Добірка наукової літератури з теми "Shock profiles"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Shock profiles".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Shock profiles"
ASAKURA, FUMIOKI, and MITSURU YAMAZAKI. "VISCOUS SHOCK PROFILES FOR 2 × 2 SYSTEMS OF HYPERBOLIC CONSERVATION LAWS WITH AN UMBILIC POINT." Journal of Hyperbolic Differential Equations 06, no. 03 (September 2009): 483–524. http://dx.doi.org/10.1142/s0219891609001903.
Повний текст джерелаSmith, M. D., and P. W. J. L. Brand. "H2 profiles of C-type bow shocks." Monthly Notices of the Royal Astronomical Society 245, no. 1 (July 1, 1990): 108. http://dx.doi.org/10.1093/mnras/245.1.108.
Повний текст джерелаBarker, Blake, and Kevin Zumbrun. "Numerical proof of stability of viscous shock profiles." Mathematical Models and Methods in Applied Sciences 26, no. 13 (December 4, 2016): 2451–69. http://dx.doi.org/10.1142/s0218202516500585.
Повний текст джерелаBEN ABDALLAH, NAOUFEL, HEDIA CHAKER, and CHRISTIAN SCHMEISER. "THE HIGH FIELD ASYMPTOTICS FOR A FERMIONIC BOLTZMANN EQUATION: ENTROPY SOLUTIONS AND KINETIC SHOCK PROFILES." Journal of Hyperbolic Differential Equations 04, no. 04 (December 2007): 679–704. http://dx.doi.org/10.1142/s0219891607001318.
Повний текст джерелаFuda, Nguyen, Le Ngoc Tram, and William T. Reach. "Modeling CO Line Profiles in Shocks of W28 and IC 443." Astrophysical Journal 944, no. 1 (February 1, 2023): 17. http://dx.doi.org/10.3847/1538-4357/acb259.
Повний текст джерелаJadhav, Ravi Sudam, and Amit Agrawal. "Shock Structures Using the OBurnett Equations in Combination with the Holian Conjecture." Fluids 6, no. 12 (November 26, 2021): 427. http://dx.doi.org/10.3390/fluids6120427.
Повний текст джерелаZhu, Z., A. Simionescu, H. Akamatsu, X. Zhang, J. S. Kaastra, J. de Plaa, O. Urban, S. W. Allen, and N. Werner. "A shock near the virial radius of the Perseus Cluster." Astronomy & Astrophysics 652 (August 2021): A147. http://dx.doi.org/10.1051/0004-6361/202140673.
Повний текст джерелаM., Gowtham, Sreenivasaraja N., and Kasmir Anthireyan. "MATHEMATICAL DERIVATION OF DIFFERENT NOSE ANGLES TO REDUCE DRAG FORCE ON ROCKET." International Journal of Innovative Research in Advanced Engineering 9, no. 12 (December 31, 2022): 471–82. http://dx.doi.org/10.26562/ijirae.2022.v0912.03.
Повний текст джерелаHoward, Peter, and Kevin Zumbrun. "Stability of undercompressive shock profiles." Journal of Differential Equations 225, no. 1 (June 2006): 308–60. http://dx.doi.org/10.1016/j.jde.2005.09.001.
Повний текст джерелаYang, Zhao, and Kevin Zumbrun. "Stability of Hydraulic Shock Profiles." Archive for Rational Mechanics and Analysis 235, no. 1 (July 29, 2019): 195–285. http://dx.doi.org/10.1007/s00205-019-01422-4.
Повний текст джерелаДисертації з теми "Shock profiles"
Raoofi, Mohammadreza. "Asymptotic behavior of perturbed viscous shock profiles." [Bloomington, Ind.] : Indiana University, 2005. http://wwwlib.umi.com/dissertations/fullcit/3178477.
Повний текст джерелаSource: Dissertation Abstracts International, Volume: 66-06, Section: B, page: 3170. Adviser: Kevin Zumbrun. "Title from dissertation home page (viewed Dec. 4, 2006)."
Paccione, Kristin E. "Cytokine and Chemokine Profiles in a Rat Model of Hemorrhagic Shock after Immuno-Modulation by Androstenetriol." VCU Scholars Compass, 2005. http://hdl.handle.net/10156/2049.
Повний текст джерелаRodríguez, Gasén Rosa. "Modelling SEP events: latitudinal and longitudinal dependence of the injection rate of shock-accelerated protons and their flux profiles." Doctoral thesis, Universitat de Barcelona, 2011. http://hdl.handle.net/10803/31855.
Повний текст джерелаEls esdeveniments graduals de partícules solars energètiques (SEP) són un risc important per als astronautes i l’ instrumentació espacial. És per això que són necessàries eines de predicció de la intensitat i l'ocurrència de les tempestes de partícules solars per a garantitzar l'operativitat del material tècnic i científic embarcat. Existeix un gran buit, però, entre les prediccions del models actuals (per a ús en meteorologia espacial), i les observacions d'esdeveniments SEP. El treball realitzat durant aquesta tesi doctoral es centra en diversos aspectes de la simulació d'esdeveniments SEP. En particular, analitzem la influència de la posició relativa de l'observador i de la força del xoc en els perfils de flux derivats del nostre model combinat xoc-i-partícula. A partir de simulacions 3D, obtenim que el ritme d'injecció de partícules accelerades pel xoc depèn de la longitud de l'observador i demostrem, per primera vegada, que també depèn de la seva latitud. I es mostra que, conseqüentment, els perfils de flux detectats poden variar en un ordre de magnitud depenent de la connexió magnètica de l'observador amb el front del xoc. A més a més, presentem una simulació 2D d'un esdeveniment solar vist per tres sondes interplanetàries, pel qual s'ha ajustat, per primera vegada, l'arribada del xoc i els perfils de intensitat dels protons de diferents canals d'energia observats per cadascuna de les sondes. Així mateix, hem ajustat els salts en velocitat i camp magnètic a l'arribada del xoc, hem derivat les condicions de transport de les partícules i hem quantificat l'eficiència del xoc com a injector de partícules. La conclusió final del treball és que els futurs models de predicció d'esdeveniments SEP per a meteorologia espacial han de tenir en compte la geometria global de l'escenari solar-interplanetari.
Tanja, Krunić. "Numeričke procedure u definisanju pravilnih rešenja zakona održanja." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2016. https://www.cris.uns.ac.rs/record.jsf?recordId=101094&source=NDLTD&language=en.
Повний текст джерелаWe consider conservation laws with a flux discontinuity at x = 0, where the flux parts from both left and right hand side of x = 0 have at most one extreme on the observed domain. The first chapter provides elementary definitions and theorems..The second chapter refers to hyperbolic systems of conservation laws, their solutions, and numerical procedures. The third chapter is devoted to discrete shock profiles. The fourth chapter describes conservation laws with discontinuous flux functions and provides basic information upon known results in this field. In the fifth chapter, we first analyse the two-flux equation when both flux parts have a minimum and cross at most at one point in the interior of the domain. Using a flux regularization on the interval [−ε, ε], for ε > 0 small enough, we show the existence of discrete shock profiles for Godunov’s scheme for conservation laws with discontinuous flux functions. We also define a discrete entropy condition accordingly, and use the existence of an entropy discrete shock profile as an entropy criterion for shocks. Then we analyse the same problem in the case when the flux part on the left of x = 0 has a maximum and the part on the right of x = 0 has a minimum, whereas the fluxes cross at the edges of the interval. We derive a more general discrete entropy condition in this case. We provide several numerical examples in both of the above mentioned flux cases. All the presented numerical results are obtained using a program written in Mathematica. Finally, in chapter six, we prove the existence of singular shock waves in the case when the graph of one of the flux parts is above the graph of the other one on the entire domain. For that purpose, we use the shadow wave technique. At the end of this chapter, we provide a numerical verification of the obtained singular solution.
Scucchia, Federica. "Transcriptional profiles inferring thermal stress responses of the coral Oculina patagonica from the Eastern Mediterranean Sea." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17967/.
Повний текст джерелаCoeuret, Lucas. "Stabilité de profils de chocs totalement discrets pour les systèmes de lois de conservation." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES078.
Повний текст джерелаThis thesis deals with the stability analysis of discrete shock profiles for systems of conservation laws. These profiles correspond to approximations of discontinuous traveling waves by conservative finite difference schemes. Such discontinuous solutions appear naturally in the study of conservation law systems, which can model many physical situations, such as gas dynamics. The study of discrete shock profiles is essentially divided into two directions, the first one focusing on the construction of such discrete profiles and thus on the proof of their existence, and the second one studying their stability. The main objective of this thesis is to investigate this second direction. Many existing results on the stability of discrete shock profiles introduce constraining hypotheses, such as the restriction to scalar conservation laws or the requirement that the approximated discontinuities should be of small amplitude. The results of this thesis aim to pave the way towards nonlinear stability results that would deal with systems of conservation laws and not just scalar laws, and that would replace the smallness assumption on the amplitude of the discontinuities by a spectral assumption on the linearization of the numerical scheme about the discrete shock profile under consideration. In terms of the results obtained, the thesis initially focuses on obtaining sharp decay estimates for the linearization of the numerical scheme about particular solutions. We will first focus on the linearization about constant solutions before moving on to the more complicated case of the linearization about discrete shock profiles. From a spectral point of view, the analysis of the shock problem implies the existence of an eigenvalue located within the essential spectrum. This results in new terms in the analysis of the Green's function of the linearized scheme and decay properties of each of these terms will be presented. In a final section, we use the estimates obtained on the linearized operator to establish a nonlinear stability argument
Ignace, R., W. Waldron, J. Cassinelli, and A. Burke. "X-ray Emission Line Profiles from Wind Clump Bow Shocks in Massive Stars." Digital Commons @ East Tennessee State University, 2012. https://dc.etsu.edu/etsu-works/6249.
Повний текст джерелаHsu, Ting-Hao. "A Geometric Singular Perturbation Theory Approach to Viscous Singular Shocks Profiles for Systems of Conservation Laws." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437144893.
Повний текст джерелаVoyez, Juliette. "Mesures optiques de profils de turbulence atmosphérique pour les futurs systèmes d'optique adaptative." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00975076.
Повний текст джерелаSilveira, Vanessa da Silva. "Análise do perfil de expressão de genes relacionados à resistência a quimioterápicos na leucemia linfóide aguda da criança e do adolescente." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-19042018-133533/.
Повний текст джерелаMajor improvements have been made in the ALL treatment, which achieved successful rates of approximately 80% of long-terms survival. Despite the significant percentage of success, the remaining 20 % still presents treatment failure and the molecular mechanisms involved in the resistance process remains unclear. The present study was undertaken to analyze and validate the gene expression pattern of the previously described genes related to prednisolone (F8A, CDK2AP1, BLVRB, CD69), vincristine (RPLP2, CD44, TCFL5, KCNN1, TRIM24), daunorubicin (MAP3K12, SHOC2, PDCH9, EGR1, KCNN4) and Lasparaginase (GPR56, MAN1A1, CLEC11A, IGFBP7, GATA3) in order to better inderstand these mechanisms. Bone marrow samples of ALL patients, obtained at diagnosis, in four oncology centers and treated according to the Brazilian protocol (GBTLI-99). The relative mRNA expression levels were quantified using real-time PCR analysis. Amplification of the specific sequences was performed with SYBR® Green reagent; GUSB was used as the reference gene and normal bone marrow samples used as calibrator. The expression profile analisis showed important associations among the studied genes and clinical features as WBC count at diagnosis, CALLA, TEL/AML1 translocation and minimal residual disease. Among the analyzed genes, possible therapy targets were found at SHOC2 and GPR56. Further we addressed the expression profile of these genes in ALL patients, treated according to the BFM protocol, which chacarterize a group of distinct genetic\'s background. The results confirmed the data previously obtained. The overexpression of the gene SHOC2, that was primaraly associated to sensibility to dauborubicin, was related to patients who presented good prednisone response, suggesting the correlation of SHOC2 with good prognostic factors. In order to acess the interaction level of this gene, the protein expression was analyzed and confirmed the mRNA expression data. Despite its lack of information, the data on SHOC2 shows its role as na important element in the Erk activation by Ras induced pathway. Finally, to better understand the possible mechanisms which involve SHOC2 gene to the chemotherapy response process, Jurkat cells was transfect with siRNA to silence the gene SHOC2. Further, functional assays were done to characterize the mechanisms involved. The results showed the association of SHOC2 gene expression with processes of cell proliferation and apoptosis induction, thus suggesting that the overexpression of SHOC2 could play an important role in leukemic cell\'s sensibility to chemotherapy agents, and consequently in patients\' treatment outcome. In conclusion, this work demonstrated the association of the expression profile of many genes with important clinical and laboratorial features. Furthermore, this data present the gene SHOC2 as a possible therapy target to acute lymphoblastic leukemia \'s treatment.
Книги з теми "Shock profiles"
Karni, S. Viscous shock profiles and primitive formulations. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Знайти повний текст джерелаKarni, Shlomo. Viscous shock profiles and primitive formulations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Знайти повний текст джерелаMichael, Shearer, ed. Viscous profiles and numerical methods for shock waves. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1991.
Знайти повний текст джерелаIsaac, Greber, and United States. National Aeronautics and Space Administration., eds. Molecular dynamics simulation of a piston driven shock wave in a hard sphere gas. [Washington, DC: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаLinfield, Kevin William. Experimental pressure and velocity profiles of simulated blast waves produced by a composite driver. [Downsview, Ont.]: Dept. of Aerospace Science and Engineering, University of Toronto, 1992.
Знайти повний текст джерелаLinfield, Kevin William. Experimental pressure and velocity profiles of simulated blast waves produced by a composite driver. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Знайти повний текст джерелаAdamovsky, Grigory. Laser beam propagation through inhomogeneous media with shock-like profiles: Modeling and computing. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Знайти повний текст джерелаHughes, William O. Statistical analysis of a large sample size pyroshock test data set. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Знайти повний текст джерелаHughes, William O. Statistical analysis of a large sample size pyroshock test data set. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Знайти повний текст джерелаHughes, William O. Statistical analysis of a large sample size pyroshock test data set. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Знайти повний текст джерелаЧастини книг з теми "Shock profiles"
Serre, Denis. "Discrete Shock Profiles and Their Stability." In Hyperbolic Problems: Theory, Numerics, Applications, 843–53. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8724-3_35.
Повний текст джерелаGoudon, Thierry, Pauline Lafitte, and Corrado Mascia. "Shock Profiles for Fluid-Particles Flows." In SEMA SIMAI Springer Series, 287–96. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55260-1_21.
Повний текст джерелаSwegle, J. W., and D. E. Grady. "Shock Viscosity and the Calculation of Steady Shock Wave Profiles." In Shock Waves in Condensed Matter, 353–57. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_48.
Повний текст джерелаHuot, Pierre. "On the Existence of Semidiscrete Shock Profiles." In Hyperbolic Problems: Theory, Numerics, Applications, 543–51. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8372-6_8.
Повний текст джерелаPellhammer, Valentin. "Oscillating Shock Profiles in Relativistic Fluid Dynamics." In SEMA SIMAI Springer Series, 341–50. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-55260-1_26.
Повний текст джерелаTaniguchi, Takashi, Ken-ichi Kondo, and Akira Sawaoka. "Shock Waves Profiles in Powder Compacts of α Al203." In Shock Waves in Condensed Matter, 773–78. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_113.
Повний текст джерелаCaspar-Bauguil, Sylvie, and Michelle Genestal. "Plasma Phospholipid Fatty Acid Profiles in Septic Shock." In Diet and Nutrition in Critical Care, 1–16. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8503-2_137-1.
Повний текст джерелаMascia, C. "Stability and Instability Issues for Relaxation Shock Profiles." In Hyperbolic Problems: Theory, Numerics, Applications, 173–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75712-2_14.
Повний текст джерелаCaspar-Bauguil, Sylvie, and Michelle Genestal. "Plasma Phospholipid Fatty Acid Profiles in Septic Shock." In Diet and Nutrition in Critical Care, 219–33. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-7836-2_137.
Повний текст джерелаMascia, Corrado, and Kevin Zumbrun. "One-Dimensional Stability of Viscous Shock and Relaxation Profiles." In Hyperbolic Problems: Theory, Numerics, Applications, 727–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55711-8_68.
Повний текст джерелаТези доповідей конференцій з теми "Shock profiles"
Boteler, J. Michael. "Shock wave profiles in polymer matrix composite." In Shock compression of condensed matter. AIP, 2000. http://dx.doi.org/10.1063/1.1303537.
Повний текст джерелаde Klerk, Rui, and José Beirão. "Parametric Design of Street Profiles." In eCAADe 2017 : ShoCK! – Sharing of Computable Knowledge! eCAADe, 2017. http://dx.doi.org/10.52842/conf.ecaade.2017.1.057.
Повний текст джерелаde Klerk, Rui, and José Beirão. "Parametric Design of Street Profiles." In eCAADe 2017 : ShoCK! – Sharing of Computable Knowledge! eCAADe, 2017. http://dx.doi.org/10.52842/conf.ecaade.2017.1.057.
Повний текст джерелаAbe, Akihisa. "Numerical Study on Shock Wave Profiles in 6061-T6 Aluminum Using Shock Viscous Stresses." In ASME 2002 Engineering Technology Conference on Energy. ASMEDC, 2002. http://dx.doi.org/10.1115/etce2002/cmda-29075.
Повний текст джерелаCheeseman, B. A., D. P. Dandekar, Mark Elert, Michael D. Furnish, William W. Anderson, William G. Proud, and William T. Butler. "NUMERICAL SIMULATIONS OF LATERAL STRESS PROFILES." In SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2009. http://dx.doi.org/10.1063/1.3295273.
Повний текст джерелаLiu, Danny, Marc Mignolet, and John Brandt. "Perturbed-Euler Similarity Profiles Supporting Attached Shock Waves." In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7964.
Повний текст джерелаMenikoff, Ralph. "Compaction Wave Profiles in Granular HMX." In Shock Compression of Condensed Matter - 2001: 12th APS Topical Conference. AIP, 2002. http://dx.doi.org/10.1063/1.1483701.
Повний текст джерелаZhao, Wei, Weiwei Luo, Qingjun Zhao, and Jianzhong Xu. "Investigation on the Reduction of Trailing Edge Shock Losses for a Highly Loaded Transonic Turbine." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56131.
Повний текст джерелаBLACKWELL, HARVEL, ERIC YUEN, CARL SCOTT, and SIVARAM AREPALLI. "Nonequilibrium shock layer temperature profiles from arc jet radiation measurements." In 24th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1679.
Повний текст джерелаBourne, N. K., and Z. Rosenberg. "Simultaneous manganin gauge and visar measurements of shock wave profiles." In The tenth American Physical Society topical conference on shock compression of condensed matter. AIP, 1998. http://dx.doi.org/10.1063/1.55600.
Повний текст джерелаЗвіти організацій з теми "Shock profiles"
Grady, D. E., and R. L. Moody. Shock compression profiles in ceramics. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/211375.
Повний текст джерелаSlemrod, Marshall, and Athanasios E. Tzavaras. Shock Profiles and Self-Similar Fluid Dynamic Limits. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada304652.
Повний текст джерелаShearer, Michael. Viscous Profiles and Numerical Methods for Shock Waves. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada238464.
Повний текст джерелаShearer, Michael. Viscous Profiles and Numerical Methods for Shock Waves. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada246110.
Повний текст джерелаPerry, William, and Malcolm Burns. Efficient connection of reactive shock wave profiles to reaction models. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1826503.
Повний текст джерелаWarnes, R. H., and D. L. Tonks. Measurement and analysis of three 1.5-GPa shock-wave profiles in copper. Office of Scientific and Technical Information (OSTI), July 1993. http://dx.doi.org/10.2172/10165834.
Повний текст джерелаDesjardins, Tiffany, and John James Charonko. Additive Manufacturing Interface Profiles for Jet Studies on the Vertical Shock Tube. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1606338.
Повний текст джерелаVigil, M. G. Plane Shock Generator Explosive Lens: PH 13-8 Mo stainless steel versus 4340 steel shock wave separators and LX-13 versus PBX-9501 explosive particle velocity-time profiles. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/6730164.
Повний текст джерелаCazamias, J., D. Lassila, M. Shehadeh, and H. Zbib. A Report on the use of Weak-Shock Wave Profiles and 3-D Dislocation Dynamics Simulations for Validation of Dislocation Multiplication and Mobility in the Phonon Drag Regime. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/15013922.
Повний текст джерелаHixson, R. S., J. E. Vorthman, R. L. Gustavsen, A. K. Zurek, W. R. Thissell, and D. L. Tonks. Spall wave-profile and shock-recovery experiments on depleted uranium. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/548730.
Повний текст джерела