Добірка наукової літератури з теми "Scientific missions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Scientific missions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Scientific missions":

1

Guan, Wei, Yan Su, Jiawei Li, Shun Dai, Chunyu Ding, and Yuhang Liu. "Applications of Ground-Penetrating Radar in Asteroid and Comet Exploration." Remote Sensing 16, no. 12 (June 17, 2024): 2188. http://dx.doi.org/10.3390/rs16122188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nowadays, asteroid and comet exploration is one of the most important components of deep space exploration. Through asteroid and comet exploration missions, it is possible to reveal the history of the formation and evolution of the solar system, to understand the origin and evolution of the planets, and to improve scientific models and instruments. As a payload with the advantages of non-destructive, penetrating, and polarizing characteristics, ground-penetrating radar (GPR) has been widely used in lunar and Mars exploration, and will play an important role in planned asteroid and comet exploration missions. In this study, statistics on asteroid and comet exploration missions, scientific results, and space-based ground-penetrating radar (SB-GPR) utilization are presented for the three phases to date. According to the statistics, SB-GPR will play an important role in future Phase 2 and 3 missions. The focus of this study is on analyzing the mission flow, SB-GPR parameters, scientific objectives, and scientific results of the missions that have carried SB-GPR and those that are planned to carry SB-GPR, including the Hera, Rosetta, Castalia, and Tianwen-2 missions. On this basis, the development trends of asteroid and comet exploration missions, as well as the future development trends of SB-GPR design and signal interpretation, are discussed.
2

Chavagnac, Christophe, Frédéric Gai, Thierry Gharib, and Christophe Mora. "Astrium spaceplane for scientific missions." Acta Astronautica 92, no. 2 (December 2013): 172–77. http://dx.doi.org/10.1016/j.actaastro.2012.09.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Beegadhur, Shayne, Joshua Finn, John Delves, Sumana Mukherjee, Dhrumil Patadia, James McKevitt, Ramansha Sharma, et al. "The Design of CubeSats for Outer Solar System Scientific Missions." Journal of the British Interplanetary Society 76, no. 12 (April 23, 2024): 424–32. http://dx.doi.org/10.59332/jbis-076-12-0424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the past decade, CubeSats have emerged as a cost-effective solution for scientific missions beyond Earth’s orbit, though they have not yet gone further than orbiting Mars, as with NASA’s MarCO CubeSats. This paper discusses the technical challenges and solutions for designing CubeSats for Outer Solar System missions, specifically in the context of the proposed Astraeus Mission to Titan. These CubeSats, called the Mites, aim to measure heavy anions in Titan’s upper atmosphere and have undergone analysis to determine their optimal size and drag coefficient. A significant challenge addressed is the CubeSats’ power system, with solar panels being less effective at greater distances from the Sun. The paper proposes investigating Radioisotope Power Systems (RPS) as an alternative. However, there is the additional challenge of packaging the RPS in a sufficiently small form factor so that the upper atmospheric experiment can be completed. This must cover the greatest range of longitudes, latitudes, and ranges hence the orbital decay rate must be controlled to achieve this. The paper also explores the Mites’ long-duration exposure to space during transit and strategies to minimise cosmic radiation exposure. Whilst this is completed in the context of the Astraeus Mission, the data obtained can guide similar missions and aid others in overcoming the limitations of CubeSats so that they can be used more frequently for Outer Solar System science missions. Keywords: Titan, CubeSat, Radioisotope Thermoelectric Generator, Orbital Decay, Outer Solar System
4

Sandford, Scott A. "The Power of Sample Return Missions - Stardust and Hayabusa." Proceedings of the International Astronomical Union 7, S280 (June 2011): 275–87. http://dx.doi.org/10.1017/s174392131102504x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractSample return missions offer opportunities to learn things about other objects in our Solar System (and beyond) that cannot be determined by observations using in situ spacecraft. This is largely because the returned samples can be studied in terrestrial laboratories where the analyses are not limited by the constraints - power, mass, time, precision, etc. - imposed by normal spacecraft operations. In addition, the returned samples serve as a scientific resource that is available far into the future; the study of the samples can continue long after the original spacecraft mission is finished. This means the samples can be continually revisited as both our scientific understanding and analytical techniques improve with time.These advantages come with some additional difficulties, however. In particular, sample return missions must deal with the additional difficulties of proximity operations near the objects they are to sample, and they must be capable of successfully making a round trip between the Earth and the sampled object. Such missions therefore need to take special precautions against unique hazards and be designed to successfully complete relatively extended mission durations.Despite these difficulties, several recent missions have managed to successfully complete sample returns from a number of Solar System objects. These include the Stardust mission (samples from Comet 81P/Wild 2), the Hayabusa mission (samples from asteroid 25143 Itokawa), and the Genesis mission (samples of solar wind). This paper will review the advantages and difficulties of sample return missions in general and will summarize some key findings of the recent Stardust and Hayabusa missions.
5

O'Flaherty, K. S., J. Douglas, and T. Prusti. "The Gaia mission – a rich resource for outreach activities." Proceedings of the International Astronomical Union 3, S248 (October 2007): 535–36. http://dx.doi.org/10.1017/s1743921308020097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractSpace science missions, and astronomy missions in particular, capture the public imagination at all levels. ESA's Gaia mission is no exception to this. In addition to its key scientific goal of providing new insight into the origin, formation, and evolution of the Milky Way, Gaia also touches on many other scientific topics of broad appeal, for example, solar system objects, stars (including rare and exotic ones), dark matter, gravitational light bending. The mission naturally provides a rich resource for outreach possibilities whether it be to the general public, or to specific interest groups, such as scientists from other fields or educators. We present some examples of possible outreach activities for Gaia.
6

Home, R. W., and Morris F. Low. "Postwar Scientific Intelligence Missions to Japan." Isis 84, no. 3 (September 1993): 527–37. http://dx.doi.org/10.1086/356550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

White, Nicholas E. "Beyond Einstein: scientific goals and missions." Advances in Space Research 35, no. 1 (January 2005): 96–105. http://dx.doi.org/10.1016/j.asr.2003.08.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Caccia, M., R. Bono, G. Bruzzone, and G. Veruggio. "Unmanned Underwater Vehicles for Scientific Applications and Robotics Research: The ROMEO Project." Marine Technology Society Journal 34, no. 2 (January 1, 2000): 3–17. http://dx.doi.org/10.4031/mtsj.34.2.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The design, development and exploitation of Romeo, a last generation ROV capable of supporting robotics research on intelligent/autonomous vehicles and to execute scientific missions in very harsh environment, are presented. The system’s mechanical and communication design is discussed with respect to basic end-user requirements. A three Local Area Networks system architecture is proposed, and the main sub-systems connected to the surface (supervision), on-board and lab Ethernet LANs are described. The vehicle’s exploitation in scientific missions in harsh environment (Ross Sea in Antarctica), Internet-based mission control demonstrations and the integration with a multidisciplinary scientific and technological payload proved the capabilities of the proposed architecture in matching operational and research requirements.
9

Kritik, Nikhil Pratap Singh Bharti, and M Anto Moses Alexander. "Prospective Celestial Destinations: A Comprehensive Review for Human Exploration." Acceleron Aerospace Journal 2, no. 3 (March 30, 2024): 209–25. http://dx.doi.org/10.61359/11.2106-2413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Human space exploration is crucial for our future beyond Earth, offering vital insights while overcoming challenges. Unmanned missions are predominant due to the harsh conditions of distant astronomical bodies, but manned missions facilitate direct study of biological factors. Informed by a meticulous examination of unmanned missions, this research assesses celestial bodies for potential human missions, promising ground-breaking scientific discoveries. This systematic analysis comprehensively evaluates various parameters, yielding a comparative overview of potential celestial bodies. Critical environmental conditions for human missions receive thorough consideration. These conditions will be rigorously validated and aligned with a suitable sequence of celestial bodies or moons to ensure mission feasibility, thereby advancing our comprehension of space exploration's potential.
10

Wedler, Armin, Martin J. Schuster, Marcus G. Müller, Bernhard Vodermayer, Lukas Meyer, Riccardo Giubilato, Mallikarjuna Vayugundla, et al. "German Aerospace Center's advanced robotic technology for future lunar scientific missions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2188 (November 23, 2020): 20190574. http://dx.doi.org/10.1098/rsta.2019.0574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Earth's moon is currently an object of interest of many space agencies for unmanned robotic missions within this decade. Besides future prospects for building lunar gateways as support to human space flight, the Moon is an attractive location for scientific purposes. Not only will its study give insight on the foundations of the Solar System but also its location, uncontaminated by the Earth's ionosphere, represents a vantage point for the observation of the Sun and planetary bodies outside the Solar System. Lunar exploration has been traditionally conducted by means of single-agent robotic assets, which is a limiting factor for the return of scientific missions. The German Aerospace Center (DLR) is developing fundamental technologies towards increased autonomy of robotic explorers to fulfil more complex mission tasks through cooperation. This paper presents an overview of past, present and future activities of DLR towards highly autonomous systems for scientific missions targeting the Moon and other planetary bodies. The heritage from the Mobile Asteroid Scout (MASCOT), developed jointly by DLR and CNES and deployed on asteroid Ryugu on 3 October 2018 from JAXA's Hayabusa2 spacecraft, inspired the development of novel core technologies towards higher efficiency in planetary exploration. Together with the lessons learnt from the ROBEX project (2012–2017), where a mobile robot autonomously deployed seismic sensors at a Moon analogue site, this experience is shaping the future steps towards more complex space missions. They include the development of a mobile rover for JAXA's Martian Moons eXploration (MMX) in 2024 as well as demonstrations of novel multi-robot technologies at a Moon analogue site on the volcano Mt Etna in the ARCHES project. Within ARCHES, a demonstration mission is planned from the 14 June to 10 July 2021, 1 during which heterogeneous teams of robots will autonomously conduct geological and mineralogical analysis experiments and deploy an array of low-frequency antennas to measure Jovian and solar bursts. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades'.

Дисертації з теми "Scientific missions":

1

Stilwell, Bryan D., and Marty Siemon. "A New TDRSS Compatible Transceiver for Long Duration High Altitude Scientific Balloon Missions." International Foundation for Telemetering, 2003. http://hdl.handle.net/10150/606737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada
High altitude scientific balloons have been used for many years to provide scientists with access to space at a fraction of the cost of satellite based experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions with durations of up to 100 days (Ultra-Long) are on the drawing board. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRSS system provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real-time command and control. Early TDRSS communications equipment used by the National Scientific Balloon Facility was either unreliable or too expensive. The equipment must be able to endure the rigors of space flight including radiation exposure, high temperature extremes and the shock of landing and recovery. Since a payload may occasionally be lost, the cost of the TDRSS communications gear is a limiting factor in the number of missions that can be supported. Under sponsorship of the NSBF, General Dynamics Decision Systems has developed a new TDRSS compatible transceiver that reduces the size, weight and cost to approximately one half that of the prior generation of hardware. This paper describes the long and ultra-long balloon missions and the role that TDRSS communications plays in mission success. The new transceiver design is described, along with its interfaces, performance characteristics, qualification and production status. The transceiver can also be used in other space, avionics or terrestrial applications.
2

Khatri, Chandni. "Missions of UNESCO and U.S. Involvement." Honors in the Major Thesis, University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This item is only available in print in the UCF Libraries. If this is your Honors Thesis, you can help us make it available online for use by researchers around the world by following the instructions on the distribution consent form at http://library.ucf.edu/Systems/DigitalInitiatives/DigitalCollections/InternetDistributionConsentAgreementForm.pdf You may also contact the project coordinator, Kerri Bottorff, at kerri.bottorff@ucf.edu for more information.
Bachelors
Sciences
Political Science
3

Boumediene, Samir. "Avoir et savoir. L'appropriation des plantes médicinales de l'Amérique espagnole par les Européens (1570-1750)." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le but de cette thèse est d’étudier comment, suite à la conquête de l’Amérique, les Européens se sont approprié des plantes médicinales d’origine mexicaine, caribéenne, andine, ou amazonienne. L’usage fréquent que les praticiens européens du XVIIIe siècle font de substances telles que le quinquina, l'ipécacuanha, le bois de gaïac ou encore le chocolat, révèle l’ampleur du phénomène, mais en masque la complexité. L’emploi d’un remède originaire d’Amérique en Europe implique en effet de nombreux processus. Le prélèvement et la mise en culture des végétaux, la transmission des savoirs indigènes et leur traduction par les allogènes, la commercialisation des drogues à travers l'Atlantique, les expériences réalisées sur les remèdes et les expéditions organisées en Amérique entre le XVIe et le XVIIIe siècle sont ainsi au cœur de cette recherche. Plus qu’un « apport » de l’Amérique à l’Europe, ce phénomène d’appropriation doit être appréhendé comme une modalité du fait colonial. Objet naturel, et en même temps savoir naturaliste et médical, la plante médicinale devient à la suite de la conquête de l’Amérique un enjeu politique. Elle suscite, en 1570, l’une des premières expéditions scientifiques de l’histoire, et inspire à la monarchie espagnole divers projets de monopole au milieu du XVIIIe siècle. De l’autre côté de l’Atlantique, elle est au cœur des conflits opposant l’« Indien » à l’Espagnol, lorsque le second interdit au premier d’utiliser des plantes abortives ou hallucinogènes, et lorsque le premier refuse de transmettre ses savoirs pharmacologiques au second
The aim of this dissertation is to study how, in the aftermath of the Conquest of America, Europeans have appropriated medicinal plants from Mexican, Caribbean, Andean, or Amazonian origin. 18th century European practitioners frequently used substances such as Peruvian bark, ipecacuanha, gaiacum wood, or chocolate – which reveals the extent of the phenomena, yet masks its complexity. Using an American remedy in Europe indeed implied many processes. Crucial to this research are: the sampling and growing of plants; the transmission of indigenous knowledge and its translation by allogenous; the drug trade across the Atlantic; experiences carried out on remedies; and expeditions conducted in America between the 16th and the 18th centuries. More than a “contribution” of America to Europe, this phenomenon of appropriation must be understood as a modality of colonialism. As natural object, and at the same time as naturalistic and medical knowledge, medicinal plants took on a political stake after the Conquest of America. For instance, while in 1570 they had been the target of one of the first scientific expeditions in history, in the middle of the 18th century they also led the Spanish crown to undertake various monopolistic projects. On the other side of the Atlantic, it was at the heart of conflicts between the “Indian” and the Spaniard, when the latter forbade the former from using abortive or hallucinogenic plants, and when the former refused to transmit his pharmacological knowledge to the latter
4

Cheishvili, Ana. "Collectionneurs et collections d'objets caucasiens dans les musées français : histoire et apports des voyages scientifiques au Caucase. (XIXè - début XXè s.)." Electronic Thesis or Diss., Paris, EHESS, 2023. http://www.theses.fr/2023EHES0176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse se focalise sur l’analyse des missions scientifiques françaises dans la région du Caucase et des collections ramenées en France à la suite de ces expéditions. L’étude couvre la période du milieu du XIXe siècle au début du XXe siècle, avant les grands changements politiques des années 1910-1920. L’attention se porte principalement sur les missions scientifiques mandatées par le ministère de l’Instruction publique, tout en ne négligeant pas les collections issues de voyages non scientifiques ou d’antiquaires. Cette recherche met en lumière l’intérêt de la communauté scientifique française pour le Caucase au XIXe siècle, ainsi que les motivations des chercheurs qui s’y sont rendus et les travaux qu’ils ont menés sur le terrain. Une autre priorité de cette étude était d’examiner les collections archéologiques, ethnographiques et photographiques conservées dans divers musées et archives en France. Pour ce faire, l’inventaire d’une base de données des collections caucasiennes ainsi que la collecte d’informations biographiques sur les chercheurs français ayant contribué à ces missions ont été nécessaires. La contribution de ces collections à la réflexion sur les transferts culturels entre le Caucase et la France est aussi examinée. L’objectif ultime était l’identification et l’étude de ces collections en vue de leur future intégration dans la muséographie, mettant en lumière les noms de chercheurs et de photographes dont les voyages dans le Caucase étaient jusqu’à présent méconnus
This thesis focuses on the analysis of French scientific missions in the Caucasus region and the collections brought back to France following these expeditions. The study covers the period from the mid-19th century to the early 20th century, before the major political changes of the 1910s-1920s. The primary focus is on the scientific missions mandated by the Ministry of Public Instruction, without neglecting collections from non-scientific journeys or antiquarians. This research highlights the interest of the French scientific community in the Caucasus in the 19th century, as well as the motivations of the researchers who went there and the work they conducted in the field. Another priority of this study was to examine the archaeological, ethnographic, and photographic collections held in various museums and archives in France. To do this, an inventory of a database of Caucasian collections and the collection of biographical information on French researchers who contributed to these missions was necessary. The contribution of these collections to the reflection on cultural transfers between the Caucasus and France is also examined. The ultimate goal was the identification and study of these collections for their future integration into museography, highlighting the names of researchers and photographers whose journeys in the Caucasus were previously unknown
5

Johnson, Michael P. Moye J. Todd. "Skylab the human side of a scientific mission /." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Johnson, Michael P. "Skylab: The Human Side of a Scientific Mission." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3659/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work attempts to focus on the human side of Skylab, America's first space station, from 1973 to 1974. The thesis begins by showing some context for Skylab, especially in light of the Cold War and the “space race” between the United States and the Soviet Union. The development of the station, as well as the astronaut selection process, are traced from the beginnings of NASA. The focus then shifts to changes in NASA from the Apollo missions to Skylab, as well as training, before highlighting the three missions to the station. The work then attempts to show the significance of Skylab by focusing on the myriad of lessons that can be learned from it and applied to future programs.
7

Spoto, D., O. Cosentino, and F. Fiorica. "Transmed, a Scientific Mission Based on Stratospheric Balloons Using S-Band Telemetry Telecommand." International Foundation for Telemetering, 1995. http://hdl.handle.net/10150/611634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada
After briefly presenting the TRANSMED mission, the configuration of the Telemetry and Telecommand links is illustrated and the their dimensioning is analyzed. Both links operate at S-band with satellite grade standards. The system composition, the main equipment and the system growth potential are thereafter presented.
8

Jéger, Csaba. "Determination and compensation of magnetic dipole moment inapplication for a scientific nanosatellite mission." Thesis, KTH, Rymd- och plasmafysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SEAM (Small Explorer for Advanced Missions) is a 3U CubeSat developedat KTH Royal Institute of Technology which will provide highqualityDC and AC magnetic field measurements of Earth’s magneticfield. The measurement system requires extended periods of timeup to 1000 seconds without active attitude control. The satellite willuse passive gravity gradient stabilization and dipole cancellation via aseparate set of magnetorquers to satisfy LVLH pointing requirementsduring the coasting phases. In this thesis a detailed model of satellitemagnetic moment is presented which includes dipole moment sourcesfrom on-board current loops. The attitude dynamics of the satelliteis characterized with simulations and a strategy is proposed to estimateand compensate the time-dependent magnetic dipole momentusing the dipole compensation magnetorquers and an offline estimationalgorithm. The algorithm is tested with simulated error sourcesand noise and was found to be able to robustly identify and cancel outthe satellite dipole to satisfy mission requirements.
SEAM (Small Explorer for Advanced Missions) är en 3U CubeSat utveckladpå KTH Kungliga tekniska högskolan för DC och AC magnetiskfältmätningarav Jordens magnetfält. Mätningar kräver längretidperioder upp till 1000 sekunder utan aktiv attitydstyrning. Satellitenkommer använda passiv tyngdkraftsgradientstabilisering samtmagnetisk dipolmomentkompensation med hjälp av ett separat setav magnetiska spolar för att upprätthålla orienteringskrav under perioderutan attitydstyrning. Denna rapport presenterar en detaljeradmodell av satellitens magnetiskt dipolmoment som inkluderar dipolmomentkällorfrån strömslingor ombord satelliten. Satellitens attityddynamikär karaktäriserad med simulationer och en strategi tas framför att estimera och kompensera det tidsberoende magnetiska dipolmomentetgenom att använda dipolkompensations magnetiska spolaroch en offline estimeringsalgoritm. Algoritmen är testad med simuleradefelkällor och brus och har funnits pålitlig för uppskattning avdipolmomentet och dess kompensation för att uppfylla missionskrav.
9

Friso, Enrico. "Thermal effects reduction techniques for the SIMBIO-SYS scientific suite of BepiColombo mission." Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3421562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis work investigates techniques of reducing the thermal effects for the SIMBIO-SYS scientific suite of BepiColombo mission. SIMBIO-SYS is an integrated suite of imaging instruments and it has been selected for the European Space Agency BepiColombo mission to Mercury. It includes a stereo imaging system (STC), an high-resolution imager (HRIC) and a visible–near-infrared imaging spectrometer (VIHI). The payload will have to operate in a very harsh environment, mainly from the thermal point of view. For this reason, dedicated state-of-art heat rejection baffles and thermal control devices have to be analyzed and designed. To overcome this issue, a methodological approach has been followed. Starting from the estimation of thermal environment encountered by the payload during mission lead to a deep knowledge of the thermal environment that the instrument will face during the mission phases and provided a framework to the design of the payload baffling system. A mathematical model has been developed and simulations has been carried out to evaluate the incident fluxes on the front end of the payload for all possible hermian seasons during the orbiting of Mercury Planetary Orbiter (MPO) spacecraft around Mercury. The study allowed to identify the most critical orbits from the thermal point of view. Furthermore the mathematical model assess the Sun aspect angle of the optical axes of the three channels (HRIC, VIHI, STC) and identifies the most critical conditions among the various phases of the mission, providing input data for the design of the baffles and constraints for the verification of their geometry. The mathematical model could be applied also to other planetary observational scientific missions and allows to perform sensitivity or uncertainty analysis of incoming solar, albedo and planetary heat fluxes to orbital or attitude parameters. The geometry of the present configuration of SIMBIO-SYS baffles have been verified against direct Sun illumination and dedicated ray-casting algorithms have been implemented to calculate the angular margin to direct entry of solar rays. Thermal analyses of baffles have been afterwards carried out using lumped parameter thermal network method and implemented in ESARAD/ESATAN software. This allows to predict the main heat transfer mechanisms and temperature distribution and to estimate the performance of baffles in terms of heat rejection capability. A study on the appropriate implementation of the HRIC Stavroudis reflective baffle geometry allows to effectively model this type of baffle; furthermore this study led to the definition of a criterion to evaluate the performance of the Stavroudis and to guide the design of the most appropriate test-bed to be used to evaluate its behaviour. The lay-out of a Mercury thermal environment simulator facility has been designed on the basis of the studies carried out. It will consist of a thermal vacuum chamber with heating and cooling sources to simulate the thermal environment that the payload will face on orbit. The design and analysis methods developed had contributed to the definition of efficient baffling system for the three channels of SIMBIO-SYS scientific suite.
Il progetto di ricerca di questa tesi di dottorato è finalizzato a indagare possibili tecniche di riduzione degli effetti termici per la strumentazione scientifica SIMBIO-SYS della missione ESA BepiColombo a Mercurio. SIMBIO-SYS è una suite integrata di strumenti ottici costituita da tre canali: High Resolution Imaging Channel (HRIC), STereo Imaging Channel (STC), Visual and Infrared Hyperspectral Imager (VIHI). SIMBIO-SYS dovrà operare nell'ambiente termicamente ostile di Mercurio. E' quindi necessaria la progettazione di dedicati ed efficaci sistemi di reiezione del calore e di controllo termico per lo strumento. Il problema è stato affrontato con un approccio il più possibile metodologico al fine di individuare gli aspetti cruciali del problema progettuale. Inizialmente si è valutato l’ambiente termico che lo strumento incontrerà durante le fasi operative in orbita attorno a Mercurio. A tal fine è stato sviluppato un modello matematico in grado di valutare, per le possibili stagioni di Mercurio, i flussi solare, di albedo e planetario incidenti su una superficie orbitante attorno al pianeta secondo l’orbita e l’assetto nominali previsti per il satellite. Lo studio ha reso possibile identificare le orbite maggiormente critiche dal punto di vista termico. Il modello matematico implementato può essere applicato anche a studi riguardanti altre missioni di osservazione planetaria e consente di effettuare agevolmente studi di sensibilità dei flussi orbitali incidenti ai parametri orbitali o di assetto. Il modello matematico implementato permette inoltre di valutare l'angolo di incidenza solare rispetto agli assi ottici dei tre strumenti e ha consentito di identificare le condizioni maggiormnete critiche alla illuminazione solare diretta fornendo vincoli di progetto per le geometrie dei paraluce (baffle) degli strumenti. Le geometrie dei baffle della attuale configurazione prevista dal progetto sono state verificate all'ingresso diretto di raggi solari in orbita grazie alla implementazione di algoritmi di ray-cating ed è stato fornito un corrispettivo margine angolare per ciascun baffle. Successivamente sono stati sviluppati dei modelli termici, con approccio a parametri concentrati, dei baffle dei tre canali di SIMBIO-SYS utilizzando il software ESARAD/ESATAN, stimando così le potenze termiche scambiate, la distribuzione delle temperature e le prestazioni del sottosistema in termini di capacità di reiezione del calore. E' stato approfondito lo studio del baffle riflettente di tipo Stavroudis del canale ad alta risoluzione ed è stata individuata la geometria ottimale per la modellazione con gli attuali software commerciali disponibili di analisi termica. Questo studio ha condotto inoltre alla individuazione di criteri per la valutazione delle prestazionidel baffle Stavroudis utili a guidare il progetto di un apparato sperimentale per la caratterizzazione delle prestazioni del baffle.L'attività di ricerca è poi proseguita con il dimensionamento a livello di sistema di un apparato sperimentale finalizzato a riprodurre a terra l'ambiente termico incontrato dallo strumento in orbita attorno Mercurio. Esso è concepito per riprodurre all'interno di una camera termo vuoto l'andamento dei flussi solare e infrarosso incidenti sullo strumento e le interfacce radiative e conduttive della strumentazione con il satellite, tenendo conto della orientazione dello strumento durante il moto orbitale rispetto alle sorgenti di radiazione. I modelli matematici sviluppati e le analisi termiche eseguite hanno fornito le specifiche di progetto dell'apparato sperimentale ed utili dati numerici per la definizione del simulatore a livello di sistema. I metodi di analisi e di progetto sviluppati hanno contribuito alla definizione di efficienti sistemi di riduzione degli effetti termici per la strumentazione SIMBIO-SYS.
10

Barrie, A. C. "An Analysis of Scientific Data Quality for the Fast Plasma Investigation of the MMS Mission." Thesis, University of Colorado at Boulder, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10934761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

This work describes technical innovations to improve the data quality and volume for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS). A parametric study of wavelet compression has shown that plasma count data can be compressed to high compression ratios with a minimal effect on the integrated plasma moments. Different regions of the magnetosphere are analyzed for both electron and ion count data. The FPI trigger data, intended as a data ranking metric, has been adapted and corrected to a point where scientifically accurate pseudo moments can be generated and released to the research community, drastically increasing the availability of high time resolution data. This is possible due to a scaling system that tunes the dynamic range of the system per region, and the method of using a neural network to correct for exterior contamination effects, such as spacecraft potential. Finally, a map of detection angle bias has been generated that can be used to correct raw count for errors in look direction of incoming particles. This map was generated by statistically sampling particle flight paths through a charged spacecraft environment, validating against flight data. All three of these efforts lead toward the overarching goal of improving data quality and volume for the FPI suite, and future missions to come.

Книги з теми "Scientific missions":

1

George C. Marshall Space Flight Center., ed. The spacelab scientific missions: A comprehensive bibliography of scientific publications. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

George C. Marshall Space Flight Center., ed. The spacelab scientific missions: A comprehensive bibliography of scientific publications. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

C, Agrawal P., and COSPAR Scientific Assembly, eds. The Next generation of scientific balloon missions. Oxford: Published for the Committee on Space Research [by] Elsevier, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

P, Maltby, Battrick B. 1946-, and European Space Agency, eds. Scientific requirements for future solar-physics space missions. Noordwijk, Netherlands: European Space Agency, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsia, Florence C. Sojourners in a strange land: Jesuits and their scientific missions in late imperial China. Chicago: The University of Chicago Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maccone, Claudio. The Sun as a gravitational lens: Proposed space missions. 3rd ed. Aurora, Colorado: IPI Press, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nigel, Calder. Beyond this world: Scientific missions of the European Space Agency. Edited by Battrick B. 1946-. Noordwijk, The Netherlands: ESA Publications Division, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

United Nations. Economic and Social Commission for Asia and the Pacific and ESCAP Regional Space Applications Programme, eds. Small is beautiful: Affordable space missions for sustainable development in Asia and the Pacific. New York: United Nations, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fleeter, Rick. The logic of microspace: [technology and management of minimum-cost missions]. El Segundo, Calif: Microcosm Press, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alʹpert, I͡A L. [Participation in the scientific activities of the waves in space plasma (WISP) project]. [Washington, DC: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Scientific missions":

1

Wu, Ji. "Scientific Questions." In Calling Taikong: A Strategy Report and Study of China's Future Space Science Missions, 7–8. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6737-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wall, Stephen D., and Kenneth W. Ledbetter. "Basics of Remote-Sensing Missions." In Design of Mission Operations Systems for Scientific Remote Sensing, 1–26. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003069485-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Yunlong, Jia Zhong, Fuli Ma, and Ziming Zou. "CSSDC Big Data Processing and Applications in Space Science Missions." In Big Scientific Data Management, 10–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28061-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sørensen, E. M., M. Merri, and G. Di Girolamo. "The Cluster Data Processing System: A Distributed System in Support of a Challenging Scientific Mission." In The Cluster and Phoenix Missions, 527–55. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5666-0_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schmidt, R., C. P. Escoubet, and S. J. Schwartz. "The Cluster Science Data System (CSDS) — A New Approach to the Distribution of Scientific Data." In The Cluster and Phoenix Missions, 557–82. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5666-0_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

RANKIN, DANIEL, ROBERT E. ZEE, FREDDY M. PRANAJAYA, DANIEL G. FOISY, and ALEXANDER M. BEATTIE. "LOW-COST SPACE MISSIONS FOR SCIENTIFIC AND TECHNOLOGICAL INVESTIGATIONS." In PROTECTION OF MATERIALS AND STRUCTURES FROM THE SPACE ENVIRONMENT, 443–54. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4319-8_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pacholke, Fabian, Huu Quan Vu, and Götz Kornemann. "NanoSiGN – Nanosatellite for scientific interpretation of GNSS dual-frequency signals in the low Earth orbit." In Small Satellite Missions for Earth Observation, 289–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03501-2_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leonhardt, Ulf. "Scientific Appendix." In Mission Invisible, 123–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34634-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gacel-Ávila, Jocelyne. "The Importance of Internationalization Today and the Leadership Role of IAU." In The Promise of Higher Education, 89–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67245-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractSince its creation back in the fifties, the International Association of Universities (IAU) has been consistently fostering a set of academic values and principles to frame higher education institutions’ mission and institutional practices, such as academic freedom, institutional autonomy, social responsibility, cooperation, solidarity, tolerance, equity in access, open access to knowledge, scientific integrity, ethical behaviour, and quality in learning, research and outreach. These principles are most valuable in a world where globalization and the global economy paradigm have triggered fierce competition among universities for prestige, talent and financial resources at the global level. This is encouraged by global rankings, provoking tensions with universities’ national missions and putting at risk the values of inclusion, solidarity and local social commitments. Besides causing increased inequality and tensions in social cohesion, as well as the rise of new trends of nationalism and populism within countries, globalization has provoked geopolitical tensions and boosted a wider division between the Global North and the Global South.
10

Golvers, Noël. "Chapter 19. Central and East Asia." In Comparative History of Literatures in European Languages, 308–23. Amsterdam: John Benjamins Publishing Company, 2024. http://dx.doi.org/10.1075/chlel.xxxiv.19gol.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This contribution brings a tentative overview of the many images of Asia in the Latin literature of the Middle Ages and the Renaissance, where it constituted a parallel circuit of knowledge alongside works in the vernacular. Here especially the Jesuits would, during ca. 2 centuries, unfold their manifold activities, also in many scientific fields, and observed and studied in depth fundamental aspects of Chinese culture, on which they produced many reports, monographs etc., always in manuscript form, mostly in Latin, in view of a European public, both Jesuit and scholarly. Another voluminous part of their Latin writings consisted of contemporary history (geography, cartography etc.) of China, constituting the framework in which their missions had to work.

Тези доповідей конференцій з теми "Scientific missions":

1

Drinkwater, M. R., P. Silvestrin, and M. Borgeaud. "ESA's Earth Explorer scientific missions." In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6352354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Munoz Hernandez, Alfonso, Maria Jimenez Lorenzo, Jose Gala Escolar, Daniel Lopez Sanz, Alejandro Arnau Trillol, and Manuel Anon Cancela. "EMC Challenges for ESA Scientific Missions." In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). IEEE, 2018. http://dx.doi.org/10.1109/emceurope.2018.8485137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BUICAN, George Răzvan, Sebastian-Marian ZAHARIA, onut Stelian PASCARIU, Lucia-Antoneta CHICOS, Camil LANCEA, Mihai Alin POP, and Valentin-Marian STAMATE. "MISSION MANAGEMENT FOR AN AUTOMATED PILOT SYSTEM MOUNTED ON A FIXED-WING TWIN-ENGINE AIRPLANE UAV." In SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE. Publishing House of "Henri Coanda" Air Force Academy, 2022. http://dx.doi.org/10.19062/2247-3173.2022.23.24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
UAV systems used automated pilots which can be configured based on the mission. The entry level market for this type of systems is not focus mainly on fixed-wing configurations. On this paper we asses, develop and simulate missions for an automated piloting system, built on a Cube Orange architecture. The flight controller is mounted on a fixed-wing twin-engine airplane built using additive manufacturing technologies. For the management and simulation of UAV mission we use Mission Planner, and open-source software from ArduPilot. The missions is simulated to obtain an improvement of the automated piloting system, evaluate the terrain from the flight path, avoid dangers, keep out of restricted areas and find the optimal routes. .
4

Camps, Adriano. "NanoSats: current trends in scientific and communications missions." In Sensors, Systems, and Next-Generation Satellites XXV, edited by Steven P. Neeck, Toshiyoshi Kimura, Sachidananda R. Babu, and Arnaud Hélière. SPIE, 2021. http://dx.doi.org/10.1117/12.2614782.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lopez-Dekker, Paco, Pau Prats, Marc Rodriguez-Cassola, and Bernardo Carnicero Dominguez. "Companion SAR missions: Scientific rationale and technical challenges." In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8126914.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Montagnon, Elsa, Paolo Ferri, and Mark Sweeney. "An Efficient Operations Users Interface for Scientific Missions." In Space OPS 2004 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-414-239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ferguson, James. "Adapting AUVs for use in under-ice scientific missions." In OCEANS 2008. IEEE, 2008. http://dx.doi.org/10.1109/oceans.2008.5152025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guzmán Cabrera, Alejandro, Yuri Evangelista, Paul Hedderman, Moritz Klawin, Riccardo Campana, Alessio Nuti, Samuel Pliego, Fabrizio Fiore, Ezequiel Marchesini, and Andrea Santangelo. "The on-board scientific software of the HERMES missions." In Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray, edited by Jan-Willem A. den Herder, Kazuhiro Nakazawa, and Shouleh Nikzad. SPIE, 2024. http://dx.doi.org/10.1117/12.3019145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bostan, Viorel, Ion Bostan, Nicolae Secrieru, Vladimir Varzaru, Vladimir Melnic, Alexei Martiniuc, and Valentin Ilco. "The Experience of Preparing to Launch the TUMnanoSAT nanosatellite." In 11th International Conference on Electronics, Communications and Computing. Technical University of Moldova, 2022. http://dx.doi.org/10.52326/ic-ecco.2021/el.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a brief overview of TUMnanoSAT's educational and scientific missions, the impact on system design and educational opportunities are presented. The main basic test procedures for the launch of this nanosatellite are described, including the structure, power supply and attitude control. The main mission of TUMnanoSAT is to provide practical experience to students not only in designing, building, but also testing the nanosatellite with various missions.
10

Scheithauer, Silvia. "Overview on High Accuracy Acceleration Sensors for Scientific Space Missions." In 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.iac-03-u.2.b.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Scientific missions":

1

Massotti, Luca, Günther March, and Ilias Daras. Next Generation Gravity Mission as a Mass-change And Geosciences International Constellation (MAGIC) Mission Requirements Document. Edited by Roger Haagmans and Lucia Tsaoussi. European Space Agency, October 2020. http://dx.doi.org/10.5270/esa.nasa.magic-mrd.2020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
MAGIC is the joint NASA/ESA constellation concept based on NASA’s Mass Change Designated Observable (MCDO) and ESA’s Next Generation Gravity Missions (NGGM) studies. The main objective of MAGIC is to extend the mass transport time series of previous gravity missions such as GRACE and GRACE-FO with significantly enhanced accuracy, spatial and temporal resolutions and to demonstrate the operational capabilities of MAGIC with the goal of answering global user community needs to the greatest possible extent. This document defines unambiguous and traceable requirements for preparing and developing MAGIC. The scope of the MAGIC Mission Requirement Document includes end-to-end Earth observation system including user/scientific requirements, mission operations, data product development and processing, data distribution and data archiving. The intention of the document is also to accommodate results from NASA MCDO study, ESA Phase-0 NGGM and other national studies on future gravity missions. The MAGIC MRD is a NASA/ESA reference document frozen in its current version 1.0 that defines the mission requirements achievable by an optimised two-pair Bender-type constellation of a future implementation. Subsequent ESA and NASA official documents of updated implementation baseline will be traceable to the MAGIC MRD.
2

Allen, Kathy, Andy Nadeau, and Andy Robertston. Natural resource condition assessment: Salinas Pueblo Missions National Monument. National Park Service, May 2022. http://dx.doi.org/10.36967/nrr-2293613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Natural Resource Condition Assessment (NRCA) Program aims to provide documentation about the current conditions of important park natural resources through a spatially explicit, multi-disciplinary synthesis of existing scientific data and knowledge. Findings from the NRCA will help Salinas Pueblo Missions National Monument (SAPU) managers to develop near-term management priorities, engage in watershed or landscape scale partnership and education efforts, conduct park planning, and report program performance (e.g., Department of the Interior’s Strategic Plan “land health” goals, Government Performance and Results Act). The objectives of this assessment are to evaluate and report on current conditions of key park resources, to evaluate critical data and knowledge gaps, and to highlight selected existing stressors and emerging threats to resources or processes. For the purpose of this NRCA, staff from the National Park Service (NPS) and Saint Mary’s University of Minnesota – GeoSpatial Services (SMUMN GSS) identified key resources, referred to as “components” in the project. The selected components include natural resources and processes that are currently of the greatest concern to park management at SAPU. The final project framework contains nine resource components, each featuring discussions of measures, stressors, and reference conditions. This study involved reviewing existing literature and, where appropriate, analyzing data for each natural resource component in the framework to provide summaries of current condition and trends in selected resources. When possible, existing data for the established measures of each component were analyzed and compared to designated reference conditions. A weighted scoring system was applied to calculate the current condition of each component. Weighted Condition Scores, ranging from zero to one, were divided into three categories of condition: low concern, moderate concern, and significant concern. These scores help to determine the current overall condition of each resource. The discussions for each component, found in Chapter 4 of this report, represent a comprehensive summary of current available data and information for these resources, including unpublished park information and perspectives of park resource managers, and present a current condition designation when appropriate. Each component assessment was reviewed by SAPU resource managers, NPS Southern Colorado Plateau Network (SCPN) staff, or outside experts. Existing literature, short- and long-term datasets, and input from NPS and other outside agency scientists support condition designations for components in this assessment. However, in some cases, data were unavailable or insufficient for several of the measures of the featured components. In other instances, data establishing reference condition were limited or unavailable for components, making comparisons with current information inappropriate or invalid. In these cases, it was not possible to assign condition for the components. Current condition was not able to be determined for six of the ten components due to these data gaps. For those components with sufficient available data, the overall condition varied. Two components were determined to be in good condition: dark night skies and paleontological resources. However, both were at the edge of the good condition range, and any small decline in conditions could shift them into the moderate concern range. Of the components in good condition, a trend could not be assigned for paleontological resources and dark night skies is considered stable. Two components (wetland and riparian communities and viewshed) were of moderate concern, with no trend assigned for wetland and riparian communities and a stable trend for viewshed. Detailed discussion of these designations is presented in Chapters 4 and 5 of this report. Several park-wide threats and stressors influence the condition of priority resources in SAPU...
3

Bishop, Alan. Scientific Excellence for Mission Impact. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1134790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bishop, Alan. Scientific Excellence for Mission Impact. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1438164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wehr, Tobias, ed. EarthCARE Mission Requirements Document. European Space Agency, November 2006. http://dx.doi.org/10.5270/esa.earthcare-mrd.2006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ESA's EarthCARE (Cloud, Aerosol and Radiation Explorer) mission - scheduled to be launched in 2024 - is the largest and most complex Earth Explorer to date and will advance our understanding of the role that clouds and aerosols play in reflecting incident solar radiation back into space and trapping infrared radiation emitted from Earth's surface. The mission is being implemented in cooperation with JAXA (Japan Aerospace Exploration Agency). It carries four scientific instruments. The Atmospheric Lidar (ATLID), operating at 355 nm wavelength and equipped with a high-spectral resolution and depolarisation receiver, measures profiles of aerosols and thin clouds. The Cloud Profiling Radar (CPR, contribution of JAXA), operates at 94 GHz to measure clouds and precipitation, as well as vertical motion through its Doppler functionality. The Multi-Spectral Imager provides across-track information of clouds and aerosols. The Broad-Band Radiometer (BBR) measures the outgoing reflected solar and emitted thermal radiation in order to derive broad-band radiative fluxes at the top of atmosphere. The Mission Requirement Document defines the scientific mission objectives and observational requirements of EarthCARE. The document has been written by the ESA-JAXA Joint Mission Advisory Group for EarthCARE.
6

Peppler, R. A., P. J. Lamb, and D. L. Sisterson. Site scientific mission plan for the Southern Great Plains CART site: July--December 1996. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/378823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Splitt, M. E., P. J. Lamb, and D. L. Sisterson. Site scientific mission plan for the southern great plains CART site, July--December 1995. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/110785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Peppler, R. A., P. J. Lamb, and D. L. Sisterson. Site scientific mission plan for the southern Great Plains CART site, January--June 1998. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/671872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schneider, J. M., P. J. Lamb, and D. L. Sisterson. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10151044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lamb, P. J., R. A. Peppler, and D. L. Sisterson. Site scientific mission plan for the southern Great Plain CART site July-December 1997. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/12085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії