Добірка наукової літератури з теми "Sequential processing (Computer science)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Sequential processing (Computer science)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Sequential processing (Computer science)"

1

Carmesin, H. O., and H. Schwegler. "Parallel versus sequential processing of relational stimulus structures." Biological Cybernetics 71, no. 6 (October 1994): 523–29. http://dx.doi.org/10.1007/bf00198470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Carmesin, H. O., and H. Schwegler. "Parallel versus sequential processing of relational stimulus structures." Biological Cybernetics 71, no. 6 (October 1, 1994): 523–29. http://dx.doi.org/10.1007/s004220050111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Yong-Joo, and Paul Zipkin. "Processing Networks with Inventories: Sequential Refinement Systems." Operations Research 43, no. 6 (December 1995): 1025–36. http://dx.doi.org/10.1287/opre.43.6.1025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Korde, P. S., and P. B. Khanale. "Cache Oblivious Matrix Multiplication Algorithm using Sequential Access Processing." Research Journal of Information Technology 3, no. 1 (January 1, 2011): 61–67. http://dx.doi.org/10.3923/rjit.2011.61.67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sharma, Shalini, and Angshul Majumdar. "Sequential Transform Learning." ACM Transactions on Knowledge Discovery from Data 15, no. 5 (June 26, 2021): 1–18. http://dx.doi.org/10.1145/3447394.

Повний текст джерела
Анотація:
This work proposes a new approach for dynamical modeling; we call it sequential transform learning. This is loosely based on the transform (analysis dictionary) learning formulation. This is the first work on this topic. Transform learning, was originally developed for static problems; we modify it to model dynamical systems by introducing a feedback loop. The learnt transform coefficients for the t th instant are fed back along with the t + 1st sample, thereby establishing a Markovian relationship. Furthermore, the formulation is made supervised by the label consistency cost. Our approach keeps the best of two worlds, marrying the interpretability and uncertainty measure of signal processing with the function approximation ability of neural networks. We have carried out experiments on one of the most challenging problems in dynamical modeling - stock forecasting. Benchmarking with the state-of-the-art has shown that our method excels over the rest.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

LeBron Paige, A., Ö. Özdamar, and R. E. Delgado. "Two-dimensional spectral processing of sequential evoked potentials." Medical & Biological Engineering & Computing 34, no. 3 (May 1996): 239–43. http://dx.doi.org/10.1007/bf02520080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

ROBERGE, VINCENT, and MOHAMMED TARBOUCHI. "COMPARISON OF PARALLEL PARTICLE SWARM OPTIMIZERS FOR GRAPHICAL PROCESSING UNITS AND MULTICORE PROCESSORS." International Journal of Computational Intelligence and Applications 12, no. 01 (March 2013): 1350006. http://dx.doi.org/10.1142/s1469026813500065.

Повний текст джерела
Анотація:
In this paper, we present a parallel implementation of the particle swarm optimization (PSO) on graphical processing units (GPU) using CUDA. By fully utilizing the processing power of graphic processors, our implementation (CUDA-PSO) provides a speedup of 167× compared to a sequential implementation on CPU. This speedup is significantly superior to what has been reported in recent papers and is achieved by four optimizations we made to better adapt the parallel algorithm to the specific architecture of the NVIDIA GPU. However, because today's personal computers are usually equipped with a multicore CPU, it may be unfair to compare our CUDA implementation to a sequential one. For this reason, we implemented a parallel PSO for multicore CPUs using MPI (MPI-PSO) and compared its performance against our CUDA-PSO. The execution time of our CUDA-PSO remains 15.8× faster than our MPI-PSO which ran on a high-end 12-core workstation. Moreover, we show with statistical significance that the results obtained using our CUDA-PSO are of equal quality as the results obtained by the sequential PSO or the MPI-PSO. Finally, we use our parallel PSO for real-time harmonic minimization of multilevel power inverters with 20 DC sources while considering the first 100 harmonics and show that our CUDA-PSO is 294× faster than the sequential PSO and 32.5× faster than our parallel MPI-PSO.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhuo, Youwei, Jingji Chen, Gengyu Rao, Qinyi Luo, Yanzhi Wang, Hailong Yang, Depei Qian, and Xuehai Qian. "Distributed Graph Processing System and Processing-in-memory Architecture with Precise Loop-carried Dependency Guarantee." ACM Transactions on Computer Systems 37, no. 1-4 (June 2021): 1–37. http://dx.doi.org/10.1145/3453681.

Повний текст джерела
Анотація:
To hide the complexity of the underlying system, graph processing frameworks ask programmers to specify graph computations in user-defined functions (UDFs) of graph-oriented programming model. Due to the nature of distributed execution, current frameworks cannot precisely enforce the semantics of UDFs, leading to unnecessary computation and communication. It exemplifies a gap between programming model and runtime execution. This article proposes novel graph processing frameworks for distributed system and Processing-in-memory (PIM) architecture that precisely enforces loop-carried dependency; i.e., when a condition is satisfied by a neighbor, all following neighbors can be skipped. Our approach instruments the UDFs to express the loop-carried dependency, then the distributed execution framework enforces the precise semantics by performing dependency propagation dynamically. Enforcing loop-carried dependency requires the sequential processing of the neighbors of each vertex distributed in different nodes. We propose to circulant scheduling in the framework to allow different nodes to process disjoint sets of edges/vertices in parallel while satisfying the sequential requirement. The technique achieves an excellent trade-off between precise semantics and parallelism—the benefits of eliminating unnecessary computation and communication offset the reduced parallelism. We implement a new distributed graph processing framework SympleGraph, and two variants of runtime systems— GraphS and GraphSR —for PIM-based graph processing architecture, which significantly outperform the state-of-the-art.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

CHANG, C. Y., and K. YAO. "SYSTOLIC ARRAY PROCESSING OF THE SEQUENTIAL DECODING ALGORITHM." International Journal of High Speed Computing 01, no. 03 (September 1989): 465–80. http://dx.doi.org/10.1142/s0129053389000251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

KRITHIVASAN, KAMALA, N. SAKTHI BALAN, and PRAHLADH HARSHA. "DISTRIBUTED PROCESSING IN AUTOMATA." International Journal of Foundations of Computer Science 10, no. 04 (December 1999): 443–63. http://dx.doi.org/10.1142/s0129054199000319.

Повний текст джерела
Анотація:
With distributed computing beginning to play a major role in modern Computer Science, the theory of grammar systems and distributed automata has been developed in order to model distributed computing. In this paper, we introduce the notion of distributed automata in the sequential sense. Distributed Automata are a group of automata working in unison to accept one language. We build the theory of distributed for FSA and PDA in different modes of acceptance like the t-mode, *-mode, =k-mode, ≤k-mode and ≥k-mode. We then analyze the acceptance power of each automata in all the above modes. We present proofs that distributed FSAs do not have any additional power over "centralized" FSAs in any of the modes, while distributed PDAs with only two components are as powerful as Turing Machines in all of the modes. We give proofs for the equivalence of all modes in the case of PDAs. We also study a restricted version of distributed PDA called k-turn distributed PDA.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Sequential processing (Computer science)"

1

Parashkevov, Atanas. "Advances in space and time efficient model checking of finite state systems." Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09php223.pdf.

Повний текст джерела
Анотація:
Bibliography: leaves 211-220 This thesis examines automated formal verification techniques and their associated space and time implementation complexity when applied to finite state concurrent systems. The focus is on concurrent systems expressed in the Communicating Sequential Processes (CSP) framework. An approach to the compilation of CSP system descriptions into boolean formulae in the form of Ordered Binary Decision Diagrams (OBDD) is presented, further utilised by a basic algorithm that checks a refinement or equivalence relation between a pair of processes in any of the three CSP semantic models. The performance bottlenecks of the basic refinement checking algorithms are identified and addressed with the introduction of a number of novel techniques and algorithms. Algorithms described in this thesis are implemented in the Adelaide Tefinement Checking Tool.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bari, Himanshu. "Design and implementation of a library to support the Common Component Architecture (CCA) over Legion." Diss., Online access via UMI:, 2004. http://wwwlib.umi.com/dissertations/fullcit/1424173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Shujian. "Evaluation in built-in self-test." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ34293.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Moffat, Nicholas. "Identifying and exploiting symmetry for CSP refinement checking." Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pajic, Slobodan. "Sequential quadratic programming-based contingency constrained optimal power flow." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0430103-152758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Simpson, Andrew C. "Safety through security." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:4a690347-46af-42a4-91fe-170e492a9dd1.

Повний текст джерела
Анотація:
In this thesis, we investigate the applicability of the process algebraic formal method Communicating Sequential Processes (CSP) [Hoa85] to the development and analysis of safetycritical systems. We also investigate how these tasks might be aided by mechanical verification, which is provided in the form of the proof tool Failures-Divergences Refinement (FDR) [Ros94]. Initially, we build upon the work of [RWW94, Ros95], in which CSP treatments of the security property of non-interference are described. We use one such formulation to define a property called protection, which unifies our views of safety and security. As well as applying protection to the analysis of safety-critical systems, we develop a proof system for this property, which in conjunction with the opportunity for automated analysis provided by FDR, enables us to apply the approach to problems of a sizable complexity. We then describe how FDR can be applied to the analysis of mutual exclusion, which is a specific form of non-interference. We investigate a number of well-known solutions to the problem, and illustrate how such mutual exclusion algorithms can be interpreted as CSP processes and verified with FDR. Furthermore, we develop a means of verifying the faulttolerance of such algorithms in terms of protection. In turn, mutual exclusion is used to describe safety properties of geographic data associated with Solid State Interlocking (SSI) railway signalling systems. We show how FDR can be used to describe these properties and model interlocking databases. The CSP approach to compositionality allows us to decompose such models, thus reducing the complexity of analysing safety invariants of SSI geographic data. As such, we describe how the mechanical verification of Solid State Interlocking geographic data, which was previously considered to be an intractable problem for the current generation of mechanical verification tools, is computationally feasible using FDR. Thus, the goals of this thesis are twofold. The first goal is to establish a formal encapsulation of a theory of safety-critical systems based upon the relationship which exists between safety and security. The second goal is to establish that CSP, together with FDR, can be applied to the modelling of Solid State Interlocking geographic databases. Furthermore, we shall attempt to demonstrate that such modelling can scale up to large-scale systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Koufogiannakis, Christos. "Approximation algorithms for covering problems." Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://proquest.umi.com/pqdweb?index=0&did=1957320821&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268338860&clientId=48051.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of California, Riverside, 2009.
Includes abstract. Title from first page of PDF file (viewed March 11, 2010). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 70-77). Also issued in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bari, Wasimul. "Analyzing binary longitudinal data in adaptive clinical trials /." Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,167453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thomas, Jonathan. "Asynchronous Validity Resolution in Sequentially Consistent Shared Virtual Memory." Fogler Library, University of Maine, 2001. http://www.library.umaine.edu/theses/pdf/Thomas.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shao, Yang. "Sequential organization in computational auditory scene analysis." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1190127412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Sequential processing (Computer science)"

1

Kronsjö, Lydia I. Computational complexity of sequential and parallel algorithms. Chichester: Wiley, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bhavikatti, S. S. Structural optimisation using sequential linear programming. New Delhi: Vikas Publishing House Pvt., 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kokosiński, Zbigniew. Układy generatorów obiektów kombinatorycznych dla systemów sekwencyjnych i równoległych. Kraków: Politechnika Krakowska im. Tadeusza Kościuszki, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

KEK), Gijutsu Kōryūkai (1998. Gijutsu Kōryūkai hōkokushū: Proceedings of the Meeting on the Technical Study at KEK : KEK, Tsukuba, Japan, February 12-13, 1998. Tsukuba-shi: High Energy Accelerator Research Organization, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

KEK), Gijutsu Kōryūkai (1995. Gijutsu Kōryūkai hōkokushū: Proceedings of the Meeting on the Technical Study at KEK : KEK, Tsukuba, Japan, November 28-29, 1995. Tsukuba-shi: National Laboratory for High Energy Physics, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumar, Pradeep. Pattern discovery using sequence data mining: Applications and studies. Hershey, PA: Information Science Reference, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vajteršic, Marián. Algorithms for Elliptic Problems: Efficient Sequential and Parallel Solvers. Dordrecht: Springer Netherlands, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ashar, Pranav. Sequential logic synthesis. Boston: Kluwer Academic Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Conger, Jim. MIDI sequencing in C. Redwood City, Calif: M&T Books, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bakeman, Roger. Analyzing interaction: Sequential analysis with SDIS and GSEQ. Cambridge: Cambridge University Press, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Sequential processing (Computer science)"

1

Weik, Martin H. "sequential processing." In Computer Science and Communications Dictionary, 1551. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weik, Martin H. "sequential batch processing." In Computer Science and Communications Dictionary, 1550. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weik, Martin H. "sequential-by-key processing." In Computer Science and Communications Dictionary, 1550. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kremer, Stefan C., and John F. Kolen. "Dynamical Recurrent Networks for Sequential Data Processing." In Lecture Notes in Computer Science, 107–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10719871_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hammerton, James A., and Barry L. Kalman. "Holistic Symbol Processing and the Sequential RAAM: An Evaluation." In Lecture Notes in Computer Science, 298–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10719871_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Koerner, Edgar, and Ursula Koerner. "Concurrent parallel-sequential processing in gamma controlled cortical-type networks of spiking neurones." In Lecture Notes in Computer Science, 91–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0020138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Grigoryev, Vladimir, and Igor Khvorov. "Combined Adaptive Spatial-Temporal Signal Processing System Based on Sequential Circuit with Dependent Component Adaptation." In Lecture Notes in Computer Science, 621–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23126-6_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Khan, Abbas, Omnia Alwazzan, Martin Benning, and Greg Slabaugh. "Sequential Segmentation of the Left Atrium and Atrial Scars Using a Multi-scale Weight Sharing Network and Boundary-Based Processing." In Lecture Notes in Computer Science, 69–82. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31778-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weik, Martin H. "sequential computer." In Computer Science and Communications Dictionary, 1551. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weik, Martin H. "sequential." In Computer Science and Communications Dictionary, 1550. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Sequential processing (Computer science)"

1

Tinetti, Fernando G., Mónica A. Lopez, Pedro G. Cajaraville, and Diego L. Rodrigues. "Fortran Legacy Code Performance Optimization: Sequential and Parallel Processing with OpenMP." In 2009 WRI World Congress on Computer Science and Information Engineering. IEEE, 2009. http://dx.doi.org/10.1109/csie.2009.90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xiaowei Qin and Yan Liu. "Matrix-based multidimensional sequential pattern mining algorithm and application." In 2012 International Conference on Computer Science and Information Processing (CSIP). IEEE, 2012. http://dx.doi.org/10.1109/csip.2012.6308994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aguirre-López, Mario A., Omar Efraín Izaguirre-Prado, Roberto Soto-Villalobos, and Filiberto Hueyotl-Zahuantitla. "A novel silhouette extraction method for binary images based on the Wall-Follower algorithm." In Computer Science Research Notes. University of West Bohemia, Czech Republic, 2024. http://dx.doi.org/10.24132/csrn.3401.46.

Повний текст джерела
Анотація:
Silhouette extraction involves separating objects of interest from their background, which has several applications in image processing. Among the silhouette extraction techniques, contour tracing is commonly applied to images with a uniform background. This paper introduces a novel contribution to contour tracing techniques, utilizing the Wall-Follower Algorithm (WFA) to extract silhouettes with uniform backgrounds, or binary images. The algorithm is based on the analogy of a follower sequentially walking aside the external boundary of a wall, without separating a hand from it; then, the follower walks tagging silhouette pixels along the way until returning to the initial position and direction. Experimentation on vehicle technical drawings, satellite views of bodies of water and photographs of plants shows its effectiveness in producing high-quality silhouettes while showing some advantages over existing techniques. They include quickness in obtaining a solution, efficiency and ability to handle complex contours, and the option to simplify the results by reducing the percentage of saved points that trace the perimeter, based on object characteristics. The robustness of the algorithm suggests it as a promising alternative with diverse applications in image analysis, computer-aided design, and 3D object reconstruction, by extruding silhouettes, the latter being the main motivation for this contribution.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Badarinath, Rakshith, Kai-Wen Tien, and Vittaldas Prabhu. "Unified Control of Production, Capacity, and Pre-Emptive Maintenance of Fused Filament Fabrication Process." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6641.

Повний текст джерела
Анотація:
The quest for smarter manufacturing is motivating the need for operational decisions to be made in real-time to adapt to uncertainties. Prevailing decision-making techniques typically consider each manufacturing function in isolation to reduce the complexity, which in turn leads to sequential decision-making where prior decisions become constraints for subsequent decisions. This paper proposes a unified approach for simultaneously controlling the timing of production events, the timing of maintenance events, and physical processing capacity. Moreover, the control algorithms can be fully distributed and exploit physics-based models for processes and remaining-useful-life of machinery components in real-time decision-making. Fused Filament Fabrication (FFF) additive manufacturing process is used as an example in the paper to demonstrate the unified approach. Dynamics of the resulting unified control system is modeled using non-linear discontinuous differential equations. Computer simulations are used to illustrate dynamic interactions between production and maintenance functions. Benchmarking of the unified control approach for randomly generated datasets show superior performance compared to other commonly used scheduling heuristics by about 48%.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Azar, Yossi, Uriel Felge, Michal Feldman, and Moshe Tennenholtz. "Sequential decision making with vector outcomes." In ITCS'14: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554797.2554817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fried, Dror, Axel Legay, Joël Ouaknine, and Moshe Y. Vardi. "Sequential Relational Decomposition." In LICS '18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3209108.3209203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hsu, William, Jim Warren, and Patricia Riddle. "Multivariate Sequential Analytics for Treatment Trajectory Forecasting." In ACSW 2019: Australasian Computer Science Week 2019. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3290688.3290724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Blum, Avrim, Jamie Morgenstern, Ankit Sharma, and Adam Smith. "Privacy-Preserving Public Information for Sequential Games." In ITCS'15: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2688073.2688100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Weiru, Shanshan Chen, and Yang Zhang. "Structural Relation Sequential Patterns Mining." In 2009 International Conference on Research Challenges in Computer Science (ICRCCS). IEEE, 2009. http://dx.doi.org/10.1109/icrccs.2009.75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gradwohl, Ronen, Noam Livne, and Alon Rosen. "Sequential Rationality in Cryptographic Protocols." In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2010. http://dx.doi.org/10.1109/focs.2010.65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Sequential processing (Computer science)"

1

Modlo, Yevhenii O., Serhiy O. Semerikov, Pavlo P. Nechypurenko, Stanislav L. Bondarevskyi, Olena M. Bondarevska, and Stanislav T. Tolmachev. The use of mobile Internet devices in the formation of ICT component of bachelors in electromechanics competency in modeling of technical objects. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3264.

Повний текст джерела
Анотація:
Computer simulation of technical objects and processes is one of the components of the system of professional training of a modern electromechanics engineer. It has been established that despite the fact that mobile Internet devices (MID) are actively used by electrical engineers, the methods of using them in the process of bachelor in electromechanics training is considered only in some domestic scientific studies. The article highlights the components of the methods of using MID in the formation of the ICT component of the competence of the bachelor in electromechanics in modeling of technical objects, providing for students to acquire basic knowledge in the field of Computer Science and modern ICT and skills to use programming systems, math packages, subroutine libraries, and the like. For processing tabular data, it is proposed to use various freely distributed tools that do not significantly differ in functionality, such as Google Sheets, Microsoft Excel, for processing text data – QuickEdit Text Editor, Google Docs, Microsoft Word. For 3D-modeling and viewing the design and technological documentation, the proposed comprehensive use of Autodesk tools in the training process.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії