Добірка наукової літератури з теми "Satisfiability theory"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Satisfiability theory".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Satisfiability theory"
Dixon, H. E., M. L. Ginsberg, E. M. Luks, and A. J. Parkes. "Generalizing Boolean Satisfiability II: Theory." Journal of Artificial Intelligence Research 22 (December 1, 2004): 481–534. http://dx.doi.org/10.1613/jair.1555.
Повний текст джерелаMichaliszyn, Jakub, Jan Otop, and Piotr Witkowski. "Satisfiability versus Finite Satisfiability in Elementary Modal Logics." Fundamenta Informaticae 163, no. 2 (November 3, 2018): 165–88. http://dx.doi.org/10.3233/fi-2018-1736.
Повний текст джерелаUtomo, Putranto. "Satisfiability modulo theory and binary puzzle." Journal of Physics: Conference Series 855 (June 2017): 012057. http://dx.doi.org/10.1088/1742-6596/855/1/012057.
Повний текст джерелаPreto, Sandro Márcio da Silva. "Semantics modulo satisfiability with applications: function representation, probabilities and game theory." Bulletin of Symbolic Logic 28, no. 2 (June 2022): 264–65. http://dx.doi.org/10.1017/bsl.2022.2.
Повний текст джерелаAlon, Noga, and Asaf Shapira. "Testing satisfiability." Journal of Algorithms 47, no. 2 (July 2003): 87–103. http://dx.doi.org/10.1016/s0196-6774(03)00019-1.
Повний текст джерелаLiao, Xiaojuan, Hui Zhang, Miyuki Koshimura, Rong Huang, Wenxin Yu, and Fagen Li. "Modeling and Solving Scheduling in Overloaded Situations with Weighted Partial MaxSAT." Mathematical Problems in Engineering 2021 (July 16, 2021): 1–17. http://dx.doi.org/10.1155/2021/9615463.
Повний текст джерелаMOUHOUB, MALEK, and SAMIRA SADAOUI. "SOLVING INCREMENTAL SATISFIABILITY." International Journal on Artificial Intelligence Tools 16, no. 01 (February 2007): 139–47. http://dx.doi.org/10.1142/s0218213007003254.
Повний текст джерелаIgnatiev, Alexey, Mikoláš Janota, and Joao Marques-Silva. "Quantified maximum satisfiability." Constraints 21, no. 2 (May 24, 2015): 277–302. http://dx.doi.org/10.1007/s10601-015-9195-9.
Повний текст джерелаHooker, J. N., and V. Vinay. "Branching rules for satisfiability." Journal of Automated Reasoning 15, no. 3 (1995): 359–83. http://dx.doi.org/10.1007/bf00881805.
Повний текст джерелаOMODEO, EUGENIO G., ALBERTO POLICRITI, and ALEXANDRU I. TOMESCU. "Set-syllogistics meet combinatorics." Mathematical Structures in Computer Science 27, no. 2 (May 11, 2015): 296–310. http://dx.doi.org/10.1017/s0960129515000122.
Повний текст джерелаДисертації з теми "Satisfiability theory"
Meng, Baoluo. "Satisfiability modulo relations: theory and applications." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6614.
Повний текст джерелаTurner, Charles Hudson. "Causal action theories and satisfiability planning /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Повний текст джерелаBlock, Max. "Undecidability of finite satisfiability and characterization of NP in finite model theory." Thesis, Uppsala universitet, Algebra och geometri, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-254570.
Повний текст джерелаGalvez, ramirez Nicolas. "A Framework for Autonomous Generation of Strategies in Satisfiability Modulo Theories Improving complex SMT strategies with learning Optimizing SMT Solving Strategies by Learning with an Evolutionary Process Evolving SMT Strategies Towards Automated Strategies in Satisfiability Modulo Theory." Thesis, Angers, 2018. http://www.theses.fr/2018ANGE0026.
Повний текст джерелаThe Strategy Challenge in Satisfiability Modulo Theories (SMT) claims to build theoretical and practical tools allowing users to exert strategic control over core heuristic aspects of high-performance SMT solvers. In this work, we focus in Z3 Theorem Prover: one of the most efficient SMT solver according to the SMT Competition, SMT-COMP. In SMT solvers, the definition of a strategy relies on a set of tools that can be scheduled and configured in order to guide the search for a (un)satisfiability proof of a given instance. In this thesis, we address the Strategy Challenge in SMT defining a framework for the autonomous generation of strategies in Z3, i.e. a practical system to automatically generate SMT strategies without the use of expert knowledge. This framework is applied through an incremental evolutionary approach starting from basic algorithms to more complex genetic constructions. This framework formalise strategies modification as rewriting rules, where algorithms acts as enginess to apply them. This intermediate layer, will allow apply any algorithm or operator with no need to being structurally modified, in order to introduce new information in strategies. Validation is done through experiments on classic benchmarks of the SMT-COMP
Cornilleau, Pierre-Emmanuel. "Certification of static analysis in many-sorted first-order logic." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00846347.
Повний текст джерелаSinger, J. B. "Why solutions can be hard to find : a featural theory of cost for a local search algorithm on random satisfiability instances." Thesis, University of Edinburgh, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.661976.
Повний текст джерелаAraújo, Rodrigo Farias. "Um novo método de otimização baseado em teorias de satisfatibilidade." Universidade Federal do Amazonas, 2017. http://tede.ufam.edu.br/handle/tede/5715.
Повний текст джерелаApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-06-23T14:38:14Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_Rodrigo_Farias_Araujo.pdf: 2432590 bytes, checksum: a0accf6a453257550a0ea9f75b50b687 (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-06-23T14:44:39Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_Rodrigo_Farias_Araujo.pdf: 2432590 bytes, checksum: a0accf6a453257550a0ea9f75b50b687 (MD5)
Made available in DSpace on 2017-06-23T14:44:39Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_Rodrigo_Farias_Araujo.pdf: 2432590 bytes, checksum: a0accf6a453257550a0ea9f75b50b687 (MD5) Previous issue date: 2017-03-30
This work presents a new method of optimization applied to different classes of problems, such as non-convex and convex. The methodology consists in the use the counterexample generated from the model checking technique based on Boolean satisfiability theory (SAT) and satisfiability modulo theory (SMT), to guide the optimization process. Three algorithms of optimization are developed: Generic Algorithm, applied to any class of optimization problem, it will be used in the optimization of non-convex functions, Simplified Algorithm, used in the optimization of functions in which there is some previous knowledge, e. g., semi-defined or defined positive functions and Fast Algorithm, used to optimize convex functions. In addition, convergence proofs are provided for the respective algorithms. The algorithms are implemented using two model verifiers, CBMC which uses the SAT-based MiniSAT solver as back-end, and the ESBMC, which supports SMT-based solvers, such as Z3, Boolector and MathSAT. For perfomance evaluation, the algorithms are applied to a set of thirty functions taken from the literature and used to test optimization algorithms, they are also compared with traditional optimization algorithms usually used in solving non-convex optimization problems, such as genetic algorithm, particle swarm, pattern search, simulated annealing and nonlinear programming. Through the analysis of the results it can be concluded that the developed algorithms are suitable the classes of functions for which they were developed and have a higher rate of success in the search for the optimal value in comparison with the other algorithms. Finally, the developed methodology is applied to solve optimization problems in the context of the two-dimensional path planning for autonomous mobile robots.
Este trabalho apresenta um novo método de otimização aplicado a diferentes classes de problemas, como não-convexos e convexos. A metodologia consiste na utilização do contraexemplo gerado a partir da técnica de verificação de modelos, baseada na teoria de satisfatibilidade booleana (SAT) ou na teoria do módulo de satisfatibilidade (SMT), para guiar o processo de otimização. São desenvolvidos três algoritmos de otimização, são eles: Algoritmo Genérico, aplicado a qualquer classe de problema de otimização, neste será utilizado na otimização de funções não-convexas, Algoritmo Simplificado, empregado na otimização de funções nas quais tem-se algum conhecimento prévio, por exemplo, funções semi-definidas ou definidas positivas e Algoritmo Rápido, utilizado para otimização de funções convexas. Adicionalmente, são fornecidas as provas de convergência para os respectivos algoritmos. Os algoritmos são implementados utilizando dois verificadores de modelos, o CBMC que utiliza como back-end o solucionador MiniSAT baseado em SAT, e o ESBMC, que tem suporte aos solucionadores baseados em SMT, como: Z3, Boolector e MathSAT. Para avaliação de desempenho, os algoritmos são aplicados a um conjunto de trinta funções retiradas da literatura e utilizadas para teste de algoritmos de otimização, os mesmos também são comparados com algoritmos de otimização tradicionais usualmente empregados na resolução de problemas de otimização não-convexa, como: algoritmo genético, enxame de partícula, busca de padrões, recozimento simulado e programação não-linear. Através da análise dos resultados pode-se concluir que os algoritmos desenvolvidos são adequados as classes de funções para os quais foram desenvolvidos e possuem maior taxa de acerto na busca pelo valor ótimo em comparação com os outros algoritmos. Finalmente a metodologia desenvolvida é aplicada para resolver problemas de otimização no contexto de planejamento de caminhos bidimensionais para robô móveis autônomos.
Puri, Prateek. "Design Validation of RTL Circuits using Binary Particle Swarm Optimization and Symbolic Execution." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/55815.
Повний текст джерелаMaster of Science
Haller, Leopold Carl Robert. "Abstract satisfaction." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:68f76f3a-485b-4c98-8d02-5e8d6b844b4e.
Повний текст джерелаFerte, Julien. "Régularité et contraintes de descendance : équations algébriques." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4713.
Повний текст джерелаThis thesis is in 3 parts.The NP-completeness of satisfiability of boolean combinations of subtree constraints is shown in the article [Ven87] ; in the part I of this thesis, we study whether adding regular contraints lets hope for keeping the same complexity. This extended model defines a new class of languages which is compared in expressivity to the Rigid Tree Automata [JKV11]. Then a begining of formalisation of the t-dags is developped.The patterns have been studied mainly from the point of view of the constraints they demand on the data. The part II of this thesis study them more finely, by putting aside the data. The skeletons are defined as calculus intermediate and the characterisation holding between their syntax and their semantics is shown. Then a pumping lemma is prooved in a restreict case, another one is conjectured in the most general case. Then fragments of boolean combinations of patterns are compared in expressivity, this parts ends with the study of complexity of model-checking, satisfiability and DTD-satisfiability on these fragments.The content of part III constitutes the article [FMS11], it is the demonstration of the characterisation of strongly-deterministic 2-level pushdown automata by recurrent catenative equation systems. This proof uses in particular, some rewriting techniques, unrewritable unknowns and noetherian orders. This characterisation provides the base case of the recurrence shown in [Sén07]
Книги з теми "Satisfiability theory"
Hoos, Holger H., and David G. Mitchell, eds. Theory and Applications of Satisfiability Testing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527695.
Повний текст джерелаBacchus, Fahiem, and Toby Walsh, eds. Theory and Applications of Satisfiability Testing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b137280.
Повний текст джерелаGiunchiglia, Enrico, and Armando Tacchella, eds. Theory and Applications of Satisfiability Testing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b95238.
Повний текст джерелаLi, Chu-Min, and Felip Manyà, eds. Theory and Applications of Satisfiability Testing – SAT 2021. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80223-3.
Повний текст джерелаJärvisalo, Matti, and Allen Van Gelder, eds. Theory and Applications of Satisfiability Testing – SAT 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39071-5.
Повний текст джерелаBeyersdorff, Olaf, and Christoph M. Wintersteiger, eds. Theory and Applications of Satisfiability Testing – SAT 2018. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94144-8.
Повний текст джерелаGaspers, Serge, and Toby Walsh, eds. Theory and Applications of Satisfiability Testing – SAT 2017. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66263-3.
Повний текст джерелаCreignou, Nadia, and Daniel Le Berre, eds. Theory and Applications of Satisfiability Testing – SAT 2016. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40970-2.
Повний текст джерелаSinz, Carsten, and Uwe Egly, eds. Theory and Applications of Satisfiability Testing – SAT 2014. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09284-3.
Повний текст джерелаPulina, Luca, and Martina Seidl, eds. Theory and Applications of Satisfiability Testing – SAT 2020. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51825-7.
Повний текст джерелаЧастини книг з теми "Satisfiability theory"
van Maaren, Hans, and Linda van Norden. "Sums of Squares, Satisfiability and Maximum Satisfiability." In Theory and Applications of Satisfiability Testing, 294–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499107_22.
Повний текст джерелаIgnatiev, Alexey, Mikoláš Janota, and Joao Marques-Silva. "Quantified Maximum Satisfiability:." In Theory and Applications of Satisfiability Testing – SAT 2013, 250–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39071-5_19.
Повний текст джерелаÁbrahám, Erika, and Gereon Kremer. "Satisfiability Checking: Theory and Applications." In Software Engineering and Formal Methods, 9–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41591-8_2.
Повний текст джерелаCarapelle, Claudia, Alexander Kartzow, and Markus Lohrey. "Satisfiability of CTL* with Constraints." In CONCUR 2013 – Concurrency Theory, 455–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40184-8_32.
Повний текст джерелаGoerdt, Andreas, and Lutz Falke. "Satisfiability Thresholds beyond k −XORSAT." In Computer Science – Theory and Applications, 148–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30642-6_15.
Повний текст джерелаde Oliveira Oliveira, Mateus. "Satisfiability via Smooth Pictures." In Theory and Applications of Satisfiability Testing – SAT 2016, 13–28. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40970-2_2.
Повний текст джерелаAtserias, Albert, Phokion G. Kolaitis, and Simone Severini. "Generalized Satisfiability Problems via Operator Assignments." In Fundamentals of Computation Theory, 56–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55751-8_6.
Повний текст джерелаPretolani, Daniele. "Hypergraph Reductions and Satisfiability Problems." In Theory and Applications of Satisfiability Testing, 383–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24605-3_29.
Повний текст джерелаJin, HoonSang, and Fabio Somenzi. "CirCUs: A Hybrid Satisfiability Solver." In Theory and Applications of Satisfiability Testing, 211–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527695_17.
Повний текст джерелаKnast, R. "Propositional calculi of term satisfiability and process logics." In Computation Theory, 118–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-16066-3_12.
Повний текст джерелаТези доповідей конференцій з теми "Satisfiability theory"
"SATISFIABILITY DEGREE THEORY FOR TEMPORAL LOGIC." In International Conference on Fuzzy Computation Theory and Applications. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003672804970500.
Повний текст джерела"AN ALGORITHM FOR SATISFIABILITY DEGREE COMPUTATION." In International Conference on Fuzzy Computation Theory and Applications. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003673205010504.
Повний текст джерелаDing, Jian, Allan Sly, and Nike Sun. "Satisfiability threshold for random regular NAE-SAT." In STOC '14: Symposium on Theory of Computing. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2591796.2591862.
Повний текст джерелаCassez, Franck, and Anthony M. Sloane. "ScalaSMT: satisfiability modulo theory in Scala (tool paper)." In SPLASH '17: Conference on Systems, Programming, Languages, and Applications: Software for Humanity. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3136000.3136004.
Повний текст джерелаDing, Jian, Allan Sly, and Nike Sun. "Proof of the Satisfiability Conjecture for Large k." In STOC '15: Symposium on Theory of Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2746539.2746619.
Повний текст джерелаYujuan Zhao and Zhenming Song. "A new branching heuristic for propositional satisfiability." In 2016 International Conference on Fuzzy Theory and Its Applications (iFuzzy). IEEE, 2016. http://dx.doi.org/10.1109/ifuzzy.2016.8004924.
Повний текст джерелаMajalawa, Vie’an Huzair, Putranto Hadi Utomo, Tri Atmojo Kusmayadi, and Diari Indriati. "Conflict driven clause learning approach for satisfiability modulo theory." In THE THIRD INTERNATIONAL CONFERENCE ON MATHEMATICS: Education, Theory and Application. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0039296.
Повний текст джерелаAnsótegui, C., M. Bofill, F. Manyà, and M. Villaret. "Building Automated Theorem Provers for Infinitely-Valued Logics with Satisfiability Modulo Theory Solvers." In 2012 IEEE 42nd International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2012. http://dx.doi.org/10.1109/ismvl.2012.63.
Повний текст джерелаFeldman, Vitaly, Will Perkins, and Santosh Vempala. "On the Complexity of Random Satisfiability Problems with Planted Solutions." In STOC '15: Symposium on Theory of Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2746539.2746577.
Повний текст джерелаHe, Fei, Zhihang Sun, and Hongyu Fan. "Satisfiability modulo ordering consistency theory for multi-threaded program verification." In PLDI '21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3453483.3454108.
Повний текст джерелаЗвіти організацій з теми "Satisfiability theory"
Barbau, Raphael, and Conrad Bock. Verifying executability of SysML behavior models using satisfiability modulo theory solvers. Gaithersburg, MD: National Institute of Standards and Technology, June 2020. http://dx.doi.org/10.6028/nist.ir.8283.
Повний текст джерелаBaader, Franz, Pavlos Marantidis, and Alexander Okhotin. Approximately Solving Set Equations. Technische Universität Dresden, 2016. http://dx.doi.org/10.25368/2022.227.
Повний текст джерелаHorrocks, Ian, Ulrike Sattler, and Stephan Tobies. A Description Logic with Transitive and Converse Roles, Role Hierarchies and Qualifying Number Restrictions. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.94.
Повний текст джерелаBrandt, Sebastian, Anni-Yasmin Turhan, and Ralf Küsters. Foundations of non-standard inferences for DLs with transitive roles. Technische Universität Dresden, 2003. http://dx.doi.org/10.25368/2022.127.
Повний текст джерела