Добірка наукової літератури з теми "Scanning imaging system"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Scanning imaging system".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Scanning imaging system"

1

Murakami, Hironaru, Kazunori Serita, Yuki Maekawa, Shogo Fujiwara, Eiki Matsuda, Sunmi Kim, Iwao Kawayama, and Masayoshi Tonouchi. "Scanning laser THz imaging system." Journal of Physics D: Applied Physics 47, no. 37 (August 28, 2014): 374007. http://dx.doi.org/10.1088/0022-3727/47/37/374007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Smith, Daniel P., and Robert Lillquist. "Stimulated scanning infrared imaging system." Environment International 14, no. 1 (January 1988): III—IV. http://dx.doi.org/10.1016/0160-4120(88)90393-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shchepetilnikov, A. V., P. A. Gusikhin, V. M. Muravev, B. D. Kaysin, G. E. Tsydynzhapov, A. A. Dremin, and I. V. Kukushkin. "Linear scanning system for THz imaging." Applied Optics 60, no. 33 (November 18, 2021): 10448. http://dx.doi.org/10.1364/ao.442060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Quang, Tri T., Hye-Yeong Kim, Forrest Sheng Bao, Francis A. Papay, W. Barry Edwards, and Yang Liu. "Fluorescence Imaging Topography Scanning System for intraoperative multimodal imaging." PLOS ONE 12, no. 4 (April 24, 2017): e0174928. http://dx.doi.org/10.1371/journal.pone.0174928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Serita, Kazunori, Shori Mizuno, Hironaru Murakami, Iwao Kawayama, Yoshinori Takahashi, Masashi Yoshimura, Yusuke Mori, Juraj Darmo, and Masayoshi Tonouchi. "Scanning laser terahertz near-field imaging system." Optics Express 20, no. 12 (May 24, 2012): 12959. http://dx.doi.org/10.1364/oe.20.012959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lennon, Daniel. "Uniform volumetric scanning ultrasonic diagnostic imaging system." Journal of the Acoustical Society of America 114, no. 1 (2003): 38. http://dx.doi.org/10.1121/1.1601141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Hong-Chang, Tsung-Yeh Wu, Herng-Er Horng, Chau-Chung Wu, S. Y. Yang, Shu-Hsien Liao, Chiu-Hsien Wu, et al. "Scanning high-TcSQUID imaging system for magnetocardiography." Superconductor Science and Technology 19, no. 5 (March 16, 2006): S297—S302. http://dx.doi.org/10.1088/0953-2048/19/5/s28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, Keo Sik, Jeong Eun Kim, Kyeeun Kim, Aram Lee, and Hyun Seo Kang. "Hyperspectral Imaging System via DMD Spatial Scanning." Journal of the Institute of Electronics and Information Engineers 58, no. 8 (August 31, 2021): 111–18. http://dx.doi.org/10.5573/ieie.2021.58.8.111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kim, Keo Sik, Jeong Eun Kim, Kyeeun Kim, Aram Lee, and Hyun Seo Kang. "Hyperspectral Imaging System via DMD Spatial Scanning." Journal of the Institute of Electronics and Information Engineers 58, no. 8 (August 31, 2021): 111–18. http://dx.doi.org/10.5573/ieie.2021.58.8.111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Leavesley, Silas, Yanan Jiang, Valery Patsekin, Bartek Rajwa, and J. Paul Robinson. "An excitation wavelength–scanning spectral imaging system for preclinical imaging." Review of Scientific Instruments 79, no. 2 (2008): 023707. http://dx.doi.org/10.1063/1.2885043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Scanning imaging system"

1

Yang, Yujie. "Confocal Scanning Imaging System for Surface Characterization in Additive Manufacturing System." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1576066631705912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Emre, Eylem. "Scanning Imaging With High Energy Photons." Master's thesis, Ankara : METU, 2003. http://etd.lib.metu.edu.tr/upload/1206614/index.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cain, James H. "Image motion compensation for an electronic imaging system /." Online version of thesis, 1986. http://hdl.handle.net/1850/8731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Salman, Aljebur Ali, and Yu Zholudov. "System for two photon imaging of biosamples." Thesis, Харків, ХНУРЕ, 2019. http://openarchive.nure.ua/handle/document/8366.

Повний текст джерела
Анотація:
The work is devoted to development of scanning imaging system for bioobjects based on two-photon fluorescence of nanoparticles. It is based on the use of nanomaterials in imagining systems and some of nonfluorescent imaging applications and labeling with fluorescent nanoparticles. The basics of two photon fluorescence, its imaging application, properties of nanoparticles and biological tissues, used for our system development were analyzed. Based on this analysis we developed the general scheme of the system for scanning imaging of bioobjects using CdTe quantum dot labels and method of two-photon fluorescence.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Andres, Carlos Callejero. "Design and development of a mechanical millimetre wave imaging scanning system." Thesis, University of Reading, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.553082.

Повний текст джерела
Анотація:
This thesis describes the design of a very compact, real time, passive millimetre wave imager. The most relevant scanning techniques and designs have been explained. Two possible configurations have been studied, simulated and analysed with OSLO and also with Matlab. The design requires an array to provide real time frame rates, whose curvature has been optimized with GRASP, an antenna design program. The system has the following advantages: The imager is compact by using polarisation-rotation techniques to fold the antenna optics. The two rotating components produce a linear scan pattern with a single receiver. The system is capable of real time operation using an array. A novel method of mm-wave illumination has been developed and tested at 35 GHz. Several illumination experiments have been undertaken to increase the temperature of the object compared to its surrounding background and consequently increase the contrast. An opto-mechanical millimetre-wave imager has been used to facilitate these experiments. This prototype, called "Nasa Imager" was a second unit developed at Reading University by Alfa Imaging Ltd. under a NASA grant. This system displays images at a speed rate of 20 seconds/image, with a spatial resolution of 7.5 mrad. The Nasa imager has also been used to take images of different materials, potential threats or barriers at 35 and 94 GHz. The transmission and reflections properties of some of these materials have been measured at the University ofNavarra. Comparing the results from the mm-wave image analysis with those from the threat characterization, it is observed that there is a high correlation between the two.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wells, Matthew. "An expert system for the visualization of medical image data." Thesis, University of Aberdeen, 1993. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU053302.

Повний текст джерела
Анотація:
This work starts from the premise that, given the current considerable growth in medical imaging, there is a need to develop a method that allows the information thus gathered to be used to its optimum - not only as a separate data set but also within the context of other related data. From this has grown the concept of a visualization tool which aids the visual comprehension of data present in an image by using information both internal and external to it. As a result, key medical features should be identified, labelled and presented in a clear and meaningful manner. The development of the visualization tool has been achieved through the use of blackboard-based expert system. As well as providing a method for integrating the different models used, the blackboard shell has enabled all aspects of the visualization process to be centrally supervised using a powerful and flexible control mechanism that permits both goal directed and data driven behaviour within the system. The modular approach that has been applied permits the model-based processes of feature recognition to be developed as quasi-independent systems. Two feature recognition models have been developed and these are interfaced to the rest of the tool through a set of feature dependent experts that contain knowledge about how and when to use these models to their optimum. In addition, further modification to the prototype shell used has permitted the development and application of a feature sensitive search strategy. All components of the visualization tool have been tested separately and as a whole using real medical image data from a relatively low resolution source and have been proved to work. The regions and features information applied proved the viability of the overall-performance of the knowledge based feature models and allowed the results to be visually presented in a concise and original manner that provided additional information to an image without loss of the original information.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fares, Ali F. "Volume measurements of human upper-arm muscles using compounded ultrasound imaging system." Ohio : Ohio University, 1995. http://www.ohiolink.edu/etd/view.cgi?ohiou1179510154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Naik, Pranab Sabitru. "Design and implementation of a fully automated real-time s-parameter imaging system." Thesis, Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B30708758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dendere, Ronald. "Hand X-ray absorptiometry for measurement of bone mineral density on a slot-scanning X-ray imaging system." Doctoral thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/13342.

Повний текст джерела
Анотація:
Includes bibliographical references.
Bone mineral density (BMD) is an indicator of bone strength. While femoral and spinal BMDs are traditionally used in the management of osteoporosis, BMD at peripheral sites such as the hand has been shown to be useful in evaluating fracture risk for axial sites. These peripheral locations have been suggested as alternatives to the traditional sites for BMD measurement. Dual-energy X-ray absorptiometry (DXA) is the gold standard for measuring BMD due to low radiation dose, high accuracy and proven ability to evaluate fracture risk. Computed digital absorptiometry (CDA) has also been shown to be very effective at measuring the bone mass in hand bones using an aluminium step wedge as a calibration reference. In this project, the aim was to develop algorithm s for accurate measurement of BMD in hand bones on a slot - scanning digital radiography system. The project assess e d the feasibility of measuring bone mineral mass in hand bones using CDA on the current system. Images for CDA - based measurement were acquired using the default settings on the system for a medium sized patient. A method for automatic processing of the hand images to detect the aluminium step wedge, included in the scan for calibration, was developed and the calibration accuracy of the step wedge was evaluated. The CDA method was used for computation of bone mass with units of equivalent aluminium thickness (mmA1). The precision of the method was determined by taking three measurements in each of 1 6 volunteering subjects and computing the root - mean - square coefficient of variation (CV) of the measurements. The utility of the method was assessed by taking measurements of excised bones and assessing the correlation between the measured bone mass and ash weight obtained by incinerating the bones. The project also assessed the feasibility of implementing a DXA technique using two detectors in a slot-scanning digital radiography system to acquire dual-energy X-ray images for measuring areal and volumetric BMD of the middle phalanx of the middle finger. The dual-energy images were captured in two consecutive scans. The first scan captured the low- energy image using the detector in its normal set-up. The second scan captured the high- energy image with the detector modified to include an additional scintillator to simulate the presence of a second detector that would capture the low-energy image in a two-detector system. Scan parameters for acquisition of the dual-energy images were chosen to optimise spectral separation, entrance dose and image quality. Simulations were carried out to evaluate the spectral separation of the low- and high-energy spectra.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pyles, Randall C. "A procedure to characterize electron-beam resist using a scanning electron microscope and study of process optimization of an electron beam imaging system using experimental design methods /." Online version of thesis, 1992. http://hdl.handle.net/1850/10912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Scanning imaging system"

1

Crozier, Peter James. The development if a high resolution scanning force imaging system. Manchester: University of Manchester, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shorvon, S. D. Magnetic Resonance Scanning and Epilepsy. Boston, MA: Springer US, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Division, Bio-Rad Microscopy. MRC-1024: Laser scanning confocal imaging system : user operating manual, Issue 2.0. Hemel Hempstead: Bio-Rad Microscopy Division, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brandt, Roland, and Lidia Bakota. Laser scanning microscopy and quantitative image analysis of neuronal tissue. New York: Humana Press, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Field, Gary G. Color scanning and imaging systems. Pittsburgh, Pa., U.S.A: Graphic Arts Technical Foundation, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Corle, Timothy R. Confocal scanning optical microscopy and related imaging systems. San Diego: Academic Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sharp, Peter F. Radionuclide imaging techniques. London: Academic Press, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

P, Dendy P., and Keyes W. Ian, eds. Radionuclide imaging techniques. London: Academic, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Caswell, Tom. Scanning services for library users. Washington, D.C: Association of Research Libraries, Office of Leadership and Management Services, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Desktop scanners: Image quality evaluation. Upper Saddle River, NJ: Prentice Hall, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Scanning imaging system"

1

Kent, S. Davis, and Hua Lee. "System Resolution Analysis of the Scanning Tomographic Acoustic Microscope." In Acoustical Imaging, 1–6. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8588-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Calzolai, M., L. Capineri, A. Fort, L. Masotti, S. Rocchi, M. Scabia, and A. Bertini. "A 3D Doppler Scanning System for Quantitative Flow Measurements." In Acoustical Imaging, 285–90. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8588-0_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weigold, Wm Guy. "Cardiovascular Computed Tomography: Current and Future Scanning System Design." In Cardiac CT Imaging, 21–27. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-650-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nakanishi, Rine, Wm Guy Weigold, and Matthew J. Budoff. "Cardiovascular Computed Tomography: Current and Future Scanning System Design." In Cardiac CT Imaging, 25–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28219-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sasaki, Souji, Yoshihiko Takishita, Ayato Iwasaki, Jun Kubota, Yoshinori Musha, and Hisao Okada. "High-Speed C-Scan Imaging System with Electronic Scanning of 25MHz Ultrasonic Beam." In Acoustical Imaging, 251–56. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3370-2_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maev, R. Gr, and S. A. Titov. "Measurements of Parameters of Leaky Waves Using Ultrasonic Material Characterization System With Electronic Scanning." In Acoustical Imaging, 361–66. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5721-0_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maev, R. Gr, and S. A. Titov. "Measurements of Parameters of Leaky Waves Using Ultrasonic Material Characterization System with Electronic Scanning." In Acoustical Imaging, 43–48. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5721-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Egan, Gillian, Elizabeth Keavey, and Niall Phelan. "Comparison of Contact Spot Imaging on a Scanning Mammography System to Conventional Geometric Magnification Imaging." In Breast Imaging, 165–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31271-7_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Maoyun, Chen Tang, Zhenglin Yu, and Fenglong Chen. "Laser Scanning Imaging System Research and Development Trend Analysis." In Advances in Intelligent Systems and Computing, 1015–23. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15235-2_135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Deng, Ziang, Yuchao Jia, Yuanfangzhou Wang, and Chao Zhang. "Optical Design of Human Blood Fluorescence Scanning System." In 3D Imaging Technologies—Multi-dimensional Signal Processing and Deep Learning, 271–81. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3391-1_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Scanning imaging system"

1

Junkins, John L., and Jagmohan S. Gadhok. "Laser scanning graphic input system." In Electronic Imaging Device Engineering, edited by Leo Beiser and Reimar K. Lenz. SPIE, 1993. http://dx.doi.org/10.1117/12.165199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Longo, R., A. Asimidis, D. Cavouras, C. Esbrand, A. Fant, P. Gasiorek, H. Georgiou, et al. "A scanning system for intelligent imaging: I-ImaS." In Medical Imaging, edited by Jiang Hsieh and Michael J. Flynn. SPIE, 2007. http://dx.doi.org/10.1117/12.708457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Shu-ying, and Shi-chun Zhou. "The optical scanning technology in laser scanning and tracking system." In International Symposium on Photoelectronic Detection and Imaging 2009, edited by Jeffery Puschell, Hai-mei Gong, Yi Cai, Jin Lu, and Jin-dong Fei. SPIE, 2009. http://dx.doi.org/10.1117/12.834554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zacher, Michael, Ingo Krohne, Ulf Glaser, and T. Pfeifer. "Object digitalization using a scanning fringe projection system." In Electronic Imaging 2002, edited by Brian D. Corner, Roy P. Pargas, and Joseph H. Nurre. SPIE, 2002. http://dx.doi.org/10.1117/12.460173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Solomon, Edward G., Michael S. Van Lysel, Robert E. Melen, Jack W. Moorman, and Brian Skillicorn. "Low-exposure scanning-beam x-ray fluoroscopy system." In Medical Imaging 1996, edited by Richard L. Van Metter and Jacob Beutel. SPIE, 1996. http://dx.doi.org/10.1117/12.237777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kameyama, Ken-ichi, Koichi Ohtomi, Akinami Ohhashi, Hiroshi Iseki, Naotoshi Kobayashi, and Kintomo Takakura. "Virtual surgical operation system using volume scanning display." In Medical Imaging 1994, edited by Yongmin Kim. SPIE, 1994. http://dx.doi.org/10.1117/12.173996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Huihai, Lin Sun, Zhenhua Hu, Dan Pan, Rui Wu, Xiaofeng Zhang, and Fan Yang. "UWB Rotation Scanning System for Breast Imaging." In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019. http://dx.doi.org/10.1109/apusncursinrsm.2019.8889015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pyburn, Dana, Roberto Leon, B. Haji-Saeed, Sandip K. Sengupta, Markus Testorf, John Kierstead, Jehad Khoury, Charles L. Woods, and Joseph Lorenzo. "Low-power portable scanning imaging ladar system." In AeroSense 2003, edited by Gary W. Kamerman. SPIE, 2003. http://dx.doi.org/10.1117/12.487995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xu, Min, Jiasheng Hu, and Xu Wu. "Precision analysis of scanning element in laser scanning and imaging system." In Photonics Asia 2004, edited by Anbo Wang, Yimo Zhang, and Yukihiro Ishii. SPIE, 2005. http://dx.doi.org/10.1117/12.569755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Miesak, Edward J., Eric Rogstad, and Sidney S. Yang. "Image resolution in a scanning laser display system." In Photonics West 2001 - Electronic Imaging, edited by Ming H. Wu. SPIE, 2001. http://dx.doi.org/10.1117/12.420790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Scanning imaging system"

1

LeWinter, Adam, David Finnegan, Elias Deeb, and Peter Gadomski. Building envelope and infrastructure assessment using an integrated thermal imaging and lidar scanning system : Amundsen-Scott South Pole Station, Antarctica. Cold Regions Research and Engineering Laboratory (U.S.), June 2018. http://dx.doi.org/10.21079/11681/27385.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lockwood, S. D., D. Hardin, G. J. Miller, C. Meesuk, and P. R. Straus. Definitions of Attributes for Limb-Scanning or Limb-Imaging Remote Sensing Systems. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greiner, Mark E., Mike Davis, and John G. Sanders. Resolution Performance Improvements in Staring Imaging Systems Using Micro-Scanning and a Reticulated, Selectable Fill Factor InSb FPA. Fort Belvoir, VA: Defense Technical Information Center, February 1999. http://dx.doi.org/10.21236/ada385384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Coastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.

Повний текст джерела
Анотація:
The Coastal Observation and Analysis Branch (COAB) located at the Field Research Facility (FRF) conducts quarterly surveys and post-storm surveys along up to 60 kilometers of coastline within the vicinity of the FRF to assess, evaluate, and provide updated observations of the morphology of the foreshore and dune system. The surveys are conducted using a mobile terrestrial LiDAR scanner coupled with an Inertial Navigation System (INS). Traditionally the surveys coincide with a low tide, exposing the widest swath of visible sediment to the scanner as well as enough wind-sea swell or texture to induce wave breaking upon the interior sandbars. The wave field is measured with X-Band radar which records a spatial time series of wave direction and speed. Data for the survey region was collected using the VZ-2000's mobile, 3D scanning mode where the scanner continuously rotates the line scan 360 degrees as the vehicle progresses forward. Elevation measurements are acquired on all sides of the vehicle except for the topography directly underneath the vehicle. As the vehicle moves forward, the next rotation will capture the previous position's occluded data area. Laser data is acquired in mobile 3D radar mode with a pulse repetition rate of 300kHz, theta resolution of 0.19 degrees and phi resolution of 0.625 degrees. Horizontal Datum NAD83(2011), Projection North Carolina State Plane (3200) meters; Vertical Datum NAVD88, meters with geoid09 applied.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Coastal Lidar And Radar Imaging System (CLARIS) mobile terrestrial lidar survey along the Outer Banks, North Carolina in Currituck and Dare counties. Coastal and Hydraulics Laboratory (U.S.), January 2020. http://dx.doi.org/10.21079/11681/39419.

Повний текст джерела
Анотація:
The Coastal Observation and Analysis Branch (COAB) located at the Field Research Facility (FRF) conducts quarterly surveys and post-storm surveys along up to 60 kilometers of coastline within the vicinity of the FRF to assess, evaluate, and provide updated observations of the morphology of the foreshore and dune system. The surveys are conducted using a mobile terrestrial LiDAR scanner coupled with an Inertial Navigation System (INS). Traditionally the surveys coincide with a low tide, exposing the widest swath of visible sediment to the scanner as well as enough wind-sea swell or texture to induce wave breaking upon the interior sandbars. The wave field is measured with X-Band radar which records a spatial time series of wave direction and speed. Data for the survey region was collected using the VZ-2000's mobile, 3D scanning mode where the scanner continuously rotates the line scan 360 degrees as the vehicle progresses forward. Elevation measurements are acquired on all sides of the vehicle except for the topography directly underneath the vehicle. As the vehicle moves forward, the next rotation will capture the previous position's occluded data area. Laser data is acquired in mobile 3D radar mode with a pulse repetition rate of 300kHz, theta resolution of 0.19 degrees and phi resolution of 0.625 degrees. Horizontal Datum NAD83(2011), Projection North Carolina State Plane (3200) meters; Vertical Datum NAVD88, meters with geoid09 applied.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії