Добірка наукової літератури з теми "Riemannian and barycentric geometry"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Riemannian and barycentric geometry".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Riemannian and barycentric geometry"
Pihajoki, Pauli, Matias Mannerkoski, and Peter H. Johansson. "Barycentric interpolation on Riemannian and semi-Riemannian spaces." Monthly Notices of the Royal Astronomical Society 489, no. 3 (September 2, 2019): 4161–69. http://dx.doi.org/10.1093/mnras/stz2447.
Повний текст джерелаMiranda Jr., Gastão F., Gilson Giraldi, Carlos E. Thomaz, and Daniel Millàn. "Composition of Local Normal Coordinates and Polyhedral Geometry in Riemannian Manifold Learning." International Journal of Natural Computing Research 5, no. 2 (April 2015): 37–68. http://dx.doi.org/10.4018/ijncr.2015040103.
Повний текст джерелаSabatini, Luca. "Volume Comparison in the presence of a Gromov-Hausdorff ε−approximation II". Annals of West University of Timisoara - Mathematics and Computer Science 56, № 1 (1 липня 2018): 99–135. http://dx.doi.org/10.2478/awutm-2018-0008.
Повний текст джерелаWu, H., and Wilhelm Klingenberg. "Riemannian Geometry." American Mathematical Monthly 92, no. 7 (August 1985): 519. http://dx.doi.org/10.2307/2322529.
Повний текст джерелаLord, Nick, M. P. do Carmo, S. Gallot, D. Hulin, J. Lafontaine, I. Chavel, and D. Martin. "Riemannian Geometry." Mathematical Gazette 79, no. 486 (November 1995): 623. http://dx.doi.org/10.2307/3618122.
Повний текст джерелаMrugała, R. "Riemannian geometry." Reports on Mathematical Physics 27, no. 2 (April 1989): 283–85. http://dx.doi.org/10.1016/0034-4877(89)90011-6.
Повний текст джерелаM.Osman, Mohamed. "Differentiable Riemannian Geometry." International Journal of Mathematics Trends and Technology 29, no. 1 (January 25, 2016): 45–55. http://dx.doi.org/10.14445/22315373/ijmtt-v29p508.
Повний текст джерелаDimakis, Aristophanes, and Folkert Müller-Hoissen. "Discrete Riemannian geometry." Journal of Mathematical Physics 40, no. 3 (March 1999): 1518–48. http://dx.doi.org/10.1063/1.532819.
Повний текст джерелаBeggs, Edwin J., and Shahn Majid. "Poisson–Riemannian geometry." Journal of Geometry and Physics 114 (April 2017): 450–91. http://dx.doi.org/10.1016/j.geomphys.2016.12.012.
Повний текст джерелаStrichartz, Robert S. "Sub-Riemannian geometry." Journal of Differential Geometry 24, no. 2 (1986): 221–63. http://dx.doi.org/10.4310/jdg/1214440436.
Повний текст джерелаДисертації з теми "Riemannian and barycentric geometry"
Farina, Sofia. "Barycentric Subspace Analysis on the Sphere and Image Manifolds." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15797/.
Повний текст джерелаLord, Steven. "Riemannian non-commutative geometry /." Title page, abstract and table of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phl8661.pdf.
Повний текст джерелаMaignant, Elodie. "Plongements barycentriques pour l'apprentissage géométrique de variétés : application aux formes et graphes." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4096.
Повний текст джерелаAn MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000 amino acids. We call such data high-dimensional. In practice, most high-dimensional data is high-dimensional only artificially. For example, of all the images that could be randomly generated by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional data is often synonymous with dimensionality reduction. There are numerous methods for reducing the dimension of a dataset, the most recent of which can be classified according to two approaches.A first approach known as manifold learning or non-linear dimensionality reduction is based on the observation that some of the physical laws behind the data we observe are non-linear. In this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes unrealistic. Instead, manifold learning methods assume a locally linear model.Moreover, with the emergence of statistical shape analysis, there has been a growing awareness that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations, permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing interest in modeling such data using finer structures such as Riemannian manifolds. A second recent approach to dimension reduction consists then in generalizing existing methods to non-Euclidean data. This is known as geometric learning.In order to combine both geometric learning and manifold learning, we investigated the method called locally linear embedding, which has the specificity of being based on the notion of barycenter, a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In fact, the method called barycentric subspace analysis, which is one of those generalizing principal component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings inherit the structure of most linear and non-linear dimension reduction methods, but rely on a (locally) barycentric -- affine -- model rather than a linear one.The core of our work lies in the analysis of these methods, both on a theoretical and practical level. In particular, we address the application of barycentric embeddings to two important examples in geometric learning: shapes and graphs. In addition to practical implementation issues, each of these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces. In particular, we highlight that compared to standard dimension reduction methods in graph analysis, barycentric embeddings stand out for their better interpretability. In parallel with these examples, we characterize the geometry of locally barycentric embeddings, which generalize the projection computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in their approach, complete this work
Lidberg, Petter. "Barycentric and harmonic coordinates." Thesis, Uppsala universitet, Algebra och geometri, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179487.
Повний текст джерелаHall, Stuart James. "Numerical methods and Riemannian geometry." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538692.
Повний текст джерелаFerreira, Ana Cristina Castro. "Riemannian geometry with skew torsion." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526550.
Повний текст джерелаWu, Bao Qiang. "Geometry of complete Riemannian Submanifolds." Lyon 1, 1998. http://www.theses.fr/1998LYO10064.
Повний текст джерелаBoarotto, Francesco. "Topics in sub-Riemannian geometry." Doctoral thesis, SISSA, 2016. http://hdl.handle.net/20.500.11767/4881.
Повний текст джерелаPalmer, Ian Christian. "Riemannian geometry of compact metric spaces." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34744.
Повний текст джерелаRaineri, Emanuele. "Quantum Riemannian geometry of finite sets." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414738.
Повний текст джерелаКниги з теми "Riemannian and barycentric geometry"
Gallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-97242-3.
Повний текст джерелаPetersen, Peter. Riemannian Geometry. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-6434-5.
Повний текст джерелаCarmo, Manfredo Perdigão do. Riemannian Geometry. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4757-2201-7.
Повний текст джерелаGallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18855-8.
Повний текст джерелаPetersen, Peter. Riemannian Geometry. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26654-1.
Повний текст джерелаGallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-97026-9.
Повний текст джерела1959-, Hulin D., and Lafontaine, J. 1944 Mar. 10-, eds. Riemannian geometry. Berlin: Springer-Verlag, 1987.
Знайти повний текст джерелаSakai, T. Riemannian geometry. Providence, R.I: American Mathematical Society, 1996.
Знайти повний текст джерелаRiemannian geometry. 2nd ed. Berlin: W. de Gruyter, 1995.
Знайти повний текст джерелаCarmo, Manfredo Perdigão do. Riemannian geometry. Boston: Birkhäuser, 1992.
Знайти повний текст джерелаЧастини книг з теми "Riemannian and barycentric geometry"
Bambi, Cosimo. "Riemannian Geometry." In Introduction to General Relativity, 85–105. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1090-4_5.
Повний текст джерелаConlon, Lawrence. "Riemannian Geometry." In Differentiable Manifolds, 293–348. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-2284-0_10.
Повний текст джерелаAubin, Thierry. "Riemannian Geometry." In Some Nonlinear Problems in Riemannian Geometry, 1–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-13006-3_1.
Повний текст джерелаKumaresan, S. "Riemannian Geometry." In A Course in Differential Geometry and Lie Groups, 232–80. Gurgaon: Hindustan Book Agency, 2002. http://dx.doi.org/10.1007/978-93-86279-08-8_5.
Повний текст джерелаGadea, P. M., and J. Muñoz Masqué. "Riemannian Geometry." In Analysis and Algebra on Differentiable Manifolds, 233–349. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3564-6_6.
Повний текст джерелаKoch, Helmut. "Riemannian geometry." In Introduction to Classical Mathematics I, 182–209. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3218-3_14.
Повний текст джерелаMcInerney, Andrew. "Riemannian Geometry." In Undergraduate Texts in Mathematics, 195–270. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7732-7_5.
Повний текст джерелаChow, Bennett, Peng Lu, and Lei Ni. "Riemannian geometry." In Hamilton’s Ricci Flow, 1–93. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/gsm/077/01.
Повний текст джерелаGadea, Pedro M., Jaime Muñoz Masqué, and Ihor V. Mykytyuk. "Riemannian Geometry." In Analysis and Algebra on Differentiable Manifolds, 343–546. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5952-7_6.
Повний текст джерелаHassani, Sadri. "Riemannian Geometry." In Mathematical Physics, 1143–77. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01195-0_37.
Повний текст джерелаТези доповідей конференцій з теми "Riemannian and barycentric geometry"
Moran, William, Stephen D. Howard, Douglas Cochran, and Sofia Suvorova. "Sensor management via riemannian geometry." In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2012. http://dx.doi.org/10.1109/allerton.2012.6483240.
Повний текст джерелаHadwiger, Markus, Thomas Theußl, and Peter Rautek. "Riemannian Geometry for Scientific Visualization." In SA '22: SIGGRAPH Asia 2022. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3550495.3558227.
Повний текст джерелаGMIRA, B., and L. VERSTRAELEN. "A CURVATURE INEQUALITY FOR RIEMANNIAN SUBMANIFOLDS IN A SEMI–RIEMANNIAN SPACE FORM." In Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0016.
Повний текст джерелаLenz, Reiner, Rika Mochizuki, and Jinhui Chao. "Iwasawa Decomposition and Computational Riemannian Geometry." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.1086.
Повний текст джерелаBejancu, Aurel. "Sub-Riemannian geometry and nonholonomic mechanics." In ALEXANDRU MYLLER MATHEMATICAL SEMINAR CENTENNIAL CONFERENCE. AIP, 2011. http://dx.doi.org/10.1063/1.3546072.
Повний текст джерелаChen, Guohua. "Digital Riemannian Geometry and Its Application." In International Conference on Advances in Computer Science and Engineering. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/cse.2013.63.
Повний текст джерелаBarachant, Alexandre, Stphane Bon, Marco Congedo, and Christian Jutten. "Common Spatial Pattern revisited by Riemannian geometry." In 2010 IEEE 12th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2010. http://dx.doi.org/10.1109/mmsp.2010.5662067.
Повний текст джерелаZeestraten, Martijn J. A., Ioannis Havoutis, Sylvain Calinon, and Darwin G. Caldwell. "Learning task-space synergies using Riemannian geometry." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8202140.
Повний текст джерелаShao, Hang, Abhishek Kumar, and P. Thomas Fletcher. "The Riemannian Geometry of Deep Generative Models." In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018. http://dx.doi.org/10.1109/cvprw.2018.00071.
Повний текст джерелаGordina, Maria. "Riemannian geometry of Diff(S1)/S1 revisited." In Proceedings of a Satellite Conference of ICM 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812791559_0002.
Повний текст джерела