Добірка наукової літератури з теми "RF communication systems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "RF communication systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "RF communication systems"

1

HALUŠKA, Renát, and Ľuboš OVSENÍK. "EXAMPLE OF SWITCHING HYBRID FSO/RF SYSTEMS." Acta Electrotechnica et Informatica 20, no. 4 (January 21, 2021): 27–31. http://dx.doi.org/10.15546/aeei-2020-0022.

Повний текст джерела
Анотація:
This article addresses the issue of optical communication with Free Space Optics (FSO) and its use. The article deals with the design and construction of a monitoring system designed for the collection and processing of data characterizing the nature of conditions along the transmission path of a hybrid FSO system with a radio communication link. Due to the vulnerability of the FSO transmission channel to weather conditions, it is necessary to predict the strength of the received signal and switch to a backup line based on machine learning using decision trees.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sorrentino, Roberto, Paola Farinelli, Alessandro Cazzorla, and Luca Pelliccia. "RF-MEMS Application to RF Tuneable Circuits." Advances in Science and Technology 100 (October 2016): 100–108. http://dx.doi.org/10.4028/www.scientific.net/ast.100.100.

Повний текст джерела
Анотація:
The bursting wireless communication market, including 5G, advanced satellite communication systems and COTM (Communication On The Move) terminals, require ever more sophisticated functions, from multi-band and multi-function operations to electronically steerable and reconfigurable antennas, pushing technological developments towards the use of tunable microwave components and circuits. Reconfigurability allows indeed for reduced complexity and cost of the apparatuses. In this context, RF MEMS (Micro-Electro-Mechanical-Systems) technology has emerged as a very attractive solution to realize both tunable devices (e.g. variable capacitors, inductors and micro-relays), as well as complex circuits (e.g. tunable filters, reconfigurable matching networks and reconfigurable beam forming networks for phased array antennas). High linearity, low loss and high miniaturization are the typical advantages of RF MEMS over conventional technologies. Micromechanical components fabricated via IC-compatible MEMS technologies and capable of low-loss filtering, switching and frequency generation allow for miniaturized wireless front-ends via higher levels of integration. In addition, the inherent high linearity of the MEMS switches enables carrier aggregations without introducing intermodulation distortions. This paper will review the recent advances in the development of the RF MEMS to RF tunable circuits and systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singhal, Ankita, Nishu Rani, Kritika Sengar, Dolly Sharma, Seema Verma, and Tanya Singh. "RF Communication from SISO Systems to MIMO Systems: An Overview." International Journal of Engineering Trends and Technology 8, no. 5 (February 25, 2014): 235–39. http://dx.doi.org/10.14445/22315381/ijett-v8p244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Raskin, Jean-Pierre. "FinFET and UTBB for RF SOI communication systems." Solid-State Electronics 125 (November 2016): 73–81. http://dx.doi.org/10.1016/j.sse.2016.07.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Springer, A., and R. Weigel. "RF microelectronics for W-CDMA mobile communication systems." Electronics & Communication Engineering Journal 14, no. 3 (June 1, 2002): 92–100. http://dx.doi.org/10.1049/ecej:20020301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Young, Darrin J. "Micromachining for rf Communications." MRS Bulletin 26, no. 4 (April 2001): 331–32. http://dx.doi.org/10.1557/mrs2001.74.

Повний текст джерела
Анотація:
The increasing demand for wireless communication applications, such as cellular and cordless telephones, wireless data networks, and global positioning systems, motivates a growing interest in building miniature radio transceivers that can support multistandard capabilities. Such transceivers will greatly enhance the convenience and accessibility of various wireless services.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Zhenyu, Anas Chaaban, and Lutz Lampe. "Physical layer security in light-fidelity systems." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2169 (March 2, 2020): 20190193. http://dx.doi.org/10.1098/rsta.2019.0193.

Повний текст джерела
Анотація:
Light-fidelity (LiFi) is a light-based wireless communication technology which can complement radio-frequency (RF) communication technologies for indoor applications. Although LiFi signals are spatially more contained than RF signals, the broadcasting nature of LiFi also makes it susceptible to eavesdropping. Therefore, it is important to secure the transmitted data against potential eavesdroppers. In this paper, an overview of the recent developments pertaining to LiFi physical layer security (PLS) is provided, and the main differences between LiFi PLS and RF PLS are explained. LiFi achievable secrecy rates and upper bounds are then investigated under practical channel models and transmission schemes. Beamforming and jamming, which received significant research attention recently as a means to achieve PLS in LiFi, are also investigated under indoor illumination constraints. Finally, future research directions of interest in LiFi PLS are identified and discussed. This article is part of the theme issue ‘Optical wireless communication’.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, H. Y. D. "Analysis of RF radiation interference on wireless communication systems." IEEE Antennas and Wireless Propagation Letters 2 (2003): 126–29. http://dx.doi.org/10.1109/lawp.2003.816634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sreenivasa Reddy, Yeduri, Meenakshi Panda, Ankit Dubey, Abhinav Kumar, Trilochan Panigrahi, and Khaled M. Rabie. "Optimisation of indoor hybrid PLC/VLC/RF communication systems." IET Communications 14, no. 1 (January 3, 2020): 117–26. http://dx.doi.org/10.1049/iet-com.2019.0665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eslami, Ali, Sarma Vangala, and Hossein Pishro-Nik. "Hybrid Channel Codes for Efficient FSO/RF Communication Systems." IEEE Transactions on Communications 58, no. 10 (October 2010): 2926–38. http://dx.doi.org/10.1109/tcomm.2010.082710.090195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "RF communication systems"

1

Cho, SeongHwan 1974. "Energy efficient RF communication systems for wireless microsensors." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29240.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.
Includes bibliographical references (p. 131-137).
Emerging distributed wireless microsensor networks will enable the reliable and fault tolerant monitoring of the environment. Microsensors are required to operate for years from a small energy source while maintaining a reliable communication link to the base station. In order to reduce the energy consumption of the sensor network, two aspects of the system design hierarchy are explored: design of the communication protocol and implementation of the RF transmitter. In the first part of the thesis, energy efficient communication protocols for a coordinated static sensor network are proposed. A detailed communication energy model, obtained from measurements, is introduced that incorporates the non-ideal behavior of the physical layer electronics. This includes the frequency errors and start-up energy costs of the radio, which dominate energy consumption for short packet, low duty cycle communication. Using this model, various communication protocols are proposed from an energy perspective, such as MAC protocols, bandwidth allocation methods and modulation schemes. In the second part of the thesis, design methodologies for an energy efficient transmitter are presented for a low power, fast start-up and high data rate radio.
(cont.) The transmitter is based on a [Epsilon]-[Delta] fractional-N synthesizer that exploits trade-offs between the analog and digital components to reduce the power consumption. The transmitter employs closed loop direct VCO modulation for high data rate FSK modulation and a variable loop bandwidth technique to achieve fast start-up time. A prototype transmitter that demonstrates these techniques is implemented using 0.25[mu]m CMOS. The test chip achieves 20[mu]s is start-up time with an effective data rate of 2.5Mbps while consuming 22mW.
by SeongHwan Cho.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

An, Kyu Hwan. "CMOS RF power amplifiers for mobile wireless communications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31717.

Повний текст джерела
Анотація:
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Laskar, Joy; Committee Member: Cressler, John; Committee Member: Kohl, Paul; Committee Member: Kornegay, Kevin; Committee Member: Tentzeris, Emmanouil. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Kuo-Hui. "RF beamformers for high-speed wireless communications." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/14768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

López, Méndez Joan Lluís. "Application of CMOS-MEMS integrated resonators to RF communication systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2009. http://hdl.handle.net/10803/5364.

Повний текст джерела
Анотація:
Els dispositius MEMS han demostrat la seva utilitat en un gran ventall d'aplicacions de sensat i actuació. L'extensió al domini de RF d'aquests elements mecànics són ara una de les peces clau per sistemes altament reconfigurables referències de freqüència i processadors de senyals.
Aquesta tesi es centra en algunes de les aplicacions dels dispositius MEMS en el domini de RF: referències de freqüència per oscil·ladors, filtres i mescladors. Els resonadors que es presenten en aquesta tesi s'han fabricat completament en tecnologies CMOS comercials per aprofitar la integració de MEMS i circuiteria complementària i el baix cost de fabricació d'aquestes tecnologies.
Diferents tipus de ressonadors MEMS s'han dissenyat i fabricat a fi d'avaluar les seves prestacions en diferents propietats. La validesa de la tècnica emprada per fabricar els MEMS en tecnologies CMOS futures s'ha demostrat fabricant i testant amb èxit resonadors MEMS en dos tecnologies diferents: de diferents fàbriques i nodes tecnològics (0.35um i 0.18um). La freqüència de ressonància d'aquests dispositius mecànics es troben a les bandes de HF i VHF. Tots aquests dispositius basats en bigues flexurals, presenten un major factor de qualitat Q que els tancs LC integrats i són a més a més sintonizables en freqüència, amb una mida inferior a la dels citats tancs LC. Els ressonadors MEMS-CMOS descrita a la tesi presenten un valor de Qxf en el rang entre 1GHz i els 10GHz mesurats a l'aire. Aquests valors es milloren mesurant al buit arribant als 100GHz, majors a qualsevol altre ressonador basat en tecnologia CMOS.
Les aplicacions de mesclat i filtrat de senyals també s'estudien. Dins d'aquestes aplicacions, la meta és definir una banda passant plana combinant diferents ressonadors. El prototipus d'un filtre paral·lel basat en ponts i un amplificador diferencial CMOS monolític presenta una banda passant plana de 200kHz a una freqüència central de 21.66MHz quan es mesura a l'aire. També es demostra el filtrat emprant un únic ressonador del tipus tuning fork. Com a mesclador, és destacable la possibilitat de convertir a alta i baixa senyals de 1GHz amb un ressonador de 22MHz
Com a oscil·ladors monolítics, es mostra un oscil·lador operatiu per tensions DC baixes (<5V), gràcies a la reducció del gap del ressonador. L'oscil·lador basat en un tuning fork aconsegueix valors de soroll de fase de -87dBc/Hz@10kHz i -98.7dBc/Hz@100kHz, millor que altres oscil·ladors CMOS monolític reportats.
MEMS devices demonstrated a wide range of sensing and actuation applications. These mechanical elements present nowadays extension to the RF world as key elements for highly reconfigurable systems, frequency references and signal processors.
This thesis focuses on some of the applications of MEMS devices in the RF domain: frequency references for oscillators, filters and mixers. The resonators presented in this thesis are completely fabricated in commercial CMOS technologies to take profit of monolithic MEMS and complementary circuitry integration and low cost fabrication inherent of these technologies.
Several kinds of MEMS resonators (clamped-clamped beams, free-free beams and double ended tuning forks) were designed and fabricated to evaluate their performance according to different properties. Two different CMOS technologies, from two different foundries and also different technological node (0.35um and 0.18um) were successfully used to validate the monolithic fabrication approach on future CMOS technologies. The resonance frequencies of these resonators are located on the HF and VHF range. All these devices, based on flexural beams, show superior Q than integrated LC tanks and are also tunable. Moreover, their size is significatively lower than the one of the aforementioned LC tanks. The CMOS-MEMS resonators reported in this thesis show a Qxf value in the range between 1GHz and 10GHz in air and these values are further improved in vacuum up to 100GHz, higher than any other reported resonator based on CMOS technology.
Filtering and mixing applications were also studied. The goal in these applications was to define a flat band-pass combining different resonators. A prototype of parallel filter was measured using two CC-beams and a monolithic CMOS differential amplifier. The filter shows a flat bandpass up to 200kHz in air at a center frequency of 21.66MHz. Filtering with a single resonator was also demostrated with a DETF. A mixer based on a 22MHz CC-beam resonator was able to up and downconvert a signal from/to 1GHz.
Monolithic oscillators with MEMS elements as frequency references have shown oscillation with a reduced applied DC voltage (<5V) thanks to the reduction of the gap. The DETF based oscillator shows good phase noise performance of -87dBc/Hz@10kHz and -98.7dBc/Hz@100kHz better than previously reported monolithic oscillators whereas operating at a lower DC voltage.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zou, Qiyue. "Signal processing for RF distortion compensation in wireless communication systems." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1693067881&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Parikh, Hemish K. "An RF system design for an ultra wideband indoor positioning system." Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-031108-203800/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Palvai, Anoop Kumar. "Passive RF localization based on RSSI using non-linear Bayesian estimation." Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3407.

Повний текст джерела
Анотація:
Thesis (M.S.)--George Mason University, 2008.
Vita: p. 89. Thesis director: Bijan Jabbari. Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering. Title from PDF t.p. (viewed Mar. 17, 2009). Includes bibliographical references (p. 87-88). Also issued in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ku, Hyunchul. "Behavioral modeling of nonlinear RF power amplifiers for digital wireless communication systems with implications for predistortion linearization systems." Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04052004-180035/unrestricted/ku%5Fhyunchul%5F200312%5Fphd.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sun, Wei-Long. "Data set simulation and RF path modeling of a QPSK radio communication system." Thesis, Monterey, California. Naval Postgraduate School, 2005. http://hdl.handle.net/10945/2112.

Повний текст джерела
Анотація:
This project simulates QPSK modulation signals and uses a laboratory environment to create deteriorating effects of real-world high frequency (HF) transmissions that may modify the ideal QPSK waveform. These modifications may be identifiable in order to "fingerprint" the source of the modifications. To simulate the transmission path in the real world a signal generator is used to create the QPSK I/Q signal at the HF operating frequencies and a digital sampling oscilloscope acts as a receiver and records the data for analysis. A computer with MATLAB Instrument-control Toolbox is used to generate a random-input data stream as an input to the signal generator, which modulates the RF signal. The RF signal was chosen to be at HF (5-15 MHz) and the QPSK modulation was at 9600 baud. The deterioration effects of a real-world transmitter site were chosen to be associated with the output amplifier linearity and with the transmission line condition between the transmitter and antenna.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xia, Kejun Niu Guofu. "Improved RF noise modeling for silicon-germanium heterojunction bipolar transistors." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Fall/Dissertations/XIA_KEJUN_35.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "RF communication systems"

1

WiMax RF systems engineering. Boston: Artech House, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alan, Fette Bruce, ed. RF & wireless technologies. Amsterdam: Newnes/Elsevier, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chang, Kai. RF and Microwave Wireless Systems. New York: John Wiley & Sons, Ltd., 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Samuel C. CDMA RF system engineering. Boston: Artech House, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Smaini, Lydi. RF Analog Impairments Modeling for Communication Systems Simulation. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118438046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

1954-, Golio John Michael, ed. Microwave and RF product applications. Boca Raton: CRC Press, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Advanced RF engineering for wireless systems and networks. Hoboken, NJ: John Wiley, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tatsuo, Itoh, Haddad George I, and Harvey James, eds. RF technologies for low power wireless communications. New York: IEEE, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Haddad, George I., Tatsuo Itoh, and James Harvey. RF technologies for low power wireless communications. New York: IEEE, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

RF MEMS circuit design for wireless communications. Boston: Artech House, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "RF communication systems"

1

Patrick, Dale R., Stephen W. Fardo, Ray E. Richardson, and Vigyan (Vigs) Chandra. "Radio Frequency (RF) Communication Systems." In Electronic Devices and Circuit Fundamentals, 877–940. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003393139-21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wiart, Joe. "Human RF Exposure and Communication Systems." In Radio-Frequency Human Exposure Assessment, 1–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119285137.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sabban, Albert. "Wideband RF Technologies for Wearable Communication Systems." In Wearable Systems and Antennas Technologies for 5G, IOT and Medical Systems, 191–243. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367409142-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Sung-Moon Michael. "Radio Propagation and RF Channels." In Modern Digital Radio Communication Signals and Systems, 183–245. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57706-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Michael Yang, Sung-Moon. "Radio Propagation and RF Channels." In Modern Digital Radio Communication Signals and Systems, 155–214. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71568-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sandeep Bhat and Manjalagiri Meenakshi. "Military Robot Path Control Using RF Communication." In Advances in Intelligent Systems and Computing, 697–704. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2035-3_70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bhowal, Anirban, and Rakhesh Singh Kshetrimayum. "Advanced Spatial Modulation for Hybrid FSO/RF Communication." In Advanced Spatial Modulation Systems, 191–216. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9960-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tzuang, C. K. C., and H. S. Wu. "All-Planar RF Integration Approach to Millimeter-Wave Wireless Front-Ends." In Third Generation Communication Systems, 79–120. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18924-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ma, J. G. "Design of CMOS RF IC for Wireless Applications: System Level Compromised Considerations." In Third Generation Communication Systems, 199–236. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18924-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Guan, Hongyu, Zhuosha Guo, Amar Ramdane-Cherif, Abderraouf Khezaz, Manolo Dulva Hina, and Luc Chassagne. "Intelligent Hybrid VLC/RF Communication Protocol for Train Data Transfer." In Algorithms for Intelligent Systems, 91–101. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1620-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "RF communication systems"

1

Mansour, R. R., D. Yan, M. Bakri-Kassem, M. Daneshmand, and Neil Sarker. "RF MEMS devices for communication systems." In Smart Materials, Nano-, and Micro-Smart Systems, edited by Alan R. Wilson. SPIE, 2004. http://dx.doi.org/10.1117/12.585325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shelke, Anita L., N. R. Kolhare, R. V. Sarvadnya, and Vishal A. Kangane. "Wireless RF communication based On DSP." In 2016 3rd International Conference on Devices, Circuits and Systems (ICDCS). IEEE, 2016. http://dx.doi.org/10.1109/icdcsyst.2016.7570635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"RF Communications & Telecommunication Systems 2." In 2023 58th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST). IEEE, 2023. http://dx.doi.org/10.1109/icest58410.2023.10187297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ain, Mohd Fadzil, Farid Ghani, Mutamed Khatib, and Syed Idris Syed Hassan. "Receiver simplification in synchronous communication systems: Simulation study." In 2008 IEEE International RF and Microwave Conference (RFM). IEEE, 2008. http://dx.doi.org/10.1109/rfm.2008.4897366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Novak, Dalma, and Rod Waterhouse. "Microwave Photonic Systems for RF Sensing Applications." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofc.2018.w4b.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Leghari, Zulfiqar Ali, Abdul Rani Bin Othman, and Ghulam Muhammed. "Interference and Compatibility Analysis of RF Communication Systems (MEASAT -Case Study)." In 2006 International RF and Microwave Conference. IEEE, 2006. http://dx.doi.org/10.1109/rfm.2006.331102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vinoy, K. J., Hargsoon Yoon, Taeksoo Ji, and Vijay K. Varadan. "RF MEMS and reconfigurable antennas for communication systems." In Micromachining and Microfabrication, edited by Siegfried W. Janson. SPIE, 2003. http://dx.doi.org/10.1117/12.479562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sanz, Alfredo, Eduardo Manero, Blanca Melguizo, and José Carlos Ibar. "Performances of PRIME PLC-RF Hybrid Communication Systems." In 2023 IEEE International Symposium on Power Line Communications and its Applications (ISPLC). IEEE, 2023. http://dx.doi.org/10.1109/isplc57122.2023.10104180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Y., J. Frigon, K. Wu, and R. Bosisio. "RF Front-end for Impulse UWB Communication Systems." In 2006 IEEE MTT-S International Microwave Symposium Digest. IEEE, 2006. http://dx.doi.org/10.1109/mwsym.2006.249512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Enayati, S., H. Saeedi, and N. Mokari. "Throughput maximization in hybrid FSO/RF communication systems." In 2015 4th International Workshop on Optical Wireless Communications (IWOW). IEEE, 2015. http://dx.doi.org/10.1109/iwow.2015.7342264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "RF communication systems"

1

Rey, D., W. Ryan, and M. Ross. Bandwidth utilization maximization of scientific RF communication systems. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/434435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Streeter, Samuel, Daniel Breton, Michele Maxson, and Christopher Goodin. High-fidelity simulations of electromagnetic propagation and RF communication systems : T53 final report. Engineer Research and Development Center (U.S.), May 2017. http://dx.doi.org/10.21079/11681/22551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

DeNatale, Jeff F. Micromachined Radio Frequency (RF) Switches and Tunable Capacitors for Higher Performance Secure Communications Systems. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada413515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії