Добірка наукової літератури з теми "Satellites en Rotation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Satellites en Rotation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Satellites en Rotation"

1

Agrusa, Harrison F., Yun Zhang, Derek C. Richardson, Petr Pravec, Matija Ćuk, Patrick Michel, Ronald-Louis Ballouz, et al. "Direct N-body Simulations of Satellite Formation around Small Asteroids: Insights from DART’s Encounter with the Didymos System." Planetary Science Journal 5, no. 2 (February 1, 2024): 54. http://dx.doi.org/10.3847/psj/ad206b.

Повний текст джерела
Анотація:
Abstract We explore binary asteroid formation by spin-up and rotational disruption considering the NASA DART mission's encounter with the Didymos–Dimorphos binary, which was the first small binary visited by a spacecraft. Using a suite of N-body simulations, we follow the gravitational accumulation of a satellite from meter-sized particles following a mass-shedding event from a rapidly rotating primary. The satellite’s formation is chaotic, as it undergoes a series of collisions, mergers, and close gravitational encounters with other moonlets, leading to a wide range of outcomes in terms of the satellite's mass, shape, orbit, and rotation state. We find that a Dimorphos-like satellite can form rapidly, in a matter of days, following a realistic mass-shedding event in which only ∼2%–3% of the primary's mass is shed. Satellites can form in synchronous rotation due to their formation near the Roche limit. There is a strong preference for forming prolate (elongated) satellites, although some simulations result in oblate spheroids like Dimorphos. The distribution of simulated secondary shapes is broadly consistent with other binary systems measured through radar or lightcurves. Unless Dimorphos's shape is an outlier, and considering the observational bias against lightcurve-based determination of secondary elongations for oblate bodies, we suggest there could be a significant population of oblate secondaries. If these satellites initially form with elongated shapes, a yet-unidentified pathway is needed to explain how they become oblate. Finally, we show that this chaotic formation pathway occasionally forms asteroid pairs and stable triples, including coorbital satellites and satellites in mean-motion resonances.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raghuprasad, Puthalath Koroth. "Synchronous, Nonsynchronous and Negative Rotations: How Spin and Gravity Orchestrate Planetary Motions." Applied Physics Research 12, no. 2 (January 31, 2020): 1. http://dx.doi.org/10.5539/apr.v12n2p1.

Повний текст джерела
Анотація:
This study identifies the unique features accompanying the phenomenon of synchronous rotation of the major (proximal) satellites of the gas giants and the earth’s moon, and the special features leading to the ‘negative’ rotation of Venus, Uranus and Pluto, as well as the most peripheral small satellites of the gas giants. Such features help us understand how these phenomena occur but also, by combining all of the observations help explain other (regular) planetary motions as well. In the synchronously rotating satellites, the salient features are the satellites’ low axial tilts and both the orbital speed and the axial rotation speed increasing with proximity to the mother body. In “negative” rotation, axial tilts are in excess of 120° and the axial rotation speeds are significantly delayed; this delay is most pronounced in Venus, which has an axial tilt of -174°. A scrutiny of the orbital parameters of all the satellites of the gas giants alone will yield sufficient data to propose a working hypothesis of how mutual gravitation, combined with spin (axial rotation and orbital motion), the distance from the mother, and centrifugal force can explain all motions. It confirms our belief that the process of planetary motions is a continuum from the synchronous, through degrees of non-synchronicity (or regular orbits), to the negative rotations, all depending on the degree of influence from mother bodies, as a product of distances from them. Thus, the nearest large satellites with the least axial tilts display synchronous rotation. Those satellites that are intermediate in distance from the mother show nonsynchronous axial rotation and correspondingly slower orbital speeds. The small peripheral satellites display axial tilts over 120 degrees and rotate negatively. In all these orbital motions, centrifugal force is the crucial restraining influence; lest, the orbiting bodies will tend to fall into the mother bodies. How all these pieces of the puzzle fit together in the orderly movements of bodies in the universe is the underlying theme of this article.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lieske, J. H. "IAU North Poles and Rotation Parameters for Natural Satellites." Symposium - International Astronomical Union 156 (1993): 351–56. http://dx.doi.org/10.1017/s0074180900173498.

Повний текст джерела
Анотація:
In 1970 the IAU defined any object'snorthpole to be that axis of rotation which lies north of the solar system's invariable plane. A competing definition in widespread use at some institutions followed the “right hand rule” whereby the “north” axis of rotation was generally said to be that that of the rotational angular momentum.A Working Group has periodically updated the recommended values of planet and satellite poles and rotation rates in accordance with the IAU definition of north and the IAU definition of prime meridian.In this paper we review the IAU definitions ofnorthand of the location ofprime meridianand we present the algorithm which has been employed in determining the rotational parameters of the natural satellites.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Van Hoolst, Tim. "The libration and interior structure of large icy satellites and Mercury." Proceedings of the International Astronomical Union 9, S310 (July 2014): 1–8. http://dx.doi.org/10.1017/s1743921314007698.

Повний текст джерела
Анотація:
AbstractLongitudinal librations are periodic changes in the rotation angle of a planet or satellite. Their observation and subsequent interpretation have profoundly increased our understanding of the interior structure of Mercury. Likewise, libration is thought to provide important constraints on the interior structure of icy satellites. Here we study the libration of Mercury and large icy satellites rotating synchronously with their orbital motion and explain how it depends on the interior structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pashkevich, Vladimir V., and Andrey N. Vershkov. "Geodetic Precession of the Sun, Solar System Planets, and their Satellites." Artificial Satellites 57, no. 1 (March 1, 2022): 77–109. http://dx.doi.org/10.2478/arsa-2022-0005.

Повний текст джерела
Анотація:
Abstract The effect of the geodetic precession is the most significant relativistic effect in the rotation of celestial bodies. In this article, the new geodetic precession values for the Sun, the Moon, and the Solar System planets have been improved over the previous version by using more accurate rotational element values. For the first time, the relativistic effect of the geodetic precession for some planetary satellites (J1–J4, S1–S6, S8–S18, U1–U15, N1, and N3–N8) with known quantities of the rotational elements was studied in this research. The calculations of the values of this relativistic effect were carried out by the method for studying any bodies of the Solar System with long-time ephemeris. As a result, the values of the geodetic precession were first determined for the Sun, planets in their rotational elements, and for the planetary satellites in the Euler angles relative to their proper coordinate systems and in their rotational elements. In this study, with respect to the previous version, additional and corrected values of the relativistic influence of Martian satellites (M1 and M2) on Mars were calculated. The largest values of the geodetic rotation of bodies in the Solar System were found in Jovian satellite system. Further, in decreasing order, these values were found in the satellite systems of Saturn, Neptune, Uranus, and Mars, for Mercury, for Venus, for the Moon, for the Earth, for Mars, for Jupiter, for Saturn, for Uranus, for Neptune, and for the Sun. First of all, these are the inner satellites of Jupiter: Metis (J16), Adrastea (J15), Amalthea (J5), and Thebe (J14) and the satellites of Saturn: Pan (S18), Atlas (S15), Prometheus (S16), Pandora (S17), Epimetheus (S11), Janus (S10), and Mimas (S1), whose values of geodetic precession are comparable to the values of their precession. The obtained numerical values for the geodetic precession for the Sun, all the Solar System planets, and their satellites (E1, M1, M2, J1–J5, J14–J16, S1–S6, S8–S18, U1–U15, N1, and N3–N8) can be used to numerically study their rotation in the relativistic approximation and can also be used to estimate the influence of relativistic effects on the orbital–rotational dynamics of bodies of exoplanetary systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pashkevich, Vladimir V., and Andrey N. Vershkov. "Geodetic Precession of the Sun, Solar System Planets, and their Satellites." Artificial Satellites 57, no. 1 (March 1, 2022): 77–109. http://dx.doi.org/10.2478/arsa-2022-0005.

Повний текст джерела
Анотація:
Abstract The effect of the geodetic precession is the most significant relativistic effect in the rotation of celestial bodies. In this article, the new geodetic precession values for the Sun, the Moon, and the Solar System planets have been improved over the previous version by using more accurate rotational element values. For the first time, the relativistic effect of the geodetic precession for some planetary satellites (J1–J4, S1–S6, S8–S18, U1–U15, N1, and N3–N8) with known quantities of the rotational elements was studied in this research. The calculations of the values of this relativistic effect were carried out by the method for studying any bodies of the Solar System with long-time ephemeris. As a result, the values of the geodetic precession were first determined for the Sun, planets in their rotational elements, and for the planetary satellites in the Euler angles relative to their proper coordinate systems and in their rotational elements. In this study, with respect to the previous version, additional and corrected values of the relativistic influence of Martian satellites (M1 and M2) on Mars were calculated. The largest values of the geodetic rotation of bodies in the Solar System were found in Jovian satellite system. Further, in decreasing order, these values were found in the satellite systems of Saturn, Neptune, Uranus, and Mars, for Mercury, for Venus, for the Moon, for the Earth, for Mars, for Jupiter, for Saturn, for Uranus, for Neptune, and for the Sun. First of all, these are the inner satellites of Jupiter: Metis (J16), Adrastea (J15), Amalthea (J5), and Thebe (J14) and the satellites of Saturn: Pan (S18), Atlas (S15), Prometheus (S16), Pandora (S17), Epimetheus (S11), Janus (S10), and Mimas (S1), whose values of geodetic precession are comparable to the values of their precession. The obtained numerical values for the geodetic precession for the Sun, all the Solar System planets, and their satellites (E1, M1, M2, J1–J5, J14–J16, S1–S6, S8–S18, U1–U15, N1, and N3–N8) can be used to numerically study their rotation in the relativistic approximation and can also be used to estimate the influence of relativistic effects on the orbital–rotational dynamics of bodies of exoplanetary systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Velgas, Lev Borisovich, and Liia Lvovna Iavolinskaia. "Seven main discoveries, rigorously proven." Interactive science, no. 6 (40) (June 21, 2019): 103–5. http://dx.doi.org/10.21661/r-496981.

Повний текст джерела
Анотація:
We are striving to prove that all planets rotate around their axis due to their satellites. Rotation of the collateral gravitation is analogous for all the planets, for the Sun as well. The Sun, as well as every single planet, can have multiple satellites. Satellite and planet’s collateral gravitation, if it moves because of satellite’s movement around the orbit, rotates the planet or the Sun. The article proves that collateral gravitation of the Moon and the Earth, that moves around the Earth due to Moon’s movement around the Earth, rotates the Earth around it’s axis.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Xiaozhen, Yao Kong, Xiaochun Lu, and Decai Zou. "Contribution of Etalon Observation to Earth Rotation Parameters under a New Observation Scenario." Applied Sciences 12, no. 10 (May 13, 2022): 4936. http://dx.doi.org/10.3390/app12104936.

Повний текст джерела
Анотація:
The standard products of the International Laser Ranging Service (ILRS) are mainly based on the two laser geodynamics satellites (LAGEOS) due to the sparse observations of the Etalon satellites. With improvements in the ability to track high-altitude satellites, ILRS conducted a 3-month Etalon tracking campaign. In this paper, we study the contribution of more Etalon observations in the new observation scenario to weekly ILRS products, such as station coordinates, Earth rotation parameters (ERPs) and satellite orbit. We compare the ILRS products estimated from LAGEOS-only solutions and LAGEOS+Etalon solutions. In the new observation scenario of 2019, the numbers of observations of Etalon satellites are 1.4 and 1.7 times larger than those in 2018. It is shown that the quality of station coordinates, and the satellite orbit of LAGESOS satellites are only slightly affected by the increase in Etalon observations of the campaign. However, for station 1868, which is dedicated to high-altitude satellites, the root mean square (RMS) values of the residuals in the N, E, and U components are improved by 3.1 cm, 2.1 cm and 2.3 cm, respectively. The internal precision of orbit for Etalon-1/2 satellites in tangle and normal directions are improved by 1.5 cm and 2.9 cm, respectively. Most remarkably, the standard deviations for Xp, Yp and LOD can be improved by 6.9%, 14.3% and 5.1%, respectively, compared with the International Earth Rotation System (IERS)-14-C04 series. With our research, the ILRS could increase efforts on Etalon satellite tracking without affecting the routine observations of LAGEOS satellites.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pashkevich, V. V., and A. N. Vershkov. "Secular geodetic rotation of celestial bodies in the system of Jupiter’s moons." Publications of the Pulkovo Observatory 235 (December 2024): 51–68. https://doi.org/10.31725/0367-7966-2024-235-51-68.

Повний текст джерела
Анотація:
This article studies the relativistic effect of geodetic precession in the rotation around their axes of Jupiter and its 94 satellites for which ephemerides are known. As a result, the most significant secular terms of the geodetic rotation of these celestial bodies were determined for the first time: 1. for Jupiter relative to the barycenter of the Solar System and the plane of the mean orbit of Jupiter at the epoch J2000.0 in Euler angles, in the perturbing terms of physical libration and in the absolute value of the vector of angular rotation of the geodetic rotation of the body under study; 2. for 8 regular (4 inner (Metis J16, Adrastea J15, Amalthea J5 and Thebe J14)) and 4 Galilean (Io J1, Europa J2, Ganymede J3 and Callisto J4))) satellites of Jupiter relative to: a) the barycenter of the Solar system and the plane of the mean orbit of the satellite under study at epoch J2000.0 in Euler angles, in the perturbing terms of the physical libration and in the absolute value of the vector of angular rotation of the geodetic rotation of the body under study; b) the barycenter of the Solar system and the plane of the mean orbit of the barycenter of the Jovian system at epoch J2000.0 in Euler angles, in the perturbing terms of the physical libration and in the absolute value of the vector of angular rotation of the geodetic rotation of the body under study; c) the barycenter of the Jupiter satellite system and the plane of the mean orbit of the studied satellite of the J2000.0 epoch in the perturbing terms of the physical libration and in the absolute value of the angular rotation vector of the geodetic rotation of the studied body; 3. for 86 irregular satellites (J6–J13, J17–J72, J5501–J5507, J5509–J5523) of Jupiter relative to: a) the barycenter of the Solar system in the absolute value of the angular rotation vector of the geodetic rotation of the studied body; b) the barycenter of the Jupiter satellite system in the absolute value of the angular rotation vector of the geodetic rotation of the studied body. For the J2000.0 epoch, the mean orbits of the studied celestial bodies and the mean orbit of the barycenter of the Jovian system were calculated. For regular satellites, the values of the angles of inclination of their equator to their own orbits were determined. The obtained analytical values of the geodetic precession of the studied celestial bodies can be used for a numerical study of the rotation of these bodies in the relativistic approximation.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schildknecht, T., I. Bauersima, U. Hugentobler, A. Verdun, and G. Beutler. "CQSSP: A New Technique for Establishing the Tie Between the Stellar and Quasar Celestial Reference Frames." International Astronomical Union Colloquium 127 (1991): 341–47. http://dx.doi.org/10.1017/s0252921100064174.

Повний текст джерела
Анотація:
AbstractUsing artificial satellites as transfer objects the project “Coupled Quasar-Satellite-Star Positioning” represents an independent method for linking quasar and stellar reference frames. Optical observations of close approaches between reference stars and satellites yield satellite positions in the stellar reference frame. On the other hand high precision satellite orbits in the International Earth Rotation Service (IERS) terrestrial reference frame are obtained from laser or radiometric observations. Using IERS earth rotation parameters and adopted transformation models the satellite and eventually the star positions can be expressed in the IERS quasar celestial reference frame. In this paper we describe the CQSSP project and assess its capability for providing an accurate tie between tho two metioned celestial reference frames.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Satellites en Rotation"

1

Cottereau, Laure. "Etude complète de la rotation d'un corps triaxial : application à Vénus et à Phoebe." Paris 6, 2011. http://www.theses.fr/2011PA066261.

Повний текст джерела
Анотація:
Cette thèse a pour sujet l'étude des mouvements de rotation des corps dits triaxiaux, qui ne sont pas seulement aplatis comme la Terre, mais qui s'écartent aussi de la symétrie axiale. Nous commençons par construire une théorie analytique fondée sur un formalisme Hamiltonien, que nous appliquons ensuite à deux corps triaxiaux : la planète Vénus et le neuvième satellite de Saturne, Phoebe. Ceci nous permet de déterminer pour la première fois leurs coefficients de précession-nutation en longitude et en obliquité. On présente aussi les caractéristiques du mouvement libre de Vénus. Puis nous réévaluons par une approche numérique incluant les éphémérides planétaires ces mouvements de précession-nutation. Pour Vénus, tout en confirmant nos résultats analytiques à une précision relative de 10(-5), ceci nous donne accès aux effets indirects des planètes qui agissent sur son orbite, ainsi qu'a l'évolution de l'obliquité sur une longue période (500\,000 ans). Pour Phoebe, l'étude approfondie des éphémérides montre que le mouvement orbital de ce satellite est loin d'être Keplerien, et qu'il faut développer un modèle analytique plus complexe pour atteindre la même précision que l'intégration numérique dans le cas des corps très perturbés. De manière générale, nous montrerons que l'effet de la triaxialité sur le mouvement de rotation devient plus important à mesure que la vitesse de rotation de l'objet considéré décroît. Pour finir, nous étudions les effets de l'atmosphère, du noyau et des marées gravitationnelles du Soleil sur la durée du jour de Vénus, et comment l'observation de ces effets pourrait contraindre les propriétés géophysiques de la planète
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Robertson, Michael James. "Command Generation for Tethered Satellite Systems." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6921.

Повний текст джерела
Анотація:
Command generation is a process by which input commands are constructed or modified such that the system's response adheres to a set of desired performance specifications. Previously, a variety of command generation techniques such as input shaping have been used to reduce residual vibration, limit transient deflection, conserve fuel or adhere to numerous other performance specifications or performance measures. This dissertation addresses key issues regarding the application of command generation techniques to tethered satellite systems. The three primary objectives of this research are as follows: 1) create analytically commands that will limit the deflection of flexible systems 2) combine command generation and feedback control to reduce the retrieval time of tethered satellites, and 3) develop command generation techniques for spinning tether systems. More specifically, the proposed research addresses six specific aspects of command generation for tethered satellites systems: 1) create command shapers that can limit the trajectory tracking for a mass under PD control to a pre-specified limit in real time 2) create commands analytically that can limit the transient deflection of a model with one rigid-body and one flexible mode during rest-to-rest maneuvers 3) command generation for a 2-D model of earth-pointing tethered satellites without tether flexibility, 4) command generation for a 2-D model of earth-pointing tethered satellites to reduce tether retrieval time and reduce swing angle, 5) command generation for a 3-D model of earth-pointing tethered satellites without tether flexibility, and 6) command generation for improved spin-up of spinning tethered satellite systems. The proposed research is anticipated to advance the state-of-the-art in the field of command generation for tethered satellite systems and will potentially yield improvements in a number of practical satellite and tether applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Evans, Joshua L. "SMALL SATELLITE NONCOMMUTATIVE ROTATION SEQUENCE ATTITUDE CONTROL USING PIEZOELECTRIC ACTUATORS." UKnowledge, 2016. http://uknowledge.uky.edu/ece_etds/91.

Повний текст джерела
Анотація:
Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite oscillations on two of the satellites axes. While zero net change occurs on these signaled axes, the third axis can develop an average angular rate. This noncommutative attitude control methodology has several advantages over conventional methods, including scalability, power consumption, and operation outside of Earth's magnetic field. This research looks into the feasibility of such a system, and lays the foundation for a simple control system architecture.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Debes, John H., Charles A. Poteet, Hannah Jang-Condell, Andras Gaspar, Dean Hines, Joel H. Kastner, Laurent Pueyo, et al. "Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/623947.

Повний текст джерела
Анотація:
We have obtained new images of the protoplanetary disk orbiting TW Hya in visible, total intensity light with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST), using the newly commissioned BAR5 occulter. These HST/STIS observations achieved an inner working angle of similar to 0."2, or 11.7 au, probing the system at angular radii coincident with recent images of the disk obtained by ALMA and in polarized intensity near-infrared light. By comparing our new STIS images to those taken with STIS in 2000 and with NICMOS in 1998, 2004, and 2005, we demonstrate that TW Hya's azimuthal surface brightness asymmetry moves coherently in position angle. Between 50 au and 141 au we measure a constant angular velocity in the azimuthal brightness asymmetry of 22 degrees.7. 7 yr(-1) in a counterclockwise direction, equivalent to a period of 15.9. yr assuming circular motion. Both the (short) inferred period and lack of radial dependence of the moving shadow pattern are inconsistent with Keplerian rotation at these disk radii. We hypothesize that the asymmetry arises from the fact that the disk interior to 1 au is inclined and precessing owing to a planetary companion, thus partially shadowing the outer disk. Further monitoring of this and other shadows on protoplanetary disks potentially opens a new avenue for indirectly observing the sites of planet formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ning, Zuoli. "Roles of plate locking and block rotation in the tectonics of the Pacific Northwest /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/6833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Astoul, Aurélie. "Impact du magnétisme et de la rotation différentielle sur les marées dans les étoiles de faible masse et les planètes géantes gazeuses." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7073.

Повний текст джерела
Анотація:
Plus de 4000 exoplanètes ont été découvertes au cours de ces 25 dernières années, pour la plupart en orbite autour d’étoiles de faible masse. Dans les systèmes planétaires à très courte période orbitale, les interactions de marée étoile-planète sont connues pour gouverner l’évolution tardive de l’architecture orbitale des systèmes et de la rotation de leur étoile hôte, comme c’est aussi le cas dans les systèmes serrés planète-satellite(s) de notre système solaire tels que les systèmes jovien et saturnien. Les temps caractéristiques de variation des paramètres orbitaux et de rotation des corps, sont dictés par l’amplitude de la dissipation des marées qui varie considérablement avec la masse, la rotation et la métallicité des étoiles ainsi qu’avec la structure et la dynamique internes des étoiles et des planètes. Pour modéliser et caractériser de manière réaliste la dissipation de marée dans les enveloppes convectives de ces objets astrophysiques, deux mécanismes physiques clés sont étudiés dans cette thèse: la rotation différentielle et le magnétisme, au travers de leur influence sur les flots de marées en milieu convectif. Ces deux aspects sont explorés à l’aide d’approches semi-analytiques et numériques, tout en appliquant nos résultats à l’intérieur des étoiles au cours de leur évolution, et des planètes géantes gazeuses telles que Jupiter et Saturne. Tout d’abord, nous nous sommes intéressés à l’impact du magnétisme sur l’excitation et la dissipation des ondes magnéto-inertielles de marée, le long de l’évolution des étoiles de faible masse, de type spectral M à F, en examinant les limites de leur enveloppe convective, à savoir l’interface entre la zone radiative et convective et les régions proches de leur surface. Pour ce faire, nous avons utilisé en synergie la physique des ondes de marée, les lois d’échelle issues de la théorie dynamo qui nous permettent d’estimer l’amplitude d’un champ magnétique à grande échelle, et les grilles de modèles numériques d’évolution stellaire prenant en compte la rotation. On montre ainsi que la contribution du magnétisme sur le forçage de marée, c’est-à-dire sur l’excitation des ondes, reste négligeable devant la contribution hydrodynamique classiquement utilisée, et ce quelle que soit la position dans l’enveloppe convective, la masse, ou l’âge de l’étoile de faible masse étudiée. A contrario, le mécanisme de dissipation Ohmique des ondes magnéto-inertielles est un mécanisme très efficace, voire prépondérant devant la dissipation visqueuse, pour des étoiles de type M à F, de la pré-séquence principale à la fin de la séquence principale, dans toute leur enveloppe convective. Ces résultats s’appliquent aussi dans le cas de Jupiter et de ses satellites galiléens. Parallèlement à ce travail, nous avons développé un modèle local de boîte cisaillée, incliné par rapport à l’axe de rotation du corps étudié, afin de comprendre l’interaction complexe entre les ondes inertielles de marée et les flots zonaux au voisinage des couches critiques, et en particulier à la résonance de corotation, qui sont des régions où la fréquence des ondes de marée est nulle ou commensurable avec la fréquence de rotation locale du corps considéré. Ce modèle nous a permis d’étudier l’impact de différents profils de rotation réalistes, comme ceux que l’on peut observer dans les étoiles de type solaire, ou dans les planètes géantes telles que Jupiter et Saturne. Grâce à ce travail, nous avons identifié différents régimes de transmission du flux d’énergie transporté par les ondes, pour lesquels l’onde peut, au voisinage d’une couche critique, soit déposer de l’énergie et être amortie, soit extraire de l’énergie du flot moyen et ainsi être amplifiée. Ces différents régimes de transmission existent pour chacun des profils de rotation examinés, coniques et cylindriques, et dépendent du niveau critique rencontré, des propriétés des ondes et du profil de l’écoulement moyen
More than 4000 exoplanets have been discovered in the last 25 years, most of them around low-massstars. In close planetary systems, star-planet tidal interactions are known to govern the late evolution of the systems’ orbital architecture and the rotation of their host star, as is also the case in the tight planet-satellite systems of our solar system such as the Jovian and Saturnian systems. The characteristic times of variation of orbital parameters and bodies’ rotation are dictated by the magnitude of tidal dissipation, which varies considerably with the mass, rotation and metallicity of stars and with the structure and internal dynamics of stars and planets.In order to model and realistically characterise the tidal dissipation in the convective envelopes of these astrophysical objects, two key physical mechanisms are studied in this thesis : differential rotation and magnetism, through their influence on tidal flows in convective regions. These two aspects are explored using semi-analytical and numerical approaches, while applying our results inside stars during their evolution, and gas giant planets such as Jupiter and Saturn.First of all, we have been interested in the impact of magnetism on the excitation and dissipation of tidal magneto-inertial waves along the evolution of low-mass stars of spectral type M to F, by examining the limits of their convective envelope, i.e. the interface between the radiative and convective zones and the regions close to their surface. To do so, we have used in synergy tidal wave physics, the scaling laws from dynamo theory that allow us to estimate the amplitude of a large-scale magnetic field, and the grids of numerical models of stellar evolution taking into account rotation. We thus show that the contribution of magnetism on tidal forcing, i.e. on wave excitation, remains negligible compared to the hydrodynamic contribution classically used, whatever the position in the convective envelope, the mass, or the age of the studied low mass star. On the other hand, the Ohmic dissipation mechanism of magneto-inertial waves is a very efficient mechanism, even preponderant in front of the viscous dissipation, for M to F type stars, from the pre-main sequence to the end of the main sequence, in all their convective envelope. These results also apply in the case of Jupiter and its Galilean satellites.In parallel to this work, we have developed a local shear-box model, inclined with respect to the axis ofrotation of the studied body, in order to understand the complex interaction between tidal inertial waves and zonal flows in the vicinity of critical layers, and in particular at the corotation resonance, which are regions where the tidal wave frequency vanishes or is commensurable with the local rotation frequency of the considered body. This model has allowed us to study the impact of different realistic rotation profiles, such as those observed in solar-type stars, or in giant planets such as Jupiter and Saturn. Thanks to this work, we have identified different transmission regimes of the wave energy flux, for which the wave can, in the vicinity of a critical layer, either deposit energy and be damped, or extract energy from the mean flow and thus be amplified. These different transmission regimes exist for each of the examined conical and cylindrical rotational profiles, and depend on the critical level encountered, the wave properties and the mean flow profile
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kulick, Wayne J. "Development of a Control Moment Gyroscope controlled, three axis satellite simulator, with active balancing for the bifocal relay mirror initiative." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FKulick.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

LOYER, SYLVAIN. "Techniques dynamiques d'observation de la rotation de la terre mesures satellites et apports des gravimetres et des gyroscopes." Toulouse 3, 1997. http://www.theses.fr/1997TOU30269.

Повний текст джерела
Анотація:
Les variations de l'orientation de la terre dans l'espace sont aujourd'hui mesurees par differentes techniques astrometriques ; radio-interferometrie a tres longue base, tirs lasers sur la lune, et mesures de positionnement des satellites artificiels. Les parametres de rotation de la terre, utilises pour decrire les variations d'orientation sont determines avec une precision inferieure a 1 milliseconde de degre, et une resolution temporelle de 1 jour. Nous presentons les resultats de mesure des variations a courte periode de l'orientation (variations diurnes et subdiurnes) et nous montrons comment ces mesures permettent d'obtenir une description complete des variations du vecteur instantane de rotation de la terre. Cette etape est indispensable pour modeliser les observations obtenues par les instruments inertiels (qui sont sensibles aux variations du vecteur instantane de rotation). Nous etudions dans cette these l'apport des gravimetres supraconducteurs et des gyroscopes a la mesure de la rotation terrestre. L'utilisation conjointe de mesures classiques d'orientation et de mesures gravimetriques nous conduit a la determination des effets de non-rigidite de la terre. Les resultats obtenus a partir des mesures gravimetriques demontrent l'interet des gyroscopes qui sont, eux, des instruments inertiels specifiquement dedies aux mesures des variations de la rotation terrestre. Apres la presentation des realisations historiques et recentes des gyroscopes, nous etudions leurs futures applications astrometriques et geodesiques.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coulot, David. "Télémétrie laser sur satellites et combinaison de techniques géodésiques : contributions aux systèmes de référence terrestres et applications." Phd thesis, Observatoire de Paris, 2005. http://tel.archives-ouvertes.fr/tel-00069016.

Повний текст джерела
Анотація:
La qualité actuelle des techniques de Géodésie Spatiale permet d'estimer des séries temporelles de produits géodésiques tels que les paramètres de rotation et les positions de stations terrestres. Ces nouveaux produits doivent être utilisés dans la matérialisation des Systèmes de Référence Terrestres, en constantes évolution et amélioration. Ils doivent aussi mettre en évidence les phénomènes, globaux ou locaux, régissant la rotation terrestre et les mouvements de la croûte. C'est dans ce contexte riche d'enjeux divers que s'inscrivent ces travaux. Leur but premier a été l'élaboration et l'application d'une méthode d'estimation de séries temporelles de positions de stations et de paramètres de rotation de la Terre par l'analyse de données de télémétrie laser sur satellites. Cette technique est en effet une des clefs de voûte du Repère de Référence Terrestre International (ITRF). En guise de validation de cette méthode, douze ans de données (1993-2004) sur les deux satellites LAGEOS ont été traités et analysés. Si les techniques géodésiques présentent certes des forces individuellement, c'est dans leur combinaison qu'elles montrent réellement toutes leurs potentialités. À ce titre, le Groupe de Recherche en Géodésie Spatiale (GRGS) a mené une expérience de combinaison de cinq techniques géodésiques (SLR/LLR/GPS/DORIS/VLBI) au niveau des observations sur l'année 2002. J'ai activement participé à cette expérience dont le but principal était de démontrer la force d'une telle approche pour la détermination de séries temporelles de coordonnées du pôle et du Temps Universel.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Coulot, David. "Télémétrie laser sur satellites et combinaison de techniques géodésiques : contributions aux systèmes de référence terrestres et applications." Phd thesis, Observatoire de Paris (1667-....), 2005. https://theses.hal.science/tel-00069016.

Повний текст джерела
Анотація:
La qualité actuelle des techniques de géodésie spatiale permet d'estimer des séries temporelles de produits géodésiques tels que les paramètres de rotation et les positions de stations terrestres. Ces nouveaux produits doivent être utilisés dans la matérialisation des systèmes de référence terrestres, en constantes évolution et amélioration. Ils doivent aussi mettre en évidence les phénomènes, globaux ou locaux, régissant la rotation terrestre et les mouvements de la croûte. C’est dans ce contexte riche d’enjeux divers que s’inscrivent ces travaux. Leur but premier a été l’élaboration et l’application d’une méthode d’estimation de séries temporelles de positions de stations et de paramètres de rotation de la terre par l’analyse de données de télémétrie laser sur satellites. Cette technique est en effet une des clefs de voûte du repère de référence terrestre international(ITRF). En guise de validation de cette méthode, douze ans de données (1993-2004) sur les deux satellites LAGEOS ont été traités et analysés. Si les techniques géodésiques présentent certes des forces individuellement, c’est dans leur combinaison qu’elles montrent réellement toutes leur potentialités. A ce titre, le Groupe de recherche en géodésie spatiale (GRGS) a mené une expérience de combinaison de cinq techniques géodésiques (SLR/LLR/DORIS/VLBI) au niveau des observations sur l’année 2002. J'ai activement participé à cette expérience dont le but principal était de démontrer la force d’une telle approche pour la détermination de séries temporelles de coordonnées du pôle et du temps universel.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Satellites en Rotation"

1

A, Arnold David, Grossi Mario D, Gullahorn Gordon E, and United States. National Aeronautics and Space Administration, eds. The investigation of tethered satellite system dynamics: Quarterly report, #7 for the period 15 February 1986 through 14 May 1986. Cambridge, Mass: Smithsonian Institution, Astrophysical Observatory, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Belet͡skiĭ, V. V. Vrashchatelʹnoe dvizhenie namagnichennogo sputnika. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

United States. National Aeronautics and Space Administration., ed. Ocean tide models for satellite geodesy and earth rotation: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Grazzini, Francesca. Sun, where do you go? Brooklyn, N.Y: Kane/Miller Book Publishers, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stewart, Melissa. Why do seasons change? New York: Marshall Cavendish Benchmark, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Langel, R. A. The magnetic field of the Earth's lithosphere: The satellite perspective. Cambridge, U.K: Cambridge University Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Slade, Suzanne. Seasonal cycles. New York: Rosen Pub. Group's PowerKids Press, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rau, Dana Meachen. El tiempo y el espacio. Tarrytown, N.Y: Marshall Cavendish Benchmark, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rau, Dana Meachen. Space and time. New York: Marshall Cavendish Benchmark, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

E, Davies Merton, Rogers Patricia G, and United States. National Aeronautics and Space Administration., eds. Phoebe: Preliminary control network and rotational elements. [Santa Monica, Calif.?: Rand, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Satellites en Rotation"

1

Lieske, J. H. "IAU North Poles and Rotation Parameters for Natural Satellites." In Developments in Astrometry and Their Impact on Astrophysics and Geodynamics, 351–56. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1711-1_65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lainey, V., and A. Vienne. "Rotation of Natural Shaped Satellites and Their Orbital Motion." In Modern Celestial Mechanics: From Theory to Applications, 407–10. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2304-6_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hussmann, Hauke, Gaël Choblet, Valéry Lainey, Dennis L. Matson, Christophe Sotin, Gabriel Tobie, and Tim Van Hoolst. "Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites." In Satellites of the Outer Solar System, 315–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7439-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Moon, Wooil M., Roger Tang, and B. H. Choi. "Study of fluid-solid earth coupling process using satellite altimeter data." In Variations in Earth Rotation, 85–110. Washington, D. C.: American Geophysical Union, 1990. http://dx.doi.org/10.1029/gm059p0085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Jiahao, Ming Zhang, Zuoliang Yin, Zhian Deng, and Weijian Si. "WiFi CSI Fingerprinting Positioning Based on User Rotation." In Wireless and Satellite Systems, 265–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19153-5_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Svehla, Drazen. "Insight into the Earth’s Interior from Geometrical Rotations in Temporal Gravity Field Maps and Earth’s Rotation." In Geometrical Theory of Satellite Orbits and Gravity Field, 447–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76873-1_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Svehla, Drazen. "A Geometrical Approach to Model Circular Rotations." In Geometrical Theory of Satellite Orbits and Gravity Field, 363–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76873-1_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bois, E. "Analytical Theory of the Rotation of an Artificial Satellite." In Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems, 149–54. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3053-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Guiming, Zhihui Li, Rui Liu, Jianfu Zhang, Yushuang Wang, and Ao Chen. "Layout Design of Satellite Star Sensor Fixed to Rotation Platform." In Lecture Notes in Electrical Engineering, 6889–99. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6613-2_664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lara, Martin. "Collinear Point Dynamics of a Dumbbell Satellite in Fast Rotation." In NODYCON Conference Proceedings Series, 513–23. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50631-4_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Satellites en Rotation"

1

He, Jie, Jianjun Yi, and Lelun Xu. "Non-cooperative Satellite Rotation Estimation Based on Monocular Vision." In 2024 4th Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), 277–82. IEEE, 2024. http://dx.doi.org/10.1109/acctcs61748.2024.00056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Yangfan, Yanan Guo, Huanyu Bian, Benkui Zhang, Kangning Du, Ying Xie, and Lin Cao. "Rotation correction-based neural radiance fields for multiview satellite images." In Optoelectronic Imaging and Multimedia Technology XI, edited by Zhenrong Zheng and Jinli Suo, 60. SPIE, 2024. http://dx.doi.org/10.1117/12.3037382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Faieta, Matteo, Federico Masiero, Alessandro Niccolai, and Riccardo Zich. "Evolutionary Optimization of Reflectarrays with Steering Beam by Feeder Rotation for Satellite Antennas." In IAF Space Communications and Navigation Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 615–20. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078363-0063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Jiahao, Hui Zhao, Mingyang Yang, and Xuewu Fan. "High-resolution rotating pupil optical imaging for satellite remote sensing." In Optoelectronic Imaging and Multimedia Technology XI, edited by Zhenrong Zheng and Jinli Suo, 19. SPIE, 2024. http://dx.doi.org/10.1117/12.3036296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lukaschek, Leon, Vijay Nagalingesh, Lisa Elsner, Alexander Kleinschrodt, Marco Schmidt, and Klaus Schilling. "Algorithmic Center of Rotation to Center of Mass Offset Estimation of a Spherical Air-Breaing Attitude Simulator." In 31st IAA Symposium on Small Satellite Missions, Held at the 75th International Astronautical Congress (IAC 2024), 1726–38. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078365-0187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Wenhui, Yong Li, Jianfeng Wang, and Daifang Huang. "Observability of INS/OD Integration with Rotating MEMS IMU: A Global Perspective." In 37th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2024), 1559–65. Institute of Navigation, 2024. http://dx.doi.org/10.33012/2024.19775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fan, Chengcheng, and Guopeng Ding. "Key techniques for full-link error characteristics analysis and on-orbit calibration of rotating imaging satellite." In Advanced Optical Imaging Technologies VII, edited by P. Scott Carney, Xiao-Cong Yuan, and Kebin Shi, 19. SPIE, 2024. http://dx.doi.org/10.1117/12.3030003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lalović, Ana, Milena Jovanović, Sladjana Knežević, and Srdjan Samurović. "SPECIFIC ANGULAR MOMENTUM CORRELATION WITH THE NUMBER OF SATELLITES." In XX Serbian Astronomical Conference, 67–72. Belgrade, Serbia: Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia, 2024. https://doi.org/10.69646/aob104p067.

Повний текст джерела
Анотація:
Abstract. The number of satellites is correlated with the mass of the galaxy bulge and bulge-to-total ratio, indicating that the origin of satellites might be related to the mechanism responsible for bulge creation/growth. In this work, we have found that specific angular momentum correlates positively with the number of satellites for a sample of six nearby galaxies for which we have a complete census of the satellite population. Contrary to our previous work where we found a negative correlation using an approximate formula for specific angular momentum, in this work we have measured specific angular momentum more thoroughly: using both rotation curve data and galaxy mass distribution in the near infrared. Disagreement can be explained by the difference between approximate and more accurate measurements of angular momentum.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yamanaka, Koji. "Simultaneous translation and rotation control law for formation flying satellites." In AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-4440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chelaru, Teodor-Viorel, Barbu Cristian, and Adrian Chelaru. "Mathematical model for small satellites, using rotation angles and optimal control synthesis." In 2011 5th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2011. http://dx.doi.org/10.1109/rast.2011.5966874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії