Добірка наукової літератури з теми "SHEAR CORE"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "SHEAR CORE".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "SHEAR CORE"

1

Kwan, A. K. H. "Shear Lag in Shear/Core Walls." Journal of Structural Engineering 122, no. 9 (September 1996): 1097–104. http://dx.doi.org/10.1061/(asce)0733-9445(1996)122:9(1097).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Deschapelles, Bernardo. "Discussion: Shear Lag in Shear/Core Walls." Journal of Structural Engineering 123, no. 11 (November 1997): 1552–54. http://dx.doi.org/10.1061/(asce)0733-9445(1997)123:11(1552).

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Joo, Hyo-Eun, Sun-Jin Han, Min-Kook Park, and Kang Su Kim. "Shear Tests of Deep Hollow Core Slabs Strengthened by Core-Filling." Applied Sciences 10, no. 5 (March 2, 2020): 1709. http://dx.doi.org/10.3390/app10051709.

Повний текст джерела
Анотація:
Prestressed hollow core slabs (PHCSs) have commonly been applied to long-span structures, due to their excellent flexural capacity and deflection control performance. However, in quite a few cases, the web-shear strength at member ends subjected to high shear forces is insufficient, because the web of the PHCS is very thin, making it difficult to place shear reinforcement, and the prestress is not fully effective in transfer length regions. Accordingly, a variety of shear strengthening methods have been proposed to improve the web-shear strength of PHCS ends. In this study, experimental research was conducted to investigate the shear resistance mechanism of PHCS strengthened by core-filling method, which has been most widely used in the construction field. The number of filled cores and the shear reinforcement ratio were set as the main test variables, and the patterns and angles of shear cracks that occurred in the PHCS units and filled cores, respectively, and the strain behavior of the shear reinforcement, were measured and analyzed in detail. This study also analyzed the test results based on the current design codes, and proposed a modified shear strength equation that can be applied to the core-filled PHCS.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cui, Shi Qi, Xu Wen Kong, Xin Wang, and Ming Liang Yang. "Experimental Study about Testing Masonry Shear Strength with Drilled Core Method." Applied Mechanics and Materials 166-169 (May 2012): 1241–44. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.1241.

Повний текст джерела
Анотація:
Key technology of testing masonry shear strength with core drilling method is that standard shear strength of masonry is determined from the shear strength of masonry core sample, while current code or specification has not provided the corresponding calculating formula. To investigate their relationship, a series of tests have been carried out. Existing test result analysis shows that standard shear strength of masonry and shear strength of masonry core sample are closely related. By means of testing data regression analysis, this work can establish the relationship formula between shear strength of single core sample and standard shear strength of masonry. This Technology can be suitable both to traditional masonry structure and to new wall materials masonry structure, especially to seismic appraiser and reinforcement calculation of masonry structure. This technology can support scientific basis to quality examination and assessment of new wall materials and analysis of engineering quality accident.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

HO, DUEN, and CHI HO LIU. "SHEAR-WALL AND SHEAR-CORE ASSEMBLIES WITH VARIABLE CROSS-SECTION." Proceedings of the Institution of Civil Engineers 81, no. 3 (September 1986): 433–46. http://dx.doi.org/10.1680/iicep.1986.549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Walter, Michael J. "A shear pathway to the core." Nature 403, no. 6772 (February 2000): 839–40. http://dx.doi.org/10.1038/35002698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pavlova, S. A. "Analysis of contact interaction of polymer honeycomb core and CFRP base layers in sandwich-core constructions." VESTNIK of Samara University. Aerospace and Mechanical Engineering 20, no. 1 (April 20, 2021): 87–96. http://dx.doi.org/10.18287/2541-7533-2021-20-1-87-96.

Повний текст джерела
Анотація:
The article considers the challenge of studying the mechanical properties of composite sandwich constructions at the interface between the base layers and the lightweight core. The results of strength tests are presented for specimens of sandwich-core panels with coats made of high-strength carbon fiber-reinforced plastics (CFRP) and polymer honeycomb core considering various loading conditions. It is noted that a discrepancy in the values of shear stresses occurs in four-point bending and shear tests due to the complex stress-strain state of the specimens during bending. In order to interpret the experimental data, numerical analysis of the area of contact interaction between the coats and the filler of the sandwich-core composite structures is carried out. It is noted that in the presence of significant normal stresses in the adhesive coat the base layers separate from the core during shear tests and there is underestimation of the values of shear stresses by about 20%. Recommendations for the assignment of ultimate shear stresses for the use in practical design of sandwich-core composite constructions are put forward.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

HO, D., and CHI HO LIU. "CORRIGENDUM: SHEAR-WALL AND SHEAR-CORE ASSEMBLIES WITH VARIABLE CROSS- SECTION." Proceedings of the Institution of Civil Engineers 83, no. 1 (March 1987): 355. http://dx.doi.org/10.1680/iicep.1987.360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Xin Feng, Jian Ying Xu, Jing Xin Hao, Rui Liao, and Zhu Zhong. "Three-Point Bending Shear Stress of Wooden Sandwich Composite ." Materials Science Forum 852 (April 2016): 1337–41. http://dx.doi.org/10.4028/www.scientific.net/msf.852.1337.

Повний текст джерела
Анотація:
The effect of construction parameters and material type on bending shear stress and shear force was analyzed systematically. It is shown that maximum bending shear stress of sandwich construction is smaller than homogeneous single layer beam with same cross section if the skin has higher modulus than the core. Besides the effect of core or skin layer to shear force is almost identical for sandwich composite composed by different materials with same construction parameter. In addition, the shear force can be taken almost by the core of sandwich beam only if the ratio of core thickness to the whole is more than. Otherwise the resistance to shear force of skin layer should be considered to calculate the shear deformation. The results can provide basic theory for design optimization of sandwich construction.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nassif Sabr, Yousif, Dr Husain Khalaf Jarallah, and Dr Hassan Issa Abdul Kareem. "Improving the Shear Strength of Lightweight RC Thick Hollow Core Slab Made of Recycled Materials." International Journal of Engineering & Technology 7, no. 4.20 (November 28, 2018): 403. http://dx.doi.org/10.14419/ijet.v7i4.20.26143.

Повний текст джерела
Анотація:
This research paper focused on the experimental study about shear behavior of reinforced concrete thick hollow core slab. The reduction hollow length technique was used to resist the shear failure that occurred in the thick hollow core slab. The three hollows were used in tested slabs. The effect of reduction in the length of hollow in the shear region as well as the sides hollow was considered in the shear behavior of the tested hollow core slab. The recyclable material was used to a get of lightweight concrete, where the crushed clay brick was used as a coarse aggregate instead of the gravel. The test was done by applying two line load. The specimens were tested up to failure. The experimental results showed an increase in the shear strength up to 109.52% and an increase in the deflection up to 24% compared with the hollow core slab specimen that all hollow core is accessible. From the experimental result of this investigation can avoid the shear failure subsequently the load devolves from the shear region to the flexural region with change the mode of failure from shear failure to flexural-shear failure.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "SHEAR CORE"

1

GUPTA, ARUN KUMAR. "DETERMINATION OF SEISMIC PARAMETER OF RCC TALL BUILDING USING SHEAR CORE , SHEAR WALL AND SHEAR CORE WITH OUTRIGGER." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18840.

Повний текст джерела
Анотація:
This report covers the detailed explanation about the determination of seismic parameter of RCC tall building using shear core, shear wall and shear core with outrigger. Building are subjected to various loads such as dead load, live load ,wind load and seismic load. Seismic load has extreme adverse effect on building so it is necessary to perform seismic analysis This paper describe about the response of building when it is subjected to seismic load , this response can be shown by story drift and base shear. Seismic analysis has been performed on (G+30) building which is located in zone 4 using ETABS software. Analysis has been performed according to IS 1893 PART 1 (2016). This paper gives total rule to manual as wells programming examination of seismic coefficient technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roberts, Ryan (Ryan M. ). "Shear lag in truss core sandwich beams." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32935.

Повний текст джерела
Анотація:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
Includes bibliographical references (leaf 30).
An experimental study was conducted to investigate the possible influence of shear lag in the discrepancy between the theoretical and measured stiffness of truss core sandwich beams. In previous studies, the measured values of stiffness in loading have proven to be 50% of the theoretical stiffness during three point bending tests. To test the effect of shear lag on this phenomenon, the beams' dimensions were altered to decrease the presence of shear lag in a gradual manner so a trend could be observed. The experimental trails were carried out on three types of beams each with different diameters of truss material. Results show that this study has improved the accuracy of the measured results from previous studies with the two smallest truss diameter beams. Because the discrepancy between the theoretical and measured values is the greatest for the largest beams, (when the shear deflection has the least influence), it is concluded that shear lag is not responsible for the discrepancy between measured and theoretical stiffness.
by Ryan Roberts.
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Noury, Philippe. "Shear crack initiation and propagation in foam core sandwich structures." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

鄺君尚 and Jun-shang Kuang. "Elastic and elasto-plastic analysis of shear wall and core wall structures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1988. http://hub.hku.hk/bib/B3123155X.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

梁少江 and Siu-kong Leung. "Analysis of shear/core wall structures using a linear moment beam-typeelement." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31213352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuang, Jun-shang. "Elastic and elasto-plastic analysis of shear wall and core wall structures /." [Hong Kong] : University of Hong Kong, 1988. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12428565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yun, Samuel. "Mechanical Analysis of a Detachment Shear Zone, Picacho Mountains Metamorphic Core Complex (AZ)." Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10814249.

Повний текст джерела
Анотація:

On I-10 between Tuscon, AZ, and Phoenix, AZ, is the Picacho Mountains Metamorphic Core Complex (MCC). The Picacho Mountains MCC represents the northwest of the Greater Catalina MCC which includes Tortolita, Santa Catalina, and Rincon Mountains. To the immediate south of I-10 is Picacho Peak, an early Miocene andesitic volcanic center, and opposite of Picacho Peak are the granitic Picacho Mountains. The detachment shear zone (DSZ) is well exposed at Hill 2437. The mylonitic DSZ is separated into an upper, middle, and lower plate by two detachment faults. The DSZ is estimated to have undergone deformation at ~500?C based on recrystallized quartz microstructures and a previous thermochronologic study by previous graduate student Maxwell Schaper. We obtained an average flow stress of 43 ? 9 MPa using a quartz paleopiezometer by Stipp and Tullis (2003). Using a flow law by Hirth et al. (2001), we found strain rate values between 10-13 and 10-12 s-1. Grain size analysis indicates that quartz recrystallized grains have relatively moderate aspect ratio (1.55 < Rf < 1.87) which correlates to small amount of finite strain (1.13 < Rs < 1.33). Results from vorticity analysis based on the recrystallized quartz grain shape foliation method reveals that quartz was deformed under ~60% pure shear and ~40% simple shear (0.48 < Wm < 0.70, assuming plane strain), and the DSZ experienced ~18% of shortening perpendicular to mylonitic foliation, and up to ~22% of stretching parallel to the flow plane up. We found that despite high strain rate values and evidence of high strain rate (e.g. undulose extinction in quartz, chessboard structures, cataclasites, and possible pseudotachylytes), this is not reflected in the amount of finite strain recorded by the mylonitic DSZ.

Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leung, Siu-kong. "Analysis of shear/core wall structures using a linear moment beam-type element /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18155376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lindwall, Caroline, and Jonas Wester. "Modelling Lateral Stability of Prefabricated Concrete Structures." Thesis, KTH, Betongbyggnad, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188586.

Повний текст джерела
Анотація:
Stability calculations of prefabricated concrete structures with help of FEM-tools demand knowledge about how the elements are related to each other. This thesis concerns how joints between building elements affect the results when modelling prefabricated concrete structures, with demarcation to joints between hollow core (HC) slabs and between solid wall elements. The thesis also covers how the properties of the floor can be adjusted to account for the effects of the joints without modelling every single element. The work started by measuring the deflection of 10 HC-slabs jointed together and loaded in-plane acting as a deep beam, in a FE-model made with Robot™, from Autodesk®. The joints between the HC-elements were modelled either rigid or elastic, and the cross-section and the length of the HC-elements were varied. The linear elastic stiffness between the HC-elements was obtained from the literature as 0.05 (GN/m)/m. The results showed that a changed cross-section geometry gave greater differences in deformation than a changed length. The in-plane shear modulus was then adjusted for the HC-elements in the rigid cases until the same deflection was achieved as for the elastic cases. The result showed that the shear modulus in average for the different cross-section geometries and lengths had to be reduced with a factor of 0.1 to account for the joints. Based on the geometry of a castellated joint between prefabricated solid concrete walls, a calculation model was developed for its linear elastic stiffness. The result was a stiffness of 1.86 (GN/m)/m. To verify the calculated stiffness, a FE-model was developed consisting of a 30m high wall, loaded horizontally in-plane and with one or two vertical joints where the stiffness was applied. The deflection and the reaction forces were noted and the result from the calculated stiffness was compared to other stiffnesses and assessed reasonable. The reaction forces were shown to depend on the stiffness of the joint. The reduced in-plane shear modulus of the HC-elements and the calculated stiffness of the wall joints were then used in a FE-model of a 10-storey building stabilised by two units. The vertical reaction forces were analysed and the results showed 0.02 % difference in the reaction forces in the stabilising units when consideration of the joints between the HC-elements were taken into account and 0.09 % when the vertical joints in the shear wall were taken into account. The results for the wall joint differed from the results when only the wall was modelled. This was thought to be a result of that the floors counteract the shear deformations in the wall joints. The influence of the floor joints was not significant for the building considered in this thesis, but for buildings with non-continuous configuration of the stiffness in the shear walls the outcome may be another, in these cases the reduction factor may be useful.
Vid stabilitetsberäkningar av prefabricerade betongstommar med hjälp av FEM-verktyg ställs krav på kunskap om hur elementen förhåller sig till varandra. Detta arbete berör hur fogar mellan byggnadselement påverkar modellering av prefabricerade betongstommar med avgränsning till fogar mellan håldäckselement och mellan solida väggelement. Arbetet berör även en studie i hur ett bjälklags egenskaper kan justeras så att fogarnas effekt kan tillvaratas utan att modellera varje enskilt håldäckselement. Arbetet inleddes med att utböjningen analyserades hos 10 st ihopskarvade håldäckselement, lastade i dess plan likt en hög balk, i en FE-modell skapad i programmet Robot™, från Autodesk®. Fogarna mellan håldäcken modellerades som antingen rigida eller elastiska och håldäckens tvärsnittsgeometri och längd varierades under testet. Den linjära styvheten mellan håldäcken togs från litteraturen som 0.05 (GN/m)/m. Resultatet visade att ändrad tvärsnittsgeometri gav större skillnader för deformationen än varierad längd på håldäcken. Håldäckens skjuvmodul justerades sedan i dess plan för de rigida testen tills dess att de uppnådde samma utböjning som de elastiska. Resultatet visade att skjuvmodulen behövdes reduceras med en faktor 0.1, i medeltal för de olika tvärsnittsgeometrierna och håldäckslängderna. Utefter geometrin på en fog med förtagningar mellan prefabricerade väggar togs en beräkningsmodell fram för den linjärelastiska styvheten i väggfogarna. Resultatet blev en styvhet på 1.86 (GN/m)/m. För att verifiera den beräknade styvheten togs en FE-modell fram bestående av en 30m hög vägg lastad horisontellt i dess plan med en eller två vertikala fogar där en linjär styvhet applicerades. Utböjningen samt reaktionskrafterna noterades, resultatet för den uträknade linjära styvheten jämfördes med andra styvheter och bedömdes utifrån detta vara rimlig. Reaktionskrafterna visade sig vara beroende av styvheten på fogen. Den sänkta skjuvmodulen för håldäcken och den beräknade linjära elasticiteten för väggarna användes sedan i en FE-modell av en 10-våningsbyggnad med två stabiliserande enheter där de vertikala reaktionskrafterna analyserades. Resultatet visade att endast 0.02 procentenheter skiljer reaktionskrafterna i de stabiliserande enheterna då hänsyn tas till fogarna mellan håldäcken och 0.09 procentenheter då hänsyn tas till fogarna mellan väggarna. Resultatet skiljer sig från när endast väggen modellerades, vilket tros bero på att bjälklaget hjälper till att motverka deformationer i väggfogarna. Fogen mellan bjälklagselementen tros kunna ha större inverkan på en byggnad med stabiliserande enheter som drastiskt ändrar styvhet från ett plan till ett annat, i dessa fall kan den framtagna reduktionsfaktorn vara av nytta.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fiszman, Nicolas. "Study of the average shear velocity of the inner-core of the earth using isolation filters." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/52999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "SHEAR CORE"

1

Mankbadi, R. R. Effects of core turbulence on jet excitability. [Washington, DC]: National Aeronautics and Space Administration, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pajari, Matti. Shear resistance of prestressed hollow core slabs on flexible supports. Espoo, Finland: Technical Research Centre of Finland, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mazzone, Graziano. The shear response of precast, pretensioned hollow-core concrete slabs. Ottawa: National Library of Canada, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Riemer, Michael. Development and validation of the downhole freestanding shear device (DFSD) for measuring the dynamic properties of clay. Sacramento, CA: California Dept. of Transportation, Division of Research and Innovation, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mabey, Matthew A. Downhole and seismic cone penetrometer shear-wave velocity measurements for the Portland Metropolitan Area, 1993 and 1994. Portland, Or: State of Oregon, Dept. of Geology and Mineral Industries, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United States. National Aeronautics and Space Administration., ed. An analysis code for the Rapid Engineering Estimation of Momentum and Energy Losses (REMEL). [Washington, DC]: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fellinger, Joris H. H. Shear & Anchorage Behavior Of Fire Exposed Hollow Core Slabs. Delft Univ Pr, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hrabowych, Orest Jaroslav. Methods of analysis of shear walls and cores. 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Neutral-line magnetic shear and enhanced coronal heating in solar active regions. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arneson, Richard J. Dworkin and Luck Egalitarianism. Edited by Serena Olsaretti. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199645121.013.4.

Повний текст джерела
Анотація:
Ronald Dworkin is a founding father of what has come to be called “luck egalitarianism,” a family of distributive justice doctrines that hold that the inequalities in people’s condition that are brought about by sheer brute luck falling on them in ways that are beyond their power to control should be reduced or eliminated, but that inequalities that arise through people’s own fault or choice, such that they can reasonably be deemed responsible for their condition, need not be reduced or eliminated. Dworkin himself has come to embrace an alternative view, “justice as fair insurance.” This chapter characterizes Dworkin’s view, compares it to luck egalitarianism, and criticizes both doctrines.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "SHEAR CORE"

1

Czabaj, Michael W., W. R. Tubbs, Alan T. Zehnder, and Barry D. Davidson. "Compression/Shear Response of Honeycomb Core." In Experimental and Applied Mechanics, Volume 6, 393–98. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0222-0_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Miyata, M., N. Kurita, and I. Nakamura. "Turbulent Plane Jet Excited Mechanically by an Oscillating Thin Plate in the Potential Core." In Turbulent Shear Flows 7, 209–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Quinlan, Taylor, Alan Lloyd, and Sajjadul Haque. "Effect of Core Fill Timing on Shear Capacity in Hollow-Core Slabs." In Lecture Notes in Civil Engineering, 359–69. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0656-5_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Xian-Feng, and Adam M. Dziewonski. "Global analysis of shear wave velocity anomalies in the lower-most mantle." In The Core‐Mantle Boundary Region, 21–36. Washington, D. C.: American Geophysical Union, 1998. http://dx.doi.org/10.1029/gd028p0021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rathi, Nishant, G. Muthukumar, and Manoj Kumar. "Influence of Shear Core Curtailment on the Structural Response of Core-Wall Structures." In Lecture Notes in Civil Engineering, 207–15. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0362-3_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Manshadi, Behzad D., Anastasios P. Vassilopoulos, Julia de Castro, and Thomas Keller. "Shear Wrinkling of GFRP Webs in Cell-Core Sandwiches." In Advances in FRP Composites in Civil Engineering, 95–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17487-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chovet, Rogelio, and Fethi Aloui. "Void Fraction Influence Over Aqueous Foam Flow: Wall Shear Stress and Core Shear Evolution." In Progress in Clean Energy, Volume 1, 909–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16709-1_66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Surana, Mitesh, Yogendra Singh, and Dominik H. Lang. "Seismic Performance of Shear-Wall and Shear-Wall Core Buildings Designed for Indian Codes." In Advances in Structural Engineering, 1229–41. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2193-7_96.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yamada, M., and T. Yamakaji. "Steel panel shear wall – Analysis on the center core steel panel shear wall system." In Behaviour of Steel Structures in Seismic Areas, 541–48. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211198-74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Grimm, S., and J. Lange. "Testing the core of sandwich panels with square shear specimen." In Modern Trends in Research on Steel, Aluminium and Composite Structures, 222–27. London: Routledge, 2021. http://dx.doi.org/10.1201/9781003132134-26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "SHEAR CORE"

1

MANKBADI, REDA, EDWARD RICE, and GANESH RAMAN. "Effects of core turbulence on jet excitability." In 2nd Shear Flow Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Votyakov, E. V., and Stavros C. Kassinos. "CORE OF THE MAGNETIC OBSTACLE." In Sixth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/tsfp6.1130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wong, Patrick C., Brian Taylor, and Jean Audibert. "Differences In Shear Strength Between Jumbo Piston Core and Conventional Rotary Core Samples." In Offshore Technology Conference. Offshore Technology Conference, 2008. http://dx.doi.org/10.4043/19683-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Anacleto, Paulo M., Edgar Fernandes, Manuel V. Heitor, and Sergei I. Shtork. "CHARACTERISTICS OF PRECESSING VORTEX CORE IN THE LPP COMBUSTOR MODEL." In Second Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/tsfp2.220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Avile´s, F., and L. A. Carlsson. "On the Sandwich Plate Twist Test for Shear Testing." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66320.

Повний текст джерела
Анотація:
This work examines the viability of the sandwich twist (anticlastic) test as a means to determine the in-plane and transverse shear properties of the face sheets and core in sandwich materials through analysis and testing. The contribution of core transverse shear to the total compliance of the specimen is quantified for different material systems and the adequacy of classical laminated plate theory (CLPT) as a data reduction method for such a test is examined. Parametric studies are conducted using finite element analysis (FEA) to examine the influence of transverse shear deformation on the plate compliance and propose some guidelines for specimen design. It is shown that CLPT greatly underestimates the plate compliance, except when very stiff cores and compliant face sheets are used, as a result of transverse core shear deformation. A shear correction factor is proposed to correct the CLPT compliance for transverse shear deformation of the core. For sandwich panels with compliant cores, the shear correction factor may be used to determine transverse shear modulus of the core.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Kiyoung, and Haecheon Choi. "Characteristics of turbulent core-annular flows in a vertical pipe." In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Duwig, Christophe, and Laszlo Fuchs. "STUDY OF PRECESSING VORTEX CORE DURING VORTEX BREAKDOWN USING LES AND POD." In Fifth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2007. http://dx.doi.org/10.1615/tsfp5.1400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ecker, Tobias, K. Todd Lowe, and Wing F. Ng. "An experimental study of the role of core intermittency in equivalent jet noise sources." In Ninth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2015. http://dx.doi.org/10.1615/tsfp9.980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rusnak, David, and Dean Schleicher. "A test method to determine shear in sandwich-core composite beams." In Advanced Marine Vehicles Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fan, Wei, Pizhong Qiao, and Julio F. Davalos. "Design Optimization of Honeycomb Core Configurations for Effective Transverse Shear Stiffness." In 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "SHEAR CORE"

1

McDermott, Matthew R. Shear Capacity of Hollow-Core Slabs with Concrete Filled Cores. Precast/Prestressed Concrete Institute, 2018. http://dx.doi.org/10.15554/pci.rr.comp-002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hahm, T. S., and K. H. Burrell. Role of flow shear in enhanced core confinement regimes. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/220600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bell, M. G., R. E. Bell, P. C. Efthimion, D. R. Ernst, E. D. Fredrickson, and et al. Core Transport Reduction in Tokamak Plasmas with Modified Magnetic Shear. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/2552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Burrell, K. H., C. M. Greenfield, L. L. Lao, G. M. Staebler, M. E. Austin, B. W. Rice, and B. W. Stallard. Effects of ExB Velocity Shear and Magnetic Shear in the Formation of Core Transport Barriers in the DIII-D Tokamak. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/629302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Broome, Scott, Mathew Ingraham, and Perry Barrow. Permeability and Direct Shear Test Determinations of Barnwell Core in Support of UNESE. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1734478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Broome, Scott, Moo Lee, and Aviva Joy Sussman. Direct Shear and Triaxial Shear test Results on Core from Borehole U-15n and U-15n#10 NNSS in support of SPE. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1488326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schumaker, S. A., Stephen A. Danczyk, Malissa D. Lightfoot, and Alan L. Kastengren. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements. Fort Belvoir, VA: Defense Technical Information Center, June 2014. http://dx.doi.org/10.21236/ada611313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mones, Ryan M., and Sergio F. Breña. Flexural and Shear Strength of Hollow-core Slabs with Cast-in-place Field Topping. Precast/Prestressed Concrete Institute, 2012. http://dx.doi.org/10.15554/pci.rr.comp-008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

ROBERTS, JESSE D., and RICHARD A. JEPSEN. Development for the Optional Use of Circular Core Tubes with the High Shear Stress Flume. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/780295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ryan, J. J., A. Zagorevski, N. R. Cleven, A J Parsons, and N. L. Joyce. Architecture of pericratonic Yukon-Tanana terrane in the northern Cordillera. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/326062.

Повний текст джерела
Анотація:
West-central Yukon and eastern Alaska are characterized by widespread metamorphic rocks that form part of the allochthonous, composite Yukon-Tanana terrane and parautochthonous North American margin. Structural windows through the Yukon-Tanana terrane expose parautochthonous North American margin in that broad region, particularly as mid-Cretaceous extensional core complexes. Both the Yukon-Tanana terrane and parautochthonous North American margin share the same Late Devonian history, making their discrimination difficult; however, distinct post-Late Devonian magmatic and metamorphic histories assist in discriminating Yukon-Tanana terrane from parautochthonous North American margin rocks. The suture between Yukon-Tanana terrane and parautochthonous North American margin is obscured by many episodes of high-strain deformation. Their main bounding structure is probably a Jurassic to Cretaceous thrust, which has been locally reactivated as a mid-Cretaceous extensional shear zone. Crustal-scale structures within composite Yukon-Tanana terrane (e.g. the Yukon River shear zone) are commonly marked by discontinuous mafic-ultramafic complexes. Some of these complexes represent orogenic peridotites that were structurally exhumed into the Yukon-Tanana terrane in the Middle Permian.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії