Добірка наукової літератури з теми "RNN NETWORK"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "RNN NETWORK".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "RNN NETWORK"
Yin, Qiwei, Ruixun Zhang, and XiuLi Shao. "CNN and RNN mixed model for image classification." MATEC Web of Conferences 277 (2019): 02001. http://dx.doi.org/10.1051/matecconf/201927702001.
Повний текст джерелаTridarma, Panggih, and Sukmawati Nur Endah. "Pengenalan Ucapan Bahasa Indonesia Menggunakan MFCC dan Recurrent Neural Network." JURNAL MASYARAKAT INFORMATIKA 11, no. 2 (November 17, 2020): 36–44. http://dx.doi.org/10.14710/jmasif.11.2.34874.
Повний текст джерелаMa, Qianli, Zhenxi Lin, Enhuan Chen, and Garrison Cottrell. "Temporal Pyramid Recurrent Neural Network." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5061–68. http://dx.doi.org/10.1609/aaai.v34i04.5947.
Повний текст джерелаMosavat, Majid, and Guido Montorsi. "Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology Using Recurrent Neural Network." Electronics 11, no. 19 (September 29, 2022): 3130. http://dx.doi.org/10.3390/electronics11193130.
Повний текст джерелаDu, Xiuli, Xiaohui Ding, and Fan Tao. "Network Security Situation Prediction Based on Optimized Clock-Cycle Recurrent Neural Network for Sensor-Enabled Networks." Sensors 23, no. 13 (July 1, 2023): 6087. http://dx.doi.org/10.3390/s23136087.
Повний текст джерелаChoi, Seongjin, Hwasoo Yeo, and Jiwon Kim. "Network-Wide Vehicle Trajectory Prediction in Urban Traffic Networks using Deep Learning." Transportation Research Record: Journal of the Transportation Research Board 2672, no. 45 (September 7, 2018): 173–84. http://dx.doi.org/10.1177/0361198118794735.
Повний текст джерелаNowak, Mateusz P., and Piotr Pecka. "Routing Algorithms Simulation for Self-Aware SDN." Electronics 11, no. 1 (December 29, 2021): 104. http://dx.doi.org/10.3390/electronics11010104.
Повний текст джерелаMuhuri, Pramita Sree, Prosenjit Chatterjee, Xiaohong Yuan, Kaushik Roy, and Albert Esterline. "Using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks." Information 11, no. 5 (May 1, 2020): 243. http://dx.doi.org/10.3390/info11050243.
Повний текст джерелаParamasivan, Senthil Kumar. "Deep Learning Based Recurrent Neural Networks to Enhance the Performance of Wind Energy Forecasting: A Review." Revue d'Intelligence Artificielle 35, no. 1 (February 28, 2021): 1–10. http://dx.doi.org/10.18280/ria.350101.
Повний текст джерелаYan, Jiapeng, Huifang Kong, and Zhihong Man. "Recurrent Neural Network-Based Nonlinear Optimization for Braking Control of Electric Vehicles." Energies 15, no. 24 (December 14, 2022): 9486. http://dx.doi.org/10.3390/en15249486.
Повний текст джерелаДисертації з теми "RNN NETWORK"
Bäärnhielm, Arvid. "Multiple time-series forecasting on mobile network data using an RNN-RBM model." Thesis, Uppsala universitet, Datalogi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-315782.
Повний текст джерелаVikström, Filip. "A recurrent neural network approach to quantification of risks surrounding the Swedish property market." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-126192.
Повний текст джерелаBillingsley, Richard John. "Deep Learning for Semantic and Syntactic Structures." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12825.
Повний текст джерелаLiu, Chang. "Data Analysis of Minimally-Structured Heterogeneous Logs : An experimental study of log template extraction and anomaly detection based on Recurrent Neural Network and Naive Bayes." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191334.
Повний текст джерелаLi, Edwin. "LSTM Neural Network Models for Market Movement Prediction." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231627.
Повний текст джерелаAtt förstå och kunna förutsäga hur index varierar med tiden och andra parametrar är ett viktigt problem inom kapitalmarknader. Tidsserieanalys med autoregressiva metoder har funnits sedan årtionden tillbaka, och har oftast gett goda resultat. Dessa metoder saknar dock möjligheten att förklara trender och cykliska variationer i tidsserien, något som kan karaktäriseras av tidsvarierande samband, men även samband mellan parametrar som indexet beror utav. Syftet med denna studie är att undersöka om recurrent neural networks (RNN) med long short-term memory-celler (LSTM) kan användas för att fånga dessa samband, för att slutligen användas som en modell för att komplettera indexhandel. Experimenten är gjorda mot en modifierad S&P-500 datamängd, och två distinkta modeller har tagits fram. Den ena är en multivariat regressionsmodell för att förutspå exakta värden, och den andra modellen är en multivariat klassifierare som förutspår riktningen på nästa dags indexrörelse. Experimenten visar för den konfiguration som presenteras i rapporten att LSTM RNN inte passar för att förutspå exakta värden för indexet, men ger tillfredsställande resultat när modellen ska förutsäga indexets framtida riktning.
Ďuriš, Denis. "Detekce ohně a kouře z obrazového signálu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412968.
Повний текст джерелаRacette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.
Повний текст джерелаCarman, Benjamin Andrew. "Translating LaTeX to Coq: A Recurrent Neural Network Approach to Formalizing Natural Language Proofs." Ohio University Honors Tutorial College / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors161919616626269.
Повний текст джерелаLjungehed, Jesper. "Predicting Customer Churn Using Recurrent Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210670.
Повний текст джерелаIllojalitet prediktering används för att identifiera kunder som är påväg att bli mindre lojala och är ett hjälpsamt verktyg för att ett företag ska kunna driva en konkurrenskraftig verksamhet. I detaljhandel behöves en dynamisk definition av illojalitet för att korrekt kunna identifera illojala kunder. Kundens livstidsvärde är ett mått på monetärt värde av en kundrelation. En avstannad förändring av detta värde indikerar en minskning av kundens lojalitet. Denna rapport föreslår en ny metod för att utföra illojalitet prediktering. Den föreslagna metoden består av ett återkommande neuralt nätverk som används för att identifiera illojalitet hos kunder genom att prediktera kunders livstidsvärde. Resultaten visar att den föreslagna modellen presterar bättre jämfört med slumpmässig metod. Rapporten undersöker också användningen av en k-medelvärdesalgoritm som ett substitut för en regelextraktionsalgoritm. K-medelsalgoritm bidrog till en mer omfattande analys av illojalitet predikteringen.
Смішний, Денис Миколайович. "Система прогнозування економічних показників". Master's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/30950.
Повний текст джерелаMaster's Thesis: 88 pp., 20 figs., 27 tables, 1 appendix, 33 sources. The urgency of the problem. Globalization and population growth are con-tributing to the development of the global economy and, consequently, to the emergence of new types of economic activity and new players in the labor market. When implementing your own business it is important to properly evaluate the risks of the market, analyzing and trying to predict the movement of quotations in the near future for minimal financial losses. Relationship with working with scientific programs, plans, topics. Cur-rently, it has no specific links to scientific programs or plans. The purpose and objectives of the study. The purpose of this work is re-search possibility of forecasting the economic parameters of enterprises on the ex-ample of stock prices of companies on the stock exchange. The purpose is to de-velop a system based on a neural network, capable of analyzing specified economic indicators and, based on the data obtained, to predict their dynamics. Object of study. The process of forecasting economic performance using neural network elements. Subject of study. Methods of analysis and processing of economic data for a certain period. Novelty. Obtaining a software product capable of predicting economic fluc-tuations. Investigation of the possibility of creating a universal model based on a neural network, which would not require specialization and would be able to work effectively with any set of input data without further training.
Книги з теми "RNN NETWORK"
Collins, Lesley J. RNA infrastructure and networks. New York, N.Y: Springer Science+Business Media, 2011.
Знайти повний текст джерелаNational Education Association of the United States. Professional and Organizational Development. and National Education Association of the United States. Research Division., eds. Research computer network: Operators handbook. Washington, D.C: The Association, 1989.
Знайти повний текст джерелаCollins, Lesley J., ed. RNA Infrastructure and Networks. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0332-6.
Повний текст джерелаMaselnikova, Alice. The AIM Network: Artists' Initiatives Meetings. Stockholm: AIM Network/Supermarket, 2017.
Знайти повний текст джерелаYawen, Xiao, ed. Chao you xiao lian shu ji ke shu: Bu hua qian jiu neng ju ji liu lan ren chao de jing ren fang fa. Taibei Shi: Tian xia za zhi gu fen you xian gong si, 2012.
Знайти повний текст джерелаPeng, Mugen, Zhongyuan Zhao, and Yaohua Sun. Fog Radio Access Networks (F-RAN). Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50735-0.
Повний текст джерелаZhongguo ren mai. Beijing Shi: Shi jie zhi shi chu ban she, 2010.
Знайти повний текст джерелаWang: Zhangguo shi ren mai = The network : relationship in China. Wuhan: Wuhan da xue chu ban she, 2006.
Знайти повний текст джерелаShanghai zheng da yan jiu suo, ed. Xin Shanghai ren. Beijing: Dong fang chu ban she, 2002.
Знайти повний текст джерелаRen gong shen jing wang luo ji chu. Ha'erbin: Ha'erbin gong cheng da xue chu ban she, 2008.
Знайти повний текст джерелаЧастини книг з теми "RNN NETWORK"
Das, Susmita, Amara Tariq, Thiago Santos, Sai Sandeep Kantareddy, and Imon Banerjee. "Recurrent Neural Networks (RNNs): Architectures, Training Tricks, and Introduction to Influential Research." In Machine Learning for Brain Disorders, 117–38. New York, NY: Springer US, 2012. http://dx.doi.org/10.1007/978-1-0716-3195-9_4.
Повний текст джерелаYellin, Daniel M., and Gail Weiss. "Synthesizing Context-free Grammars from Recurrent Neural Networks." In Tools and Algorithms for the Construction and Analysis of Systems, 351–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72016-2_19.
Повний текст джерелаKobayashi, Naoki, and Minchao Wu. "Neural Network-Guided Synthesis of Recursive List Functions." In Tools and Algorithms for the Construction and Analysis of Systems, 227–45. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30823-9_12.
Повний текст джерелаKanumuri, Saketh, Vinay Teja Kantipudi, A. Viji Amutha Mary, and Mercy Paul Selvan. "Detection of Ransomware Based on Recurrent Neural Network (RNN)." In Lecture Notes in Electrical Engineering, 569–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7511-2_57.
Повний текст джерелаJayashree, D., O. Pandithurai, S. Shreevathsav, and P. Shyamala. "Generation of Handwriting Applying RNN with Mixture Density Network." In Advances in Automation, Signal Processing, Instrumentation, and Control, 2593–601. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8221-9_241.
Повний текст джерелаAl Mamun, S. M. Abdullah, and Mehmet Beyaz. "LSTM Recurrent Neural Network (RNN) for Anomaly Detection in Cellular Mobile Networks." In Machine Learning for Networking, 222–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19945-6_15.
Повний текст джерелаJi, Jinbao, Zongxiang Hu, Weiqi Zhang, and Sen Yang. "Development of Deep Learning Algorithms, Frameworks and Hardwares." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 696–710. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_71.
Повний текст джерелаJin, Jialong, Wei Zhou, and Baichen Jiang. "Maritime Target Trajectory Prediction Model Based on the RNN Network." In Lecture Notes in Electrical Engineering, 334–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0187-6_39.
Повний текст джерелаLiu, Enhan, Yan Chu, Lan Luan, Guang Li, and Zhengkui Wang. "Mixing-RNN: A Recommendation Algorithm Based on Recurrent Neural Network." In Knowledge Science, Engineering and Management, 109–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29551-6_10.
Повний текст джерелаWang, Qi. "RNN Neural Network for Recovery Characteristic System of Resistant Polymer." In 2021 International Conference on Applications and Techniques in Cyber Intelligence, 725–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79200-8_108.
Повний текст джерелаТези доповідей конференцій з теми "RNN NETWORK"
Ghodsi, Mohammadreza, Xiaofeng Liu, James Apfel, Rodrigo Cabrera, and Eugene Weinstein. "Rnn-Transducer with Stateless Prediction Network." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054419.
Повний текст джерелаTseng, Yung-Chiao, Chao-Chun Chen, Chiang Lee, and Yuan-Ko Huang. "Incremental In-Network RNN Search in Wireless Sensor Networks." In 2007 International Conference on Parallel Processing Workshops (ICPPW 2007). IEEE, 2007. http://dx.doi.org/10.1109/icppw.2007.47.
Повний текст джерелаPark, Shin Hyuk, Hyun Jae Park, and Young-June Choi. "RNN-based Prediction for Network Intrusion Detection." In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2020. http://dx.doi.org/10.1109/icaiic48513.2020.9065249.
Повний текст джерелаVenturini, M. "Simulation of Compressor Transient Behavior Through Recurrent Neural Network Models." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68030.
Повний текст джерелаXia, Rui, Mengran Zhang, and Zixiang Ding. "RTHN: A RNN-Transformer Hierarchical Network for Emotion Cause Extraction." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/734.
Повний текст джерелаLi, Xuelong, Bin Zhao, and Xiaoqiang Lu. "MAM-RNN: Multi-level Attention Model Based RNN for Video Captioning." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/307.
Повний текст джерелаLyu, Muyang, Ruixuan Liu, and Junyi Wang. "Solving Raven's Progressive Matrices Using RNN Reasoning Network." In 2022 7th International Conference on Computational Intelligence and Applications (ICCIA). IEEE, 2022. http://dx.doi.org/10.1109/iccia55271.2022.9828445.
Повний текст джерелаLi, Dailun, Zeying Tian, and Yining Duan. "Self-attention on RNN-based text classification." In International Conference on Computer Network Security and Software Engineering (CNSSE 2022), edited by Wenshun Sheng and Yongquan Yan. SPIE, 2022. http://dx.doi.org/10.1117/12.2641031.
Повний текст джерелаNam, Sukhyun, Jiyoon Lim, Jae-Hyoung Yoo, and James Won-Ki Hong. "Network Anomaly Detection Based on In-band Network Telemetry with RNN." In 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia). IEEE, 2020. http://dx.doi.org/10.1109/icce-asia49877.2020.9276768.
Повний текст джерелаLuo, Donghao, Bingbing Ni, Yichao Yan, and Xiaokang Yang. "Image Matching via Loopy RNN." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/335.
Повний текст джерелаЗвіти організацій з теми "RNN NETWORK"
Brooks, Richard. Reactive Sensor Networks (RSN). Fort Belvoir, VA: Defense Technical Information Center, October 2003. http://dx.doi.org/10.21236/ada419219.
Повний текст джерелаAllende López, Marcos, Diego López, Sergio Cerón, Antonio Leal, Adrián Pareja, Marcelo Da Silva, Alejandro Pardo, et al. Quantum-Resistance in Blockchain Networks. Inter-American Development Bank, June 2021. http://dx.doi.org/10.18235/0003313.
Повний текст джерелаYeates, Jessica. The Foundations of Network Dynamics in an RNA Recombinase System. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2915.
Повний текст джерелаRobert, J., and Michael Forte. Field evaluation of GNSS/GPS based RTK, RTN, and RTX correction systems. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41864.
Повний текст джерелаCiobanu, Catalin Irinel. A Neural networks search for single top quark production in CDF Run I data. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/1420934.
Повний текст джерелаHotsur, Oksana. SOCIAL NETWORKS AND BLOGS AS TOOLS PR-CAMPAIGN IMPLEMENTATIONS. Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11110.
Повний текст джерелаFarhi, Edward, and Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, December 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Повний текст джерелаELECTRONIC SYSTEMS CENTER HANSCOM AFB MA. Environmental Assessment Ground Wave Emergency Network for Northwestern Indiana Relay Node Site NO. RN 8C902IN. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada267849.
Повний текст джерелаELECTRONIC SYSTEMS CENTER HANSCOM AFB MA. Ground Wave Emergency Network Final Operational Capability: Environmental Assessment for Central Utah Relay Node, Site Number RN 8C920UT. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada267628.
Повний текст джерелаELECTRONIC SYSTEMS CENTER HANSCOM AFB MA. Ground Wave Emergency Network Final Operational Capability: Environmental Assessment for Northwestern Nebraska Relay Node, Site Number RN 8C930NE. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada267629.
Повний текст джерела