Добірка наукової літератури з теми "Signature ARN"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Signature ARN".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Signature ARN"
Auroux, M., M. Millet, B. Merle, E. Fontanges, F. Duvert, E. Gineyts, J. C. Rousseau, et al. "Évaluation de la signature micro-ARN dans l’arthrose digitale." Revue du Rhumatisme 89 (December 2022): A99—A100. http://dx.doi.org/10.1016/j.rhum.2022.10.140.
Повний текст джерелаIshiuchi, Shun-ichi, Makoto Sakai, Yuji Tsuchida, Akihiro Takeda, Yasutake Kawashima, Otto Dopfer, Klaus Müller-Dethlefs, and Masaaki Fujii. "IR signature of the photoionization-induced hydrophobic→hydrophilic site switching in phenol-Arn clusters." Journal of Chemical Physics 127, no. 11 (September 21, 2007): 114307. http://dx.doi.org/10.1063/1.2775935.
Повний текст джерелаMarie-Claire, C. "Existe-t’il une signature moléculaire de la réponse au lithium dans le trouble bipolaire ?" European Psychiatry 29, S3 (November 2014): 558. http://dx.doi.org/10.1016/j.eurpsy.2014.09.367.
Повний текст джерелаPatel, Palak. "Signature Verification Using Artificial Neural Network." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 12 (January 3, 2018): 40. http://dx.doi.org/10.23956/ijarcsse.v7i12.494.
Повний текст джерелаS. Kadhm, Mustafa, Mamoun Jassim Mohammed, and Hayder Ayad. "An accurate signature verification system based on proposed HSC approach and ANN architecture." Indonesian Journal of Electrical Engineering and Computer Science 21, no. 1 (January 1, 2021): 215. http://dx.doi.org/10.11591/ijeecs.v21.i1.pp215-223.
Повний текст джерелаRaimondo, Diego, Antonio Raffone, Agnese Virgilio, Stefano Ferla, Manuela Maletta, Daniele Neola, Antonio Travaglino, et al. "Molecular Signature of Endometrial Cancer with Coexistent Adenomyosis: A Multicentric Exploratory Analysis." Cancers 15, no. 21 (October 30, 2023): 5208. http://dx.doi.org/10.3390/cancers15215208.
Повний текст джерелаJain, Arpit, Jaspreet Singh, Sandeep Kumar, Țurcanu Florin-Emilian, Mihaltan Traian Candin, and Premkumar Chithaluru. "Improved Recurrent Neural Network Schema for Validating Digital Signatures in VANET." Mathematics 10, no. 20 (October 20, 2022): 3895. http://dx.doi.org/10.3390/math10203895.
Повний текст джерелаKumalasanti, R. A. "Comparison of Static Signature Identification using Artificial Neural Networks Based on Haar, Daubechies and Symlets Wavelet Transformations." International Journal of Applied Sciences and Smart Technologies 4, no. 1 (June 27, 2022): 97–108. http://dx.doi.org/10.24071/ijasst.v4i1.4786.
Повний текст джерелаPriyadarshini, K., Nisanth Sai A, P. Sai Krishna, and Dr Shruti Bhargava Choubey. "Signature Verification Using Neural Network." International Journal for Research in Applied Science and Engineering Technology 10, no. 3 (March 31, 2022): 1609–22. http://dx.doi.org/10.22214/ijraset.2022.40948.
Повний текст джерелаRahmi, Asyrofa, Vivi Nur Wijayaningrum, Wayan Firdaus Mahmudy, and Andi Maulidinnawati A. K. Parewe. "Offline Signature Recognition using Back Propagation Neural Network." Indonesian Journal of Electrical Engineering and Computer Science 4, no. 3 (December 1, 2016): 678. http://dx.doi.org/10.11591/ijeecs.v4.i3.pp678-683.
Повний текст джерелаДисертації з теми "Signature ARN"
Dufraigne, Christine. "Evolution des génomes : étude des transferts horizontaux et des duplications à l'aide de la signature génomique." Paris 6, 2004. http://www.theses.fr/2004PA066102.
Повний текст джерелаYepmo, Mélissa. "Signature unique de l’ARN circulaire dans les muscles squelettiques humains de différentes sensibilités à l’insuline." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ109.
Повний текст джерелаCircular RNAs are a class of non-coding RNAs characterized by a covalently closed loop structure. Functionally, they can act on cell physiology by inhibiting microRNAs and regulating gene and protein expression. The emerging function of circRNAs is not fully understood, but initial studies have recently shown that they are involved in the regulation of insulin secretion. In this work we tried to identify circRNAs in skeletal muscle at the level of glycolytic and oxidative fibers in healthy and type 2 diabetic patients. Our results showed a unique circular RNA signature not only as a function of status (healthy or T2DM) but also as a function of muscle fibre type (triceps or soleus). For the first time, our study has been able to identify a new way of regulating gene and protein expression independently of what is already known in skeletal muscle. These results allowed us to identify new key molecules involved in the development of type 2 diabetes, with the potential to identify new therapeutic targets
Gendron, Judith. "Les longs ARN non codants, une nouvelle classe de régulateurs génomique tissu-spécifique : signature moléculaire spécifique des neurones dopaminergiques et sérotoninergiques." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066518.
Повний текст джерелаOnly 1.2% of the genome codes for proteins; 98.8% is thus non-coding, despite 93% of the human genome being actively transcribed, mostly in long non-coding RNA (lncRNA).These lncRNA constitute a new class of genomic regulator capable of acting at all levels of gene expression and their expression is highly tissue-specific,modulated during the time and under normal/pathological conditions.Thus, we propose that each specified cell expresses a specific repertoire of lncRNA correlated to open/active chromatin regions specifying its cellular identity.In this context, we isolated by FACS 2neural types involved in many pathologies: i) human dopaminergic neurons (nDA) differentiated from hiPS and ii) DA and serotoninergic (n5-HT) neurons. From these 2neural types, we identified 1,363 lncRNA in nDA (among which 989 new, whether 73%) constituting the repertoire of nDA, and 1,257 lncRNA (among which 719 new) constituting the repertoire of n5-HT. Moreover,their comparison has shown that only 194 lncRNA are common to both neural types:thus the majority of lncRNA is expressed either in nDA or in n5-HT, indicating a high degree of cell-specificity.In addition, 39% of open chromatin regions, potentially regulatory, were also not detected in the n5-HT.Thus, we have generated DA and 5-HT specific catalogues of non-coding elements of the genome, which constitute DA and 5-HT specific molecular signatures, that could participate in deepening our knowledge regarding nDA or n5-HT development and dysfunctions. With this in mind,these DA specific elements have been compared with the SNP described as Parkinson Disease risk variants and candidate lncRNA were selected to perform studies of function
Mullani, Nowsheen. "An RNA Signature Links Oxidative Stress To Cellular Senescence." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS560.pdf.
Повний текст джерелаOxidative Stress is one of the routes leading to cellular senescence. While the damages that reactive oxygen species inflict on proteins and DNA are well described, our insight on how transcription may participate in the onset of senescence is still limited. At a transcriptional level, oxidative stress results in accumulation of promoter RNAs (uaRNAs) and enhancer RNAs (eRNAs) as a consequence of defective release of the RNAPII from the chromatin a phenomenon known as RNAPII crawling. We observed that RNAPII crawling was also detected downstream of a small series of genes known to be regulated by HP1Υ at the level of their termination. Exploring this phenomenon yielded an unexpected result in the sense that it revealed an inhibiting effect of hydrogen peroxide on the RNA exosome complex involved in degradation of polyadenylated RNAs. The crawling RNAPII results in the transcription of ALU sequences located in the neighborhood of promoters and enhancers and downstream of intron-less genes and of small series of intron-containing genes. As ALU sequences contain genome encoded A tracts, they should normally be degraded by the RNA exosome. Yet, as oxidative stress also inhibits this RNAse activity, mRNAs containing serendipitously transcribed ALU sequences get stabilized and are detected in the cytoplasm and even polysome fractions. This phenomenon may participate in the onset of the interferon response associated with oxidative stress
Jebbawi, Fadi. "Etude des lymphocytes T régulateurs naturels CD8+CD25+: signature micro-ARN et effets des micro-ARNs sur l'expression de FOXP3, CTLA-4 et GARP." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209338.
Повний текст джерелаNous avons purifié les CD8+CD25+ nTregs et vérifié par cytométrie de flux leur expression en FOXP3 et CTLA-4. Puis nous avons pu montrer que ces cellules possèdent des propriétés suppressives dans un test d’inhibition de la prolifération de lymphocytes T activés allogéniquement. Les lymphocytes CD8+CD25+ nTregs expriment les gènes FOXP3, CTLA-4, GARP et CCL-4 et les cytokines IL-10 et TGF-β. Par contre, les gènes CD28, ICOS, FOXO1 et Helios sont sous-exprimés dans les nTregs CD8+CD25+ par rapport aux lymphocytes T CD8+CD25-.
Nous avons établi une signature micro-ARN qui comprend 10 micro-ARNs différentiellement exprimés :7 micro-ARNs sous-exprimés "miR-9, -24, -31, -155, -210, -335 et -449 " et 3 micro-ARNs surexprimés " miR-214, -205 et -509". De plus, nous avons pu explorer la relevance biologique de cette signature micro-ARN en montrant dans un premier temps que les miRs "-31, -24, -210, -335" ciblent spécifiquement la région 3'UTR de FOXP3, de même les miR-9 et miR-155 ciblent la région 3'UTR de CTLA-4, et les miR-24, et -335 ciblent la région 3'UTR de GARP. Ceci a été fait par des expériences de co-transfections suivies d'une mesure de l'activité rapportrice luciférase. De plus, nous avons pu démontrer par des expériences de transduction lentivirale ex vivo, de cellules T primaires, que des micro-ARNs de la signature régulent l’expression de FOXP3, CTLA-4 et GARP dans les Tregs naturels CD8+CD25+ humains.
Cette étude montre l'importance des micro-ARNs dans la régulation post-transcriptionnelle des gènes impliqués dans la fonction régulatrice des lymphocytes T régulateurs.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Panasenkava, Veranika. "Utilisation de cellules souches pluripotentes induites combinée à une approche transcriptomique pour améliorer le diagnostic moléculaire des troubles du neurodéveloppement chez l’homme." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENB060.
Повний текст джерелаAbstract : Holoprosencephaly (HPE) is a rare disorder that affects the development of the midline of the forebrain during the earliest stages of embryogenesis, making molecular diagnosis challenging. It primarily results from genetic alterations that lead to a reduction in the activity of the Sonic Hedgehog (SHH) signaling pathway. However, a precise molecular diagnosis is only possible for 30% of patients, highlighting the importance of developing new diagnostic approaches. The main challenge is the inaccessibility of the primary tissue, specifically the anterior affected by HPE, namely the anterior neuroectoderm. To overcome this challenge, I established an in vitro model of anterior neuroectoderm using induced pluripotent stem cells. This model allowed me to generate transcriptomic data to assess the molecular impacts of SHH deficiency and define transcriptomic signatures that describe variations in SHH pathway activity, which may correlate with the severity of HPE phenotypes. This work also revealed new co-expressed and SHH-regulated genes, which could serve as new genetic markers for HPE. These advances pave the way for innovative diagnostic tools aimed at improving diagnostic accuracy for patients with HPE
Torossian, Nouritza. "Study of long non-coding RNAs and reference-free detected RNAs as potential biomarkers and actors of Triple Negative Breast Cancers' chemoresistance." Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLS057.
Повний текст джерелаTriple-negative breast cancers (TNBC) represent a heterogeneous subtype of breast cancers including 12% to 24% of all cases, having the poorest prognoses and often affecting young women. Treatment at localized stage is mainly based on chemotherapy, with no targeted therapy (except germline BRCA mutated patients). Nearly all patients receive the same Neo-Adjuvant Chemotherapy (NAC) with anthracyclines and taxanes, that badly impacts survival in the absence of pathological complete response (pCR). Therapeutic intensification, notably with addition of immunotherapy, is the current trend to increase pCR rate and improve survival. Standard gene expression signatures have failed to provide effective tools to predict TNBC chemoresistance, probably due to their incomplete nature, as they are mostly based on expression of protein coding genes and/or referenced transcripts and up to date there is no clinically useful transcriptomic signature predicting TNBC chemoresistance to NAC. Such a predictive signature would allow patient selection for therapeutic intensification. Therefore, it is important to explore the remaining 90% of the genome consisting of non-coding and non-referenced regions. One class of non-coding RNAs that is of great interest are long non-coding (lnc) RNAs, that are at least 200 nucleotides long, some of them being specifically expressed in cancer. Moreover, some lncRNAs have been shown to be implicated in different mechanisms of chemoresistance. LncRNAs are not fully well annotated in the human genome and new unreferenced transcripts, coding or not, and new isoforms of known genes are discovered daily.Therefore, the first goal of my PhD was to assess reference-free transcriptome as a potential reservoir of predictive biomarkers of TNBC chemoresistance. A cohort of 78 TNBCs before NAC was analyzed, comparing chemosensitive (chS) and chemoresistant (chR) cases based on international Residual Cancer Burden (RCB) score. A standard differential gene expression analysis (DE-seq) on annotated genes, and on new lncRNAs detected with a de novo RNA-profiler, and a reference-free analysis of differential fragments of transcripts without annotation bias were compared. Reference-free approach showed best separation of chS and chR patients in the training cohort. Further, based on comparison with an independent validation cohort, an optimized approach was proposed, where specific genomic regions with differential expression were selected. This technique gave a reproducible signature of chemoresistance between the two cohorts. In all, these results show the potential of a reference-free approach to generate a transcriptomic signature as predictive biomarker of early TNBC chemoresistance. Further investigation is needed to validate the signature using larger validation cohorts.The second objective of my PhD was to assess lncRNAs as potential actors/therapeutic targets in chR TNBCs. For that we selected lncRNAs upregulated in chR pre-NAC TNBCs (compared with chS pre-NAC TNBCs) and in chR post-NAC TNBCs (compared with chR pre-NAC TNBCs). Considering lncRNAs level and specificity of expression, genomic position, and pre-existing data of their potential function, three lncRNAs (AL450326.1, LINC02609 and MIR503HG) were retained for functional analysis. By knocking down levels of these lncRNAs in TNBC cell line model, an impact on Docetaxel cytotoxicity was assessed. All three lncRNAs knock downs showed an improved Docetaxel induced cytotoxicity. Knock down of AL450326.1 and LINC02609 resulted in a decreased spontaneous clonogenicity and increased Docetaxel induced cell death, giving a first indication of their mode of action. In all, we identified three lncRNAs playing a role in NAC chemoresistance. Further functional studies will allow to decipher the mechanisms by which the identified lncRNAs affect chemoresistance with the ultimate goal to identify new therapeutic approaches to circumvent NAC chemoresistance of TNBCs
Outlioua, Ahmed. "Exploration des cytokines pro-inflammatoires et de l’inflammasome NLRP3 dans les infections intracellulaires : cas de H. pylori et des virus à ARN Gastric IL-1β, IL-8, and IL-17A expression in Moroccan patients infected with Helicobacter pylori may be a predictive signature of severe pathological stages RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling The Role of Optineurin in Antiviral Type I Interferon Production Possible introduction of Leishmania tropica to urban areas determined by epidemiological and clinical profiles of patients with cutaneous leishmaniasis in Casablanca (Morocco)". Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL029.
Повний текст джерелаHelicobacter pylori (H. pylori) is a bacteria that infects the stomach and induces inflammatory gastritis, which can be chronic and progress to gastric cancer. The severity of the infection and its clinical course are associated with various factors including the immune status of the host. The initial inflammatory response to H. pylori infection results in the secretion of a wide range of cytokines, including interleukin-1β (IL-1β), IL-8 and IL-17A. which appear to play a key role in the initiation and progression of gastric cancer. Among these cytokines, IL-1β is a key cytokine during H. pylori infection whose expression is associated with gastric inflammation and carcinogenesis. The production of this cytokine depends on the activation of the inflammasome, in particular the NLRP3 inflammasome. The latter, responsible of the activation of inflammatory processes, is essential for the maintenance of homeostasis against various pathogenic infections such as bacterial and viral infections.The general objective of this work is i) to study the expression and polymorphism of genes for cytokines such as IL-1β, IL-17 and IL-8 in Moroccan patients infected with H. pylori. ii) explore the activation of the NLRP3 inflammasome by H. pylori and determine the mechanisms involved in the activation of this complex by RNA viruses; known as defined activators of NLRP3.Our results underlined a high prevalence of H. pylori and demonstrated a cytokine signature: it can predict metaplasia during the progression of H. pylori infection involving a decrease in IL17A expression in the antrum and increased expression of IL-1β in the fundus. In particular, the genetic polymorphisms of IL-1β (IL-1β -31 and -511) do not appear to influence IL-1β expression significantly.In view of the difficulties encountered in isolating and culturing H. pylori, we used LPS from H. pylori to stimulate the inflammasome. Our results show that the transfection of cells in vitro with bacterial LPS induces the production of IL-1β which appears to be modulated by caspase 4, NOD1 and NOD2. Furthermore, while it is clearly established that RNA viruses induce activation of the NLRP3 inflammasome, the mechanisms by which these viruses induce IL-1β production are not well understood and remain to be confirmed. The results of this part of the work showed that the replication of cytopathogenic RNA viruses such as vesicular stomatitis virus (VSV) or encephalomyocarditis virus (EMCV) induces lytic cell death leading to an efflux of potassium which triggers activation of the NLRP3 inflammasome. Thus, viruses with a high replication capacity and which have a cytopathic effect are capable of inducing the activation of caspase-1 leading to the production of IL-1β. Conversely, viruses which induce type I IFN response are very poor inducers of the NLRP3 inflammasome.A better understanding of the activation of the inflammasome could help in the development of targeted therapeutic strategies for use in the fight against bacterial and viral infections.Key words: Helicobacter pylori, inflammation, NLRP3 inflammasome, IL-1β, RNA virus
Zhang, Haocheng. "Polarization Signatures in Blazar Emission." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1444237508.
Повний текст джерелаDay, Francesca. "Astrophysical signatures of axion-like particles." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:215f6432-6dbb-4a16-80d8-3ad0bc76ec2d.
Повний текст джерелаКниги з теми "Signature ARN"
1927-, Cuisenier Jean, and Ecole du patrimoine (France), eds. Anonymat et signature. Paris: Documentation française, 1989.
Знайти повний текст джерелаoccidentale, Université de Bretagne, ed. Signatures du monstre. Rennes: Presses universitaires de Rennes, 2017.
Знайти повний текст джерелаPeterson, Jeffrey Shawn. Detection of downed trolley lines using arc signature analysis. Pittsburgh, PA: U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Research Center, 1997.
Знайти повний текст джерелаFoundation, Asia Pacific Breweries, ed. Signature art prize 2011: Asia Pacific Breweries Foundation. Singapore: Singapore Art Museum, 2011.
Знайти повний текст джерелаMuseum, Singapore Art, and National Museum of Singapore, eds. Signature Art Prize 2018: Asia Pacific Breweries Foundation. Singapore]: Singapore Art Museum, 2018.
Знайти повний текст джерелаKamuf, Peggy. Signature pieces: On the institution of authorship. Ithaca: Cornell University Press, 1988.
Знайти повний текст джерелаScheurer, Michael. Signature Scheurer: The art of Michael Scheurer. Cincinnati, OH: Alice F. and Harris K. Weston Art Gallery, 2017.
Знайти повний текст джерела1960-, Brehm Margrit Franziska, ed. Signaturen der Moderne: Zeichen, Schrift, Kontext. Karlsruhe: Ernest Rathenau Verlag, 2016.
Знайти повний текст джерелаMuseum, Singapore Art. Signature Art Prize 2008: Asia Pacific Breweries Foundation. Singapore: Singapore Art Museum, 2008.
Знайти повний текст джерелаЧастини книг з теми "Signature ARN"
Dowthwaite, James. "‘In Nature Are Signatures’." In Ezra Pound and 20th-Century Theories of Language, 173–208. New York, NY : Routledge, 2019. |: Routledge, 2019. http://dx.doi.org/10.4324/9780429292316-6.
Повний текст джерелаSmith, Doug, Brian Veitch, and Arash Fassihozzaman Langroudi. "Visualizing Complex Industrial Operations Through the Lens of Functional Signatures." In Visualising Safety, an Exploration, 57–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-33786-4_7.
Повний текст джерелаRathgeber, Cyrille B. K., Gonzalo Pérez-de-Lis, Laura Fernández-de-Uña, Patrick Fonti, Sergio Rossi, Kerstin Treydte, Arthur Gessler, Annie Deslauriers, Marina V. Fonti, and Stéphane Ponton. "Anatomical, Developmental and Physiological Bases of Tree-Ring Formation in Relation to Environmental Factors." In Stable Isotopes in Tree Rings, 61–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92698-4_3.
Повний текст джерелаWen, Junhao, Erdem Varol, Zhijian Yang, Gyujoon Hwang, Dominique Dwyer, Anahita Fathi Kazerooni, Paris Alexandros Lalousis, and Christos Davatzikos. "Subtyping Brain Diseases from Imaging Data." In Machine Learning for Brain Disorders, 491–510. New York, NY: Springer US, 2012. http://dx.doi.org/10.1007/978-1-0716-3195-9_16.
Повний текст джерелаDostov, Victor, Svetlana Krivoruchko, Pavel Shust, and Victor Titov. "Are Digital Signatures in Blockchain Functionally Equivalent to Handwritten Signatures?" In Computational Science and Its Applications – ICCSA 2023 Workshops, 527–37. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37105-9_35.
Повний текст джерелаLeahy, Caitríona. "Anselm Kiefer’s Signature: Or—Adapting God." In Adaptation Considered as a Collaborative Art, 239–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-25161-1_12.
Повний текст джерелаChen, Liang-Ting, and Hsiang-Shang Ko. "A Formal Treatment of Bidirectional Typing." In Programming Languages and Systems, 115–42. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57262-3_5.
Повний текст джерелаHarder, Jennifer. "What Are E-Signature Forms and Web Forms?" In Enhancing Adobe Acrobat Forms with JavaScript, 629–85. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9470-3_20.
Повний текст джерелаLäufer, Konstantin, and Martin Odersky. "Type Classes are Signatures of Abstract Types." In Declarative Programming, Sasbachwalden 1991, 148–62. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-3794-8_10.
Повний текст джерелаEkejiuba, Ifeanyi E. "Radiative Signatures of Neutron Beams in AGN." In Multi-Wavelength Continuum Emission of AGN, 345. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9537-2_71.
Повний текст джерелаТези доповідей конференцій з теми "Signature ARN"
Wang, Ruiqi, Zhenwei Zhang, and Yuantao Gu. "Path Signatures are Unsupervised Time Series Anomaly Extractors." In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10889612.
Повний текст джерелаWang, Mia Y., Daisy Clavijo Ramirez, Emma Noonan, Mackenzie Linn, and Qian Zhang. "A Comprehensive Dataset and Visualization Tool for Drone Acoustic Signatures." In 2024 Artificial Intelligence x Humanities, Education, and Art (AIxHEART), 13–17. IEEE, 2024. https://doi.org/10.1109/aixheart62327.2024.00009.
Повний текст джерелаAl-Janahi, Fatima, Sawsan Shukri, Kais Abdulmawjood, Joseph J. Boutros, and Robert S. Balog. "A Library of Electrical Arc Signatures for the Development and Testing of PV Arc Faults Detection Techniques." In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 0753–58. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10749386.
Повний текст джерелаTyrer, Na, Fan Yang, Gary C. Barber, Guangzhi Qu, Bo Pang, and Bingxu Wang. "3-D Offline Signature Verification with Convolutional Neural Network." In 10th International Conference on Advances in Computing and Information Technology (ACITY 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101518.
Повний текст джерелаFemi-Oyetoro, James, Sourabh Sangle, Pablo Tarazaga, and Mohammad I. Albakri. "Temperature Compensation for Electromechanical Impedance Signatures With Data-Driven Modeling." In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-91151.
Повний текст джерелаMcCusker, James R., and Kourosh Danai. "Selection of Outputs for Gas-Turbine Engines by Parameter Signatures." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4148.
Повний текст джерелаJansons, Marcis, Sukhbir Khaira, and Walter Bryzik. "Tailoring of Acoustic, Smoke and Thermal Signatures from Diesel-Powered Unmanned Ground Vehicles." In 2024 NDIA Michigan Chapter Ground Vehicle Systems Engineering and Technology Symposium. 2101 Wilson Blvd, Suite 700, Arlington, VA 22201, United States: National Defense Industrial Association, 2024. http://dx.doi.org/10.4271/2024-01-3274.
Повний текст джерелаvan Rheenen, Arthur D., and Jan B. Thomassen. "Detection – how many pixels are required?" In Target and Background Signatures VI, edited by Karin U. Stein and Ric Schleijpen. SPIE, 2020. http://dx.doi.org/10.1117/12.2574690.
Повний текст джерелаJannssen, J. A. A. J., H. Hasenpflug, and M. Janßen. "COSIMAR: Continuous Operational Signature Monitoring Awareness and Recommendation." In 14th International Naval Engineering Conference and Exhibition. IMarEST, 2018. http://dx.doi.org/10.24868/issn.2515-818x.2018.027.
Повний текст джерелаZheng, Amos Y. C. L., Leonardo T. D. Ferraz, and Marcos A. Simplicio Jr. "A clipping technique for shorter hash-based signatures." In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais, 167–80. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/sbseg.2018.4251.
Повний текст джерелаЗвіти організацій з теми "Signature ARN"
Solovyanenko, N. I. LEGAL REGULATION OF THE USE OF ELECTRONIC SIGNATURES IN ELECTRONIC COMMERCE. DOI CODE, 2021. http://dx.doi.org/10.18411/0131-5226-2021-70002.
Повний текст джерелаCooper, David A., Daniel C. Apon, Quynh H. Dang, Michael S. Davidson, Morris J. Dworkin, and Carl A. Miller. Recommendation for Stateful Hash-Based Signature Schemes. National Institute of Standards and Technology, October 2020. http://dx.doi.org/10.6028/nist.sp.800-208.
Повний текст джерелаMatte, S., M. Constantin, and R. Stevenson. Mineralogical and geochemical characterisation of the Kipawa syenite complex, Quebec: implications for rare-earth element deposits. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329212.
Повний текст джерелаMueller, C., S. J. Piercey, M. G. Babechuk, and D. Copeland. Stratigraphy and lithogeochemistry of the Goldenville horizon and associated rocks, Baie Verte Peninsula, Newfoundland. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328990.
Повний текст джерелаPoloboc, Alina. Fancy Pink Goat. Intellectual Archive, December 2023. http://dx.doi.org/10.32370/iaj.2998.
Повний текст джерелаBocanegra, Melanie C. Characterizing an EMT Signature in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2010. http://dx.doi.org/10.21236/ada534258.
Повний текст джерелаBocanegra, Melanie C. Characterizing an EMT Signature in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2009. http://dx.doi.org/10.21236/ada504702.
Повний текст джерелаBishop, Megan, Vuong Truong, Sophia Bragdon, and Jay Clausen. Comparing the thermal infrared signatures of shallow buried objects and disturbed soil. Engineer Research and Development Center (U.S.), September 2024. http://dx.doi.org/10.21079/11681/49415.
Повний текст джерелаAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo, et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, June 2021. http://dx.doi.org/10.18235/0003313.
Повний текст джерелаClausen, Jay, Rosa Affleck, Christopher Felt, Michael Musty, Steven Peckham, Susan Frankenstein, Anna Wagner, Raju Kala, and Andrew Trautz. Modernizing environmental signature physics for target detection. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41240.
Повний текст джерела