Добірка наукової літератури з теми "Shallow water systems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Shallow water systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Shallow water systems"

1

Clarkson, Peter A., and Thomas J. Priestley. "Shallow Water Wave Systems." Studies in Applied Mathematics 101, no. 4 (November 1998): 389–432. http://dx.doi.org/10.1111/1467-9590.00099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saxena, Atanu Basu, N. K. "A Review of Shallow-Water Mapping Systems." Marine Geodesy 22, no. 4 (October 1999): 249–57. http://dx.doi.org/10.1080/014904199273380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Browning, G. L., and H.-O. Kreiss. "Reduced Systems for the Shallow Water Equations." Journal of the Atmospheric Sciences 44, no. 19 (October 1987): 2813–22. http://dx.doi.org/10.1175/1520-0469(1987)044<2813:rsftsw>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Illes, Ladislav, Tomas Kalina, Martin Jurkovic, and Vladimir Luptak. "Distributed Propulsion Systems for Shallow Draft Vessels." Journal of Marine Science and Engineering 8, no. 9 (August 29, 2020): 667. http://dx.doi.org/10.3390/jmse8090667.

Повний текст джерела
Анотація:
The aim of this study was to investigate the impact of distributed propulsion systems used on inland and coastal navigation in shallow water. Five layouts were assessed by computational fluid dynamics (CFD) simulation. The hull/propulsion layout cases have been analyzed for discrete flow speed values in the range 0–6 m/s. All cases have been examined under restricted draft conditions in shallow water with a minimum of 0.3 m under keel clearance (UKC) and under unrestricted draft conditions in deep water. The results show that distributed propulsion consisting of 6 or 8 (in some cases, even more) units produces noticeable higher thrust effects in shallow water than the traditional layout. Under restricted conditions, the thrust increase between two distributed layouts with different numbers of propulsors is higher, in contrast to deep water, where differences in performance are not so significant.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Korpusov, M. O., and E. V. Yushkov. "Solution blowup for systems of shallow-water equations." Theoretical and Mathematical Physics 177, no. 2 (November 2013): 1505–14. http://dx.doi.org/10.1007/s11232-013-0119-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sangapate, P. "Adaptive Control and Synchronization of the Shallow Water Model." Mathematical Problems in Engineering 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/529251.

Повний текст джерела
Анотація:
The shallow water model is one of the important models in dynamical systems. This paper investigates the adaptive chaos control and synchronization of the shallow water model. First, adaptive control laws are designed to stabilize the shallow water model. Then adaptive control laws are derived to chaos synchronization of the shallow water model. The sufficient conditions for the adaptive control and synchronization have been analyzed theoretically, and the results are proved using a Barbalat's Lemma.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hu, Qiaoyi, Zhixin Wu, and Yumei Sun. "Liouville theorems for periodic two-component shallow water systems." Discrete & Continuous Dynamical Systems - A 38, no. 6 (2018): 3085–97. http://dx.doi.org/10.3934/dcds.2018134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Branco, Brett, Thomas Torgersen, John R. Bean, Gary Grenier, and Dennis Arbige. "A new water column profiler for shallow aquatic systems." Limnology and Oceanography: Methods 3, no. 3 (March 2005): 190–202. http://dx.doi.org/10.4319/lom.2005.3.190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Didenkulova, Ira, and Efim Pelinovsky. "Rogue waves in nonlinear hyperbolic systems (shallow-water framework)." Nonlinearity 24, no. 3 (January 25, 2011): R1—R18. http://dx.doi.org/10.1088/0951-7715/24/3/r01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pivnev, P. P., A. P. Voloshchenko, and S. P. Tarasov. "Monitoring of Bioresources in Shallow Water by Parametric Systems." IOP Conference Series: Earth and Environmental Science 459 (April 15, 2020): 042089. http://dx.doi.org/10.1088/1755-1315/459/4/042089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Shallow water systems"

1

Godin, André. "The calibration of shallow water multibeam echo-sounding systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23800.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ding, Xiaoliang. "Numberical solution of the shallow-water equations on distributed memory systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0006/MQ40742.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Akponasa, Gladys Aruore. "Solution of the contravariant shallow water equations using boundary-fitted coordinate systems." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Winter, Thomas A. "Examination of time-reversal acoustic application to shallow water active sonar systems." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2000. http://handle.dtic.mil/100.2/ADA378874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dudzinski, Michael [Verfasser]. "Well-Balanced Bicharacteristic-Based Finite Volume Schemes for Multilayer Shallow Water Systems / Michael Dudzinski." München : Verlag Dr. Hut, 2014. http://d-nb.info/106456058X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kneis, David. "A water quality model for shallow river lake systems and its application in river basin management." Phd thesis, [S.l.] : [s.n.], 2007. http://opus.kobv.de/ubp/volltexte/2007/1464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Amour, Frédéric. "3-D modeling of shallow-water carbonate systems : a scale-dependent approach based on quantitative outcrop studies." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6662/.

Повний текст джерела
Анотація:
The study of outcrop modeling is located at the interface between two fields of expertise, Sedimentology and Computing Geoscience, which respectively investigates and simulates geological heterogeneity observed in the sedimentary record. During the last past years, modeling tools and techniques were constantly improved. In parallel, the study of Phanerozoic carbonate deposits emphasized the common occurrence of a random facies distribution along single depositional domain. Although both fields of expertise are intrinsically linked during outcrop simulation, their respective advances have not been combined in literature to enhance carbonate modeling studies. The present study re-examines the modeling strategy adapted to the simulation of shallow-water carbonate systems, based on a close relationship between field sedimentology and modeling capabilities. In the present study, the evaluation of three commonly used algorithms Truncated Gaussian Simulation (TGSim), Sequential Indicator Simulation (SISim), and Indicator Kriging (IK), were performed for the first time using visual and quantitative comparisons on an ideally suited carbonate outcrop. The results show that the heterogeneity of carbonate rocks cannot be fully simulated using one single algorithm. The operating mode of each algorithm involves capabilities as well as drawbacks that are not capable to match all field observations carried out across the modeling area. Two end members in the spectrum of carbonate depositional settings, a low-angle Jurassic ramp (High Atlas, Morocco) and a Triassic isolated platform (Dolomites, Italy), were investigated to obtain a complete overview of the geological heterogeneity in shallow-water carbonate systems. Field sedimentology and statistical analysis performed on the type, morphology, distribution, and association of carbonate bodies and combined with palaeodepositional reconstructions, emphasize similar results. At the basin scale (x 1 km), facies association, composed of facies recording similar depositional conditions, displays linear and ordered transitions between depositional domains. Contrarily, at the bedding scale (x 0.1 km), individual lithofacies type shows a mosaic-like distribution consisting of an arrangement of spatially independent lithofacies bodies along the depositional profile. The increase of spatial disorder from the basin to bedding scale results from the influence of autocyclic factors on the transport and deposition of carbonate sediments. Scale-dependent types of carbonate heterogeneity are linked with the evaluation of algorithms in order to establish a modeling strategy that considers both the sedimentary characteristics of the outcrop and the modeling capabilities. A surface-based modeling approach was used to model depositional sequences. Facies associations were populated using TGSim to preserve ordered trends between depositional domains. At the lithofacies scale, a fully stochastic approach with SISim was applied to simulate a mosaic-like lithofacies distribution. This new workflow is designed to improve the simulation of carbonate rocks, based on the modeling of each scale of heterogeneity individually. Contrarily to simulation methods applied in literature, the present study considers that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The implementation of different techniques customized for each level of the stratigraphic hierarchy provides the essential computing flexibility to model carbonate systems. Closer feedback between advances carried out in the field of Sedimentology and Computing Geoscience should be promoted during future outcrop simulations for the enhancement of 3-D geological models.
Das Modellieren von geologischen Aufschlüssen liegt der Schnittstelle zwischen zwei geo-logischen Teildisziplinen, der Sedimentologie und der geologischen Modellierung. Hierbei werden geologische Heterogenitäten untersucht und simuliert, welche im Aufschluss beobachtet wurden. Während der letzten Jahre haben sich die Werkzeuge und die Technik der Modellierung stetig weiter-entwickelt. Parallel dazu hat die Untersuchung der phanerozoischen Karbonatablagerungen ihren Fokus auf gemeinsamen Vorkommen von zufälligen Faziesverteilungen in beiden Ablagerungs-gebieten. Obwohl beide Teildisziplinen durch die Aufschlussmodellierung eigentlich verbunden sind, wurden ihre jeweiligen Vorteile in der Literatur nicht miteinander verbunden, um so eine Verbesserung ähnlicher Studien zu erreichen. Die vorliegende Studie überprüft erneut die Modellierungsstrategie, angepasst an die Simulation von Flachwasser-Karbonat-Systemen und basierend auf einer engen Beziehung zwischen Sedimentologie und Modellierung. Die vorliegende Arbeit behandelt erstmals die Evaluierung der drei am häufigsten verwendeten Algorithmen „Truncated Gaussian Simulation (TGSim)“, „Sequential Indicator Simulation (SISim)“ und „Indicator Kriging (IK)“, um sie visuell und quantitativ mit dem entsprechenden Aufschluss zu vergleichen. Die Ergebnisse zeigen, dass die Heterogenität von Karbonatgesteinen nicht komplett mit nur einem Algorithmus simuliert werden kann. Die Eigenschaften jedes einzelnen Algorithmus beinhalten Vor- und Nachteile, sodass kein Algorithmus alle Beobachtungen aus dem Aufschluss widerspiegelt. Die zwei Endglieder im Spektrum der Ablagerungsbedingungen von Karbonaten, eine flachwinklige, jurassische Karbonat-Rampe (Hoher Atlas, Marokko) und eine isolierte, triassische Plattform (Dolomiten, Italien), wurden untersucht, um einen kompletten Überblick über die verschiedenen Heterogenitäten in Flachwasser-Karbonat- Systemen zu erhalten. Sedimentologische und statistische Analysen wurden für die verschiedenen Typen, Morphologien, Verteilungen und Assoziationen von Karbonatablagerungen durchgeführt und mit paläogeografischen Rekonstruktionen kombiniert und zeigen ähnliche Ergebnisse. Im Beckenmaßstab zeigen die Faziesassoziationen, bestehend aus Fazieszonen mit ähnlichen Ablagerungsbedingungen, einen linearen und kontinuierlichen Übergang zwischen den einzelnen Ablagerungsbereichen. Im Gegensatz dazu zeigt für einzelne Lithofaziestypen im Maßstab einzelner Schichten eine mosaikartige Verteilung, bestehend aus einer Anordnung räumlich unabhängiger Lithofazieszonen entlang des Ablagerungsprofils. Das Ansteigen der räumlichen Unordnung von der beckenweiten Ablagerung zur Ablagerung einzelner Schichten resultiert aus dem Einfluss autozyklischer Faktoren bei der Ablagerung von Karbonaten. Die Skalenabhängigkeit von Karbonat-Heterogenität ist mit der Auswertung der Algorithmen verknüpft um eine Modellierungsstrategie zu etablieren, welche sowohl die sedimentären Charakteristiken des Aufschlusses als auch die Modellierfähigkeit berücksichtigt. Für die Modellierung der Ablagerungssequenzen wurde ein flächenbasierter Ansatz verwendet. Die Faziesassoziationen wurden durch die Benutzung des TGSim-Algorithmus simuliert, um die regulären Trends zwischen den einzelnen Ablagerungsgebieten zu erhalten. Im Bereich der verschiedenen Lithofazien wurde mit dem SISim-Algorithmus, ein voll stochastischer Ansatz angewendet, um die mosaikartige Verteilung der Lithofazies-Typen zu simulieren. Dieser neue Arbeitsablauf wurde konzipiert, um die Simulierung von Karbonaten auf Basis der einzelnen Heterogenitäten in verschiedenen Größenordnungen zu verbessern. Im Gegensatz zu den in der Literatur angewendeten Simulationsmethoden berücksichtigt diese Studie, dass eine einzelne Modellierungstechnik die natürlichen Ablagerungsmuster und Variabilität von Karbonaten wahrscheinlich nicht korrekt abbildet. Die Einführung verschiedener Techniken, angepasst auf die verschiedenen Ebenen der stratigrafischen Hierarchie, liefert die notwendige Flexibilität um Karbonatsysteme korrekt zu modellieren. Eine enge Verknüpfung zwischen den Fortschritten auf dem Gebieten der Sedimentologie und dem Gebiet der modellierenden Geowissenschaften sollte weiterhin bestehen, um auch zukünftig bei der Simulation von geologischen Gelände-Aufschlüssen eine Verbesserung der 3-D-Modellierung zu erreichen.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pearson, Richard Vincent. "Simulation of shallow water hydrodynamics and species transport using elliptically generated non-orthogonal boundary-fitted coordinate systems." Thesis, University of Salford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Karabulut, Dogan Ozge. "Monitoring Of Water Clarity, And Submerged And Emergent Plant Coverages In Shallow Lake Wetlands Using Remote Sensing Techniques." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608235/index.pdf.

Повний текст джерела
Анотація:
Shallow lake wetlands, for which aquatic plants (macrophytes) and water clarity are the key indicators of ecological status, provide valuable services to wildlife and humanity. Conservation of these ecosystems requires development of rapid and large scale monitoring strategies, where remote sensing and Geographic Information Systems (GIS) can be advantageous. In this study, high spatial resolution Quickbird and IKONOS and medium spatial resolution Landsat and Aster images were used for monitoring the aquatic plants and water clarity in Lakes Mogan and Eymir. Classification of emergent plants with high spatial resolution data yielded overall accuracies greater than 90% for both lakes, while overall accuracies obtained from the medium spatial resolution data ranged between 80% and 93% for Lake Mogan and between 70% and 78% for Lake Eymir. It was found that there was 23ha reed bed loss in Lake Mogan between 2002 and 2005 and an additional 14ha was lost between 2005 and 2006. In Lake Eymir, no significant change in reed bed area was detected from high spatial resolution images
however medium spatial resolution images revealed 8ha of change which was attributed to the presence of mixed pixels due to low resolution. The overall accuracies for submerged plant coverage classification from Quickbird images in Lake Mogan were 83% (2005) and 79% (2006) and for classification of submerged plants species were 72% (2005) and 69% (2006). Moreover, it was found that blue band together with the ratio of red band to blue band, were the best predictors of Secchi disc depth.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brettle, Matthew John. "Sedimentology and high-resolution sequence stratigraphy of shallow water delta systems in the early Marsdenian (Namurian) Pennine Basin, Northern England." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Shallow water systems"

1

Winter, Thomas A. Examination of time-reversal acoustic application to shallow water active sonar systems. Monterey, Calif: Naval Postgraduate School, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Buck, John R. Single mode excitation in the shallow water acoustic channel using feedback control. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gillett, Blakeney. Microcomputer 3-D finite difference MODFLOW model for shallow layered aquifer systems in the Gulf Shores area of southwest Alabama. Tuscaloosa, Ala. (P.O. Box O, Tuscaloosa, 35486-9780): Geological Survey of Alabama, Hydrogeology Division, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

L, Wood-Putnam Jody, and Society of Photo-optical Instrumentation Engineers., eds. Information systems for divers and autonomous underwater vehicles operating in very shallow water and surf zone regions II: 27 April 2000, Orlando, USA. Bellingham, Wash., USA: SPIE, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

L, Wood-Putnam Jody, and Society of Photo-optical Instrumentation Engineers., eds. Information systems for Navy divers and autonomous underwater vehicles operating in very shallow water and surf zone regions: 7-8 April 1999, Orlando, Florida. Bellingham, Wash., USA: SPIE, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kammerer, P. A. Ground-water flow and quality in Wisconsin's shallow aquifer system. Madison, Wis: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kammerer, P. A. Ground-water flow and quality in Wisconsin's shallow aquifer system. Madison, Wis: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kammerer, P. A. Ground-water flow and quality in Wisconsin's shallow aquifer system. Madison, Wis: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kammerer, P. A. Ground-water flow and quality in Wisconsin's shallow aquifer system. Madison, Wis: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Richardson, Donna L. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Richmond, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Shallow water systems"

1

Toro, Eleuterio F. "First-Order Methods for Systems." In Computational Algorithms for Shallow Water Equations, 189–223. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61395-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hereman, Willy. "Shallow Water Waves and Solitary Waves." In Encyclopedia of Complexity and Systems Science, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-27737-5_480-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hereman, Willy. "Shallow Water Waves and Solitary Waves." In Mathematics of Complexity and Dynamical Systems, 1520–32. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_96.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hereman, Willy. "Shallow Water Waves and Solitary Waves." In Encyclopedia of Complexity and Systems Science, 8112–25. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hereman, Willy. "Shallow Water Waves and Solitary Waves." In Encyclopedia of Complexity and Systems Science Series, 203–20. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2457-9_480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lannes, David. "Shallow water asymptotics: Systems. Part 1: Derivation." In Mathematical Surveys and Monographs, 121–56. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/188/05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lannes, David. "Shallow water asymptotics: Systems. Part 2: Justification." In Mathematical Surveys and Monographs, 157–75. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/surv/188/06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Casasso, Alessandro, and Rajandrea Sethi. "Water-Energy Nexus in Shallow Geothermal Systems." In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, 425–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13068-8_106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dronkers, J. "Inshore/Offshore Water Exchange in Shallow Coastal Systems." In Coastal-Offshore Ecosystem Interactions, 3–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-52452-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dronkers, J. "Inshore/offshore water exchange in shallow coastal systems." In Lecture Notes on Coastal and Estuarine Studies, 3–39. Washington, D. C.: American Geophysical Union, 1988. http://dx.doi.org/10.1029/ln022p0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Shallow water systems"

1

Kochańska, Iwona, Aleksander Schmidt, and Jan Schmidt. "Shallow-Water Acoustic Communications in Strong Multipath Propagation Conditions." In 2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 99–103. IEEE, 2024. http://dx.doi.org/10.1109/csndsp60683.2024.10636410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yarina, Marina, Boris Katsnelson, and Oleg A. Godin. "Waveguide Mode Selection from Broadband Signal Using Two Vertical Line Arrays in Shallow Water." In 2024 IEEE International Conference on Microwaves, Communications, Antennas, Biomedical Engineering and Electronic Systems (COMCAS), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/comcas58210.2024.10666241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

KUPERMAN, WA, and F. INGENITO. "SURFACE-GENERATED NOISE IN SHALLOW WATER." In Sound Propagation and Underwater Systems 1978. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/23601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Coffey, W. M., and R. Egito Coelho. "Standard Shallow Water Completion Systems in Brazil." In Offshore Technology Conference. Offshore Technology Conference, 1987. http://dx.doi.org/10.4043/5573-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Poor, Cara J., and Daniel M. Wagner. "Evaluation of Soil Mixes in Shallow Bioretention Systems." In World Environmental and Water Resources Congress 2017. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480618.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ben-Artzi, Matania, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Conservation Laws on Surfaces: Meteorological Systems—Shallow-Water." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gary R. Sands, Inhong Song, Lowell M. Busman, and Bradley Hansen. "Water Quality Benefits of "Shallow" Subsurface Drainage Systems." In 2006 Portland, Oregon, July 9-12, 2006. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.20794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

DOBBINS, PF, and AD GOODSON. "SHALLOW WATER, VERY SHORT RANGE BIOMIMETIC SONAR CONCEPTS." In BIO SONAR SYSTEMS AND BIO ACOUSTICS 2004. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/18026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fauziya, Farheen, Brejesh Lall, Monika Agrawal, Ayushi Garg, and Krutika Jaiswal. "Path Gain Characterization of Shallow Water Acoustic Channel." In WUWNET'17: International Conference on Underwater Networks & Systems. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3148675.3148726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aziz Amoozegar, David L Lindbo, and Christopher P Niewoehner. "Ground Water Mounding Under Large Systems in Areas with Shallow Water Table." In Eleventh Individual and Small Community Sewage Systems Conference Proceedings, 20-24 October 2007, Warwick, Rhode Island. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2007. http://dx.doi.org/10.13031/2013.24027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Shallow water systems"

1

Dahl, Peter H. Influence of Bubbles on Naval Systems Operating in Shallow Water: The Scripps Pier Experiment. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada627579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wadman, Heidi M., John B. Gaskin, and Anthony R. Jackson. Performance of High-Resolution, Acoustic Mapping Systems in a Fluid-Mud Environment : Testing the Effectiveness and Viability of High-Resolution, Hydrographic Survey Systems in a Fluid-Mud Environment. U.S. Army Engineer Research and Development Center, October 2024. http://dx.doi.org/10.21079/11681/49436.

Повний текст джерела
Анотація:
This study explores the use of high-resolution acoustic mapping systems to penetrate fluid-mud layers by quantitatively relating depth with operating frequency. Prior to this study, multibeam surveys have proven be an effective method to elucidate the seafloor and collect bathymetric data on various bodies of water including rivers, lakes, bays, and the oceans. These techniques are regularly used on US Army Corps of Engineers dredged and federally maintained navigation channels. The objective of the study was to test the effectiveness of commercial off-the-shelf, low-frequency, high-resolution acoustic survey systems to penetrate fluid mud and if so, determine the density at penetration. The testing method combined multibeam echosounder, sub-bottom profiler, and single-beam echo sounder. In addition, in situ testing was conducted to determine the density of fluid-mud layers using a RheoTune profiler and laboratory testing. Results indicate that the use of currently available, bathymetric mapping systems operating at 90 kHz and higher are incapable of penetrating fluid mud in riverine and coastal shallow water conditions. This study demonstrates that while multibeam technology is effective at penetrating the water column, current frequencies available on the market are unable to penetrate fluid-mud layers in a riverine and shallow-water environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Durkin, Patrick, A. Bak, and Matthew Saenz. Modifications to an amphibious unoccupied ground vehicle for survey operations. Engineer Research and Development Center (U.S.), September 2024. http://dx.doi.org/10.21079/11681/49211.

Повний текст джерела
Анотація:
Developing unoccupied systems capable of collecting data in the very shallow water (<10 m) and surfzone (typically <3 m) is a challenging task for many reasons including waves, sediment, bubbles, and turbulent velocities. This document focuses on describing some of the additions, enhancements, and refinements to a commercial-off-the-shelf (COTS) system, the SeaOx, available from Bayonet Ocean Vehicles (previously C2i). In addition, practical experience in using this platform to collect data in the surfzone is documented.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Flood, Roger D., Charles A. Nittrouer, and Larry Mayer. A Shallow-Water Swath Bathymetry System. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada609745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Driscoll, Neal W., Wayne D. Spencer, and David G. Aubrey. Implementation and Design of a Shallow Water Imaging System. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada635101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Slattery, S. R., P. J. Barnett, A. J. M. Pugin, D. R. Sharpe, D. Goodyear, R E Gerber, S. Holysh, and S. Davies. Tunnel-channel complexes in the Zephyr area, Ontario: potential high-yield aquifers. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331410.

Повний текст джерела
Анотація:
In south-central Ontario, tunnel channels are primary targets for groundwater exploration due to their potential to contain confined, water-bearing, coarse-grained sediment fills. Despite extensive hydrogeologic and geologic exploration within these features, a comprehensive depositional model that illustrates the spatial distribution of coarse- and fine- grained sediment in tunnel-channel complexes is absent. Work in the Zephr area, north of ORM, presents new subsurface data to improve understanding of this geologic setting and to add to geologic models of these channel systems. Findings result from combined geology, sedimentology, geophysics (seismic profiling) and sediment drilling (mud rotary and continuous core) to better our understanding the shallow channel setting north of ORM, including: 1) spatial distribution of coarse- and fine-grained sediments in tunnel-channels; 2) the architecture of tunnel-channel sequences in confluence zones. Preferred aquifer targets aquifer units in the Zephyr area are identified in areas of channel confluence and channel bends. Channel aquifers are confined by 3.9 to 28.5 m thick deposits of rhythmically bedded silt and clay.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pazol, Brian. Multi-Purpose Acoustic Imaging System for Shallow Water AUV Operations. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada625175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chu, Peter C. Shallow Water Analysis and Prediction System for the South China Sea. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ng, L. C., and H. Rosenbaum. Shallow Water Imaging Sonar System for Environmental Surveying Final Report CRADA No. TC-1130-95. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1426107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alford, Matthew H. Transition Funding for the Shallow Water Integrated Mapping System SWIMS and Modular Microstructure Profiler MMP. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada599034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії