transferts de silicium des continents vers l’océan. Ainsi, la désilicification et le lessivage du fer apparaissent comme des processus majeurs de l’altération archéenne. La présence de résidus issus de ces processus d’altération en tant que composants majeurs de dépôts détritiques (shales) atteste de la globalité de ces processus et suggère des flux significatifs en silicium dissout des continents vers l’océan. En parallèle, les « banded iron formations » (BIFs), caractérisés par une alternance de niveaux riches en fer et en silice, représentent un enregistrement extraordinaire et caractéristique du précambrien de précipitation de silice à partir de l’océan. Une étude détaillée d’un dépôt de BIFs permet d’identifier une contribution importante des eaux douces dans la masse d’eau à partir de laquelle ces roches sont précipitées. Par ailleurs, un mécanisme d’export de silicium via absorption sur des oxyhydroxydes de fer est mis en évidence. Ainsi, les niveaux riches en fer et riche en silice constituant les BIFs auraient une même origine, un réservoir d’eau de mer mélangée avec des eaux douces et une contribution minime de fluides hydrothermaux de haute température, et un même précurseur commun. Dès lors, tant les paléosols que les BIFs mettent en évidence l’importance des apports continentaux à l’océan, souvent négligés ou sous estimés, ainsi que le lien étroit entre les cycles du fer et du silicium.
Dans un second temps, cette étude explore l’évolution du cycle du silicium au cours du précambrien. Durant cette période, l’océan voit les apports hydrothermaux ainsi que sa température diminuer. Dans l’intervalle de temps 3.8-2.5 Ga, les effets de tels changements sur le cycle du silicium sont marqués par un alourdissement progressif des signatures isotopiques des cherts et des BIFs. Le fort parallélisme entre l’évolution temporelle des compositions isotopiques des deux précipités met en évidence leur origine commune, l’océan. Cependant, les compositions isotopiques des BIFs sont systématiquement plus légères d’environ 1.5‰ que les signatures enregistrées pas les cherts. Cette différence est interprétée comme le reflet de mécanismes de dépôts différents. L’alourdissement progressif des compositions isotopiques concomitant à une diminution des rapports Ge/Si reflètent une diminution des apports hydrothermaux ainsi que la mise en place d’une désilicification de plus en plus importante et/ou généralisée lors de l’altération des continents.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Hughes, Harold. "Si isotopes in tropical rivers as a proxy of the continental silicon cycle." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209808.
Повний текст джерелаKey issues treated in this thesis are the improvement of our understanding of 1° the spatial and seasonal variability of Si isotopic signatures in rivers, 2° the biological influence on the riverine isotopic signatures and on DSi and BSi fluxes, and 3° the impact of the type of weathering on the riverine isotope signatures.
The isotopic composition of different tropical basins such as the Congo River (Central Africa), the Tana River (Kenya), the Amazon (South America) and its tributaries, were determined along with other physico-chemical parameters. In order to achieve this, the water sample purification processing, necessary before isotope analyses, required specific improvements that are also pre-sented here. The average of all the riverine δ30Si signatures available so far is +1.11 ‰ (n = 253). The impact of diatom growth on the isotopic signatures of the rivers can be clearly shown in the different systems studied, and especially in the Congo River where the isotopic signature could be used in order to estimate the diatom production. The impact of anthropic perturbations through dam construction is also clearly shown in the Tana River. On a global scale the biological influ-ence on the riverine isotopic signatures is estimated to induce an increase of 0.18 ‰ of the δ30Si signature in rivers. This study also confirms the preponderant influence of weathering and secondary clay formation on dissolved Si isotope signatures in the studied rivers. Finally, isotopic signatures from these rivers are compared to data available for other rivers around the world in order to draw large trends on a global scale.
/
Le silicium (Si) est l’un des éléments les plus abondants sous forme dissoute dans les rivières et est un nutriment fondamental tant dans les rivières que dans les écosystèmes marins. Le cycle continental du Si est complexe et inclut des interactions avec de nombreux réservoirs secondaires, comme les argiles et la silice biogénique (BSi), rendant les flux de Si difficiles à quantifier. Les isotopes stables fournissent un moyen de tracer et de décrire le cycle d’un élément. Le fractionnement isotopique qui accompagne le transfert de l’élément d’un réservoir à un autre induit des signatures isotopiques spécifiques qui peuvent être utilisées pour retracer la source et la trajectoire suivie par cet élément au cours de son cycle biogéochimique. Le but de cette thèse est d’explorer le potentiel des isotopes du Si en tant qu’indicateur des facteurs contrôlant la concentration en Si dissous (DSi) dans les rivières et plus spécifiquement dans les rivières tropicales.
Les questions principales traitées dans cette thèse sont l’amélioration des connaissances de :1° la variabilité spatiale et saisonnière des signatures isotopiques du Si dans les rivières, 2° l’influence biologique sur les signatures isotopiques des rivières et sur les flux de DSi et BSi et 3° l’impacte du type d’altération sur les signatures isotopiques des rivières.
Les compositions isotopiques de différents bassins tropicaux tels que le Fleuve Congo (Afrique Centrale), le Fleuve Tana (Kenya), l’Amazone (Amérique du Sud) et ses principaux affluents ont été déterminées en même temps que d’autres paramètres physicochimiques. Pour ce faire, le pro-cédé de purification des échantillons d’eau, préalable aux analyses isotopiques, a nécessité des améliorations spécifiques qui sont également présentées ici. La moyenne de toutes les signatures δ30Si accessibles à l’heure actuelle est de +1.11 ‰ (n = 253). L’impact de la croissance des diatomées sur les signatures isotopiques des rivières est démontré dans les différents systèmes étudiés, spécialement pour le Fleuve Congo où la signature isotopique a pu être utilisée afin de déterminer la production de diatomées. L’influence de perturbations anthropiques telles que la construction de barrages a pu être démontrée pour le Fleuve Tana. À l’échelle globale, on estime que l’influence biologique sur la signature isotopique des rivières mène à une augmentation de 0.18 ‰ de la signature δ30Si moyenne des rivières. Cette étude confirme également l’influence prépondérante de l’altération et de la formation d’argiles secondaires sur les signatures isotopiques du DSi dans les rivières étudiées. Enfin, les signatures isotopiques de ces rivières sont comparées aux données accessibles pour d’autres rivières à travers le monde afin d’en déduire les grandes tendance à l’échelle mondiale.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Closset, Ivia. "Le cycle biogéochimique du silicium dans l’Océan Austral par les approches isotopiques." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066124/document.
Повний текст джерелаSouthern Ocean biogeochemistry plays a crucial role on global marine primary production by impacting the nutrient availability even in low latitude surface water. Variations in the silicon (Si) cycle are large and its coupling to other nutrient biogeochemical cycles is still not well understood in this ocean. Results of two different isotopic approaches suggested that a strong silicon pump was quickly initiated in spring by a switch from regenerated to new biogenic silica production. The seasonal evolution of natural Si isotopic composition (δ30Si) was mainly driven by the balance between the “dissolution to production” and “Si-supply to Si-uptake” ratios that decoupled the isotopic dynamics of particulate and dissolved Si-pools (DSi and BSi, repectively). We also used δ30Si measurements to track seasonal flows of BSi to the deep sea with. These results confirmed that the δ30Si is well preserved during particles settling. The seasonal evolution of δ30Si signal allows for the first time to quantify important features about the processes controlling the diatoms’ productivity and its fate, such as mixing events that bring nutrient in the ML or the seasonal evolution of particles sinking velocities. These insights confirm that the δ30Si of DSi and BSi, combined to isotopic technics to measure Si fluxes in the ML, are promising tools to improve our understanding on the Si-biogeochemical cycle and provide new constraints for application to biogeochemical models
Kameswari, Rajasekaran Mangalaa. "Silicon biogeochemical cycle along the land to ocean continuum : Focus on Indian monsoonal estuaries." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066713/document.
Повний текст джерелаSilicon is the second most abundant element in Earth’s crust and one of the key nutrient in aquatic ecosystems. There are strong interactions of Si with carbon cycle and biogeochemical processes. The present thesis focused on variability of silicon (amorphous-ASi, lithogenic-LSi and dissolved-DSi) and Si isotopes along the land to ocean continuum. We investigated the seasonal and spatial variability of ASi, LSi & DSi and Si isotopes in ~20 Indian estuaries. We categorize the estuaries using statistical analysis (PCA and cluster analysis). Diatom uptake seems to be the main process controlling ASi during dry period, especially in the South. Weathering and erosion control the variability of LSi in the remaining estuaries. Similarly lithogenic supply controls Si during wet period in all estuaries and no impact of diatoms was seen because of high suspended load. Si isotopic compositions trace the Si sources and biogeochemical pathways. The isotopic results exhibit clear seasonal difference with high impact of type of weathering during both seasons. They show that southwest watersheds are very special in terms of weathering regime compared to the other watersheds because of topography and climate. The impact of agriculture and forest cover on Si cycle is also clearly evidenced in all the basins during wet period. We show that groundwater Si isotopic variability results from a combination of dissolution and production of minerals. Overall, this study shows the preponderant influence of weathering and type of secondary clays on Si isotopes irrespective to the seasons, rather than the biological uptake or mixing as reported elsewhere
Cockerton, Helen Elizabeth. "Late-glacial and Holocene variations in the Si cycle in the Nile Basin : multi-isotope evidence from modern waters and lake sediments." Thesis, Swansea University, 2012. https://cronfa.swan.ac.uk/Record/cronfa42906.
Повний текст джерелаCoffineau, Nathalie. "Processus contrôlant la distribution des isotopes du silicium dissous (δ30Si) dans l'océan Atlantique et Indien". Thesis, Brest, 2013. http://www.theses.fr/2013BRES0067/document.
Повний текст джерелаUse of silicon isotopes (δ30Si) as a paleoceanographic proxy requires sound knowledge of the distribution and behaviour of silicon isotopes throughout the ocean. Over the past few years considerable effort has been made to map the silicon isotope composition (δ30Si) of silicic acid (dissolved silicon, DSi) and biogenic silica (BSi) throughout the ocean. Diatoms uptake DSi to build up their opal frustules (BSi). During this process, diatoms discriminate against the heavier isotope of silicon (30Si) in favor of the light isotope (28Si). This fractionation leads to BSi that has a lower δ30Si than the DSi source by 1.1 ‰ to 1.5 ‰. In turn, this results in surface waters with low DSi concentrations due to biological removal, and high δ30Si values due to Rayleigh distillation. Conversely, when the BSi dissolves it is with discrimination against the heavier isotope producing dissolved silicon with a δ30Si lower by 0.55 ‰. At the same time, episodes of upwelling occurring throughout the growing season, ocean circulation and mixing, contribute to modify the δ30Si of the dissolved silicon pool in the surface mixed layer, which complicate the use of diatom δ30Si as a proxy for DSi removal during the growing season. This dissertation aims to better understand the processes driving the Si cycle and the δ30Si signature of water masses in different regions of the ocean. New data of δ30Si of dissolved Si are presented and discussed. These data come from 6 CTD profiles from ANTXXIII/9 campaign (Atlantic and Indian sector of the Southern Ocean), 7 CTD profiles from ANTXXIV/3 (Atlantic sector of the Southern Ocean), and 5 CTD profiles from the campaign MSM10/1 (north Subtropical and Tropical Atlantic Ocean). Samples were purified by ion-exchange chromatography following preconcentration via Mg(OH)2 precipitation and extraction of silicon using triethylamine molybdate. Isotopic analyses were carried on a Neptune MC-ICP-MS at medium resolution (Ifremer, Brest)
Книги з теми "Silicon cycle"
Quéguiner, Bernard. The Biogeochemical Cycle of Silicon in the Ocean. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119136880.
Повний текст джерела1945-, Ittekkot V., ed. The silicon cycle: Human perturbations and impacts on aquatic systems. Washington, DC: Island Press, 2006.
Знайти повний текст джерелаCyclic plasticity and low cycle fatigue life of metals. Amsterdam: Elsevier, 1991.
Знайти повний текст джерелаGatti, Susanne. The rôle of sponges in high-Antarctic carbon and silicon cycling: A modelling approach = Die Rolle der Schwämme in hochantarktischen Kohlenstoff- und Silikatkreislauf : ein Modellierungsansatz. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 2002.
Знайти повний текст джерелаS, Majumdar Bhaskar, and United States. National Aeronautics and Space Administration., eds. In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаS, Majumdar Bhaskar, and United States. National Aeronautics and Space Administration., eds. In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаS, Majumdar Bhaskar, and United States. National Aeronautics and Space Administration., eds. In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаQuéguiner, Bernard. Biogeochemical Cycle of Silicon in the Ocean. Wiley & Sons, Incorporated, John, 2016.
Знайти повний текст джерелаBernard Quéguiner. Biogeochemical Cycle of Silicon in the Ocean. Wiley & Sons, Incorporated, John, 2016.
Знайти повний текст джерелаQu�guiner, Bernard. Biogeochemical Cycle of Silicon in the Ocean. Wiley & Sons, Incorporated, John, 2016.
Знайти повний текст джерелаЧастини книг з теми "Silicon cycle"
Shaha, S. K., F. Czerwinski, W. Kasprzak, J. Friedman, and D. L. Chen. "Low Cycle Fatigue of Aluminum-Silicon Alloys for Power-Train Applications." In TMS2015 Supplemental Proceedings, 999–1006. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093466.ch121.
Повний текст джерелаShaha, S. K., F. Czerwinski, W. Kasprzak, J. Friedman, and D. L. Chen. "Low Cycle Fatigue of Aluminum-Silicon Alloys for Power-Train Applications." In TMS 2015 144th Annual Meeting & Exhibition, 999–1006. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48127-2_121.
Повний текст джерелаDe La Rocha, Christina, and Daniel J. Conley. "The Venerable Silica Cycle." In Silica Stories, 157–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54054-2_9.
Повний текст джерелаShan, Jingsong, Chengfa Song, Shengbo Zhou, TongJun Duan, Shuai Zheng, and Bo Zhang. "Study on Performance of Pervious Concrete Modified by Nano-Silicon + Polypropylene Fiber Composite." In Lecture Notes in Civil Engineering, 189–98. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1748-8_15.
Повний текст джерелаShagwira, Harrison, Fredrick Madaraka Mwema, and Thomas Ochuku Mbuya. "Life Cycle Analysis of Plastic." In Polymer-Silica Based Composites in Sustainable Construction, 27–38. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003231936-3.
Повний текст джерелаGupta, Akshat, Anmol Srivastava, and Vishnu Agarwal. "Biofilm Detachment and Its Implication in Spreading Biofilm-Related Infections." In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 3–13. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_2.
Повний текст джерелаCao, J., N. Gowripalan, V. Sirivivatnanon, and J. Nairn. "Investigation of ASR Effects on the Load-Carrying Capacity of Reinforced Concrete Elements by Ultra-Accelerated Laboratory Test." In Lecture Notes in Civil Engineering, 43–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_7.
Повний текст джерелаLe Jehan, S., and P. Tréguer. "The Distribution of Inorganic Nitrogen, Phosphorus, Silicon and Dissolved Organic Matter in Surface and Deep Waters of the Southern Ocean." In Antarctic Nutrient Cycles and Food Webs, 22–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82275-9_4.
Повний текст джерелаBezerra, A., C. Trottier, L. F. M. Sanchez, and B. Fournier. "The use of artificial intelligence for assessing an overpass affected by Alkali-Silica Reaction (ASR)." In Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability, 354–61. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003322641-40.
Повний текст джерелаRagueneau, Olivier, Daniel J. Conley, Dave J. DeMaster, Hans H. Dürr, and Nicolas Dittert. "Biogeochemical Transformations of Silicon Along the Land–Ocean Continuum and Implications for the Global Carbon Cycle1." In Global Change – The IGBP Series, 515–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92735-8_10.
Повний текст джерелаТези доповідей конференцій з теми "Silicon cycle"
PHILLIPS, DENNIS R., RAPHAEL M. KUDELA, VIRGINIA T. HAMILTON, and MARK A. BRZEZINSKI. "SILICON-32: DIATOMS, THE SILICON CYCLE, AND THE CLIMATE." In Proceedings of the 3rd International Conference on Isotopes. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793867_0044.
Повний текст джерелаPeshkov, A. V. "BIM technologies: Organizational aspects at the stages of the life cycle of an investment and construction project." In SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0091559.
Повний текст джерелаTheillet, Pierre-Olivier, and Olivier Pierron. "Low-cycle fatigue testing of silicon resonators." In SPIE MOEMS-MEMS: Micro- and Nanofabrication, edited by Richard C. Kullberg and Rajeshuni Ramesham. SPIE, 2009. http://dx.doi.org/10.1117/12.808180.
Повний текст джерелаLaukert, Georgi, Stephanie Kienast, Tristan Horner, Kristin Doering, Patricia Grasse, Dorothea Bauch, Martin Frank, Oliver Huhn, and Christian Mertens. "East Greenland’s rising impact on the marine silicon cycle constrained by silicon isotopes." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10247.
Повний текст джерелаZhang, L. C. "The Stress-Dependence of Phase Changes in Silicon Under Indentation." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63908.
Повний текст джерелаCarlson, David R., Phillips Hutchison, Daniel D. Hickstein, and Scott B. Papp. "Few-cycle pulses and ultraflat supercontinuum with silicon-nitride waveguides." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_si.2019.sw4h.2.
Повний текст джерелаLunardi, Marina M., J. P. Alvarez-Gaitan, Nathan L. Chang, and Richard Corkish. "Life Cycle Assessment on Hydrogenation Processes on Silicon Solar Modules." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547848.
Повний текст джерелаTréguer, Paul, Jill Sutton, Brzezinski Mark, Matt Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, et al. "Updating the biogeochemical cycle of silicon in the modern ocean." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4207.
Повний текст джерелаMagnani, Alessandro, Christophe Viallon, Ioan Burciu, Thomas Epert, Mattia Borgarino, and Thierry Parra. "A K-band BiCMOS low duty-cycle resistive mixer." In 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems (SiRF). IEEE, 2014. http://dx.doi.org/10.1109/sirf.2014.6828506.
Повний текст джерелаBhattacharya, Arani, Subhasis Koley, and Ansuman Banerjee. "Considering multi-cycle influences for signal selection for Post Silicon Validation." In 2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV). IEEE, 2015. http://dx.doi.org/10.1109/edcav.2015.7060559.
Повний текст джерелаЗвіти організацій з теми "Silicon cycle"
Zhang, Jiguang, Qiuyan Li, Xiaolin Li, Wu Xu, and Ran Yi. Silicon-Based Anodes for Long-Cycle-Life Lithium-ion Batteries. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/2331443.
Повний текст джерелаWalker, Matthew, Warren York, Jeffrey Chames, Joshua Sugar, Kristen Frey, Herb Feinroth, and Eric Barringer. Silicon Carbide Multilayer Piping for 900oC Supercritical CO2 Brayton Cycle: Chemical Compatibility in CO2. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1761976.
Повний текст джерелаBrossia. L52119 Comparative Consumption Rates of Impressed Current Cathodic Protection Anodes. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2004. http://dx.doi.org/10.55274/r0010953.
Повний текст джерела