Добірка наукової літератури з теми "Réseaux de régulation des gènes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Réseaux de régulation des gènes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Réseaux de régulation des gènes"
Belzeaux, R. "Comment les gènes s’expriment au cours de la réponse aux antidépresseurs ?" European Psychiatry 29, S3 (November 2014): 555. http://dx.doi.org/10.1016/j.eurpsy.2014.09.359.
Повний текст джерелаHenry, Jean-Pierre. "Épigénétique et vieillissement." médecine/sciences 39, no. 10 (October 2023): 732–37. http://dx.doi.org/10.1051/medsci/2023122.
Повний текст джерелаVandel, Jimmy, Brigitte Mangin, Matthieu Vignes, Damien Leroux, Olivier Loudet, Marie-Laure Martin-Maganiette, and Simon de Givry. "Inférence de réseaux de régulation de gènes au travers de scores étendus dans les réseaux bayésiens." Revue d'intelligence artificielle 26, no. 6 (December 30, 2012): 679–708. http://dx.doi.org/10.3166/ria.26.679-708.
Повний текст джерелаGuédon, Eric, Cécile Martin, François-Xavier Gobert, S. Dusko Ehrlich, Pierre Renault, and Christine Delorme. "Réseau de régulation de la transcription des gènes du système protéolytique de lactococcus lactis." Le Lait 81, no. 1-2 (January 2001): 65–74. http://dx.doi.org/10.1051/lait:2001112.
Повний текст джерелаLemoigne, Jean-Louis. "Régulation des Réseaux et Réseaux de Régulation." Cahier / Groupe Réseaux 4, no. 11 (1988): 1–17. http://dx.doi.org/10.3406/flux.1988.1126.
Повний текст джерелаJacq, Bernard, and Denis Thieffry. "Modéliser les réseaux de gènes." Biofutur 2000, no. 206 (December 2000): 66–71. http://dx.doi.org/10.1016/s0294-3506(00)90087-5.
Повний текст джерелаFraty, Mathilde. "Régulation des gènes par les nutriments." Annales d'Endocrinologie 74, no. 1 (February 2013): 4–5. http://dx.doi.org/10.1016/j.ando.2012.11.011.
Повний текст джерелаLacombe, D. "Syndromes dysmorphiques et gènes de régulation." Archives de Pédiatrie 5 (January 1998): 93s—96s. http://dx.doi.org/10.1016/s0929-693x(98)81259-1.
Повний текст джерелаPoullet, Yves, and Marie-des-Neiges Ruffo de Calabre. "La régulation des réseaux sociaux." Études Juin, no. 6 (May 26, 2021): 19–30. http://dx.doi.org/10.3917/etu.4283.0019.
Повний текст джерелаRousset, Pierre. "La régulation des réseaux d'irrigation." La Houille Blanche, no. 8 (December 1996): 42–45. http://dx.doi.org/10.1051/lhb/1996086.
Повний текст джерелаДисертації з теми "Réseaux de régulation des gènes"
Baptist, Guillaume. "Réseaux de régulation chez Escherichia coli." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00772446.
Повний текст джерелаVallat, Laurent. "Réseaux de régulation transcriptionnelle de la leucémie lymphode chronique." Paris 7, 2006. http://www.theses.fr/2006PA077174.
Повний текст джерелаChronic lymphocytic leukemia (CLL) is a B lymphoproliferative disorder of unknown mechanism, characterized by a heterogeneous clinical outcome. Cells from the more aggressive CLL subtype show a specific B cell receptor (BCR). The resulting integrated signal from several pathways, such as BC stimulation and DNA damage response, is also impaired contributing to frequent genetic aberrations. CLL cells reveal a specific transcriptional profile compared to other hematopoietic neoplasms. Several transcriptional programs were then studied within different CLL cells subtypes, at the basal level or after cell stimulation. Gene expression comparison before and after DNA damage by ionizing irradiation showed a specific transcriptional response for the apoptosis resistant cells Functional gene product analysis of the more aggressive cells at the basal level or after cell stimulation showed complex disorder of multiple gene expression. Unsupervised gene expression analysis over 6hrs after BCR cross-linking revealed a transcriptional program specific for the more aggressive CLL cells. In order to understand the concerted action of these thousand of genes over time, temporal gene interaction models were inferred. The scale free architecture of these models revealed transcriptional nodes, suggesting rational targets to perturb these pathways in the more aggressive cells
Herbach, Ulysse. "Modélisation stochastique de l'expression des gènes et inférence de réseaux de régulation." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1155/document.
Повний текст джерелаGene expression in a cell has long been only observable through averaged quantities over cell populations. The recent development of single-cell transcriptomics has enabled gene expression to be measured in individual cells: it turns out that even in an isogenic population, the molecular variability can be very important. In particular, an averaged description is not sufficient to account for cell differentiation. In this thesis, we are interested in the emergence of such cell decision-making from underlying gene regulatory networks, which we would like to infer from data. The starting point is the construction of a stochastic gene network model that is able to explain the data using physical arguments. Genes are then seen as an interacting particle system that happens to be a piecewise-deterministic Markov process, and our aim is to derive a tractable statistical model from its stationary distribution. We present two approaches: the first one is a popular field approximation, for which we obtain a concentration result, and the second one is based on an analytically tractable particular case, which provides a hidden Markov random field with interesting properties
Wang, Woei-Fuh. "Trouver les gènes manquants dans des réseaux géniques." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENV080/document.
Повний текст джерелаWith the development of hight-throughput technologies, the investigation of the topologies and the functioning of genetic regulatory networks have become an important research topic in recent years. Most of the studies concentrate on reconstructing the local architecture of genetic regulatory networks and the determination of the corresponding interaction parameters. The preferred data sources are time series expression data. However, inevitably one or more important members of the regulatory network will remain unknown. The absence of important members of the genetic circuit leads to incorrectly inferred network topologies and control mechanisms. In this thesis we propose a method to infer the connection and expression pattern of these “missing genes”. In order to make the problem tractable, we have to make further simplifying assumptions. We assume that the interactions within the network are described by Hill-functions. We then approximate these functions by power-law functions. We show that this simplification still captures the dynamic regulatory behaviors of the network. The genetic control system can now be converted to linear model by using a logarithm transformation. In another word, we can analyze the genetic regulatory networks by linear approaches. In the logarithmic space, we propose a procedure for extracting the expression profile of a missing gene within the otherwise defined genetic regulatory network. The algorithm also determines the regulatory connections of this missing gene to the rest of the regulation network. The inference algorithm is based on Factor Analysis, a well-developed multivariate statistical analysis approach that is used to investigate unknown, underlying features of an ensemble of data, in our case the promoter activities and intracellular concentrations of the known genes. We also explore a second blind sources separation method, “Independent Component Analysis”, which is also commonly used to estimate hidden signals. Once the expression profile of the missing gene has been derived, we investigate possible connections of this gene to the remaining network by methods of search space reduction. The proposed method of inferring the expression profile of a missing gene and connecting it to a known network structure is applied to artificial genetic regulatory networks, as well as a real biologicial network studied in the laboratory: the acs regulatory network of Escherichia coli. In these applications we confirm that power-law functions are a good approximation of Hill-functions. Factor Analysis predicts the expression profiles of missing genes with a high accuracy of 80% in small artificial genetic regulatory networks. The accuracy of Factor Analysis of predicting the expression profiles of missing genes of large artificial genetic regulatory networks is 60%. In contrast, Independent Component Analysis is less powerful than Factor Analysis in extracting the expression profiles of missing components in small, as well as large, artificial genetic regulatory networks. Both Factor Analysis and Independent Component suggest that only one missing gene is sufficient to explain the observed expression profiles of Acs, Fis and Crp. The expression profiles of the missing genes in the △cya strain and in the △cya strain supplemented with cAMP estimated by Factor Analysis and Independent Component Analysis are very similar. Factor Analysis suggests that fis is regulated by the missing genes, while Independent Component Analysis suggests that crp is controlled by the missing gene
Wang, Woei fuh. "Trouver les gènes manquants dans des réseaux géniques." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00681864.
Повний текст джерелаBonnaffoux, Arnaud. "Inférence de réseaux de régulation de gènes à partir de données dynamiques multi-échelles." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN054/document.
Повний текст джерелаInference of gene regulatory networks from gene expression data has been a long-standing and notoriously difficult task in systems biology. Recently, single-cell transcriptomic data have been massively used for gene regulatory network inference, with both successes and limitations.In the present work we propose an iterative algorithm called WASABI, dedicated to inferring a causal dynamical network from timestamped single-cell data, which tackles some of the limitations associated with current approaches. We first introduce the concept of waves, which posits that the information provided by an external stimulus will affect genes one-byone through a cascade, like waves spreading through a network. This concept allows us to infer the network one gene at a time, after genes have been ordered regarding their time of regulation. We then demonstrate the ability of WASABI to correctly infer small networks, which have been simulated in-silico using a mechanistic model consisting of coupled piecewise-deterministic Markov processes for the proper description of gene expression at the single-cell level. We finally apply WASABI on in-vitro generated data on an avian model of erythroid differentiation. The structure of the resulting gene regulatory network sheds a fascinating new light on the molecular mechanisms controlling this process. In particular, we find no evidence for hub genes and a much more distributed network structure than expected. Interestingly, we find that a majority of genes are under the direct control of the differentiation-inducing stimulus. Together, these results demonstrate WASABI versatility and ability to tackle some general gene regulatory networks inference issues. It is our hope that WASABI will prove useful in helping biologists to fully exploit the power of time-stamped single-cell data
Ait-Hamlat, Adel. "Reconstruction de réseaux de gènes à partir de données d'expression par déconvolution centrée autour des hubs." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS011.
Повний текст джерелаGene regulatory networks (GRNs) are graphs in which nodes are genes and edges represent causal relationships from regulator genes, towards their downstream targets. One important topological property of GRNs is that a small number of their nodes have a large number of connections whereas the majority of the genes have few connections. The highly connected nodes are called hubs ; they allow any two nodes to be connected by relatively short paths in sparse networks. HubNeD (Hub-centered network deconvolution) is a novel method that exploits topological properties of GRNs to reconstruct them from steady state expression profiles. It works in three steps : firstly, a clustering step extracts genes that are considered solely regulated by grouping them in highly homogeneous co-regulation communities. Secondly, hub are inferred from the remaining genes, by analyzing the similarities of their correlation profiles to the genes in the co-regulations communities. Thirdly, an adjacency matrix is computed by a hub-centered deconvolution of the Pearson correlation scores. This last step penalizes direct connections between non-hubs, thus reducing the rate of false positives. The original strategy of preceding GRN reconstruction by a hub selection step, allows HubNeD to habe the highest performances on expression datasets associated with the two well established experimentally curated GRNs of E. Coli and Saccharomyces cerevisiae
Mazurie, Aurélien. "Des gènes aux réseaux génétiques : exploitation des données transcriptomiques, inférence et caractérisation de structures de régulation." Paris 6, 2005. http://www.theses.fr/2005PA066030.
Повний текст джерелаMikol-Segonne, Sandrine. "Etude des réseaux de régulation de gènes qui gouvernent l'élaboration de la texture de la pomme." Thesis, Rennes, Agrocampus Ouest, 2015. http://www.theses.fr/2015NSARI073/document.
Повний текст джерелаApple fruit is one of the most consumed fruits in the world. Apple mealiness is an important textural deterioration which occurs during storage. This phenotype refers to a dry andgrainy sensory perception during mastication. Despite its significance, this phenotype is still rather poorly characterized, the few available results mostly depending on sensory analyses. Understanding the molecular mechanisms involved in the development of this unwanted character is essential for the improvement of fruit quality and fruit production.The work presented here is focused on the identification of key genes associated with apple mealiness through global transcriptome analyses. A first multiscale analysis combining transcriptomic, biochemical and phenotypic analyses was performed on pairs of individuals displayingcontrasted phenotypes for mealiness.This analysis led us to the identifi cation of one pectin methylesterase gene, MdPME2, which appears as an early molecular marker of mealiness in this genetic background. Next, a transcriptome analysis enlarged to 34 cultivars allowed the identification of the jasmonate hormonal pathway as a key driver of apple fruits ripening. By regulating ethylene and oxidative stress pathways, jasmonates appear as a fi ne-tuning regulator onthe postponement of apple mealiness. In addition, a new quantitative test of mealiness has also been developed to allow the validation of this model by means of pharmacological approaches. The main outcome of this work is to propose a new molecular model to explain apple mealiness development. This work shed
Vandel, Jimmy. "Apprentissage de la structure de réseaux bayésiens : application aux données de génétique-génomique." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1913/.
Повний текст джерелаStructure learning of gene regulatory networks is a complex process, due to the high number of variables (several thousands) and the small number of available samples (few hundred). Among the proposed approaches to learn these networks, we use the Bayesian network framework. In this way to learn a regulatory network corresponds to learn the structure of a Bayesian network where each variable is a gene and each edge represents a regulation between genes. In the first part of this thesis, we are interested in learning the structure of generic Bayesian networks using local search. We explore more efficiently the search space thanks to a new stochastic search algorithm (SGS), a new local operator (SWAP) and an extension for classical operators to briefly overcome the acyclic constraint imposed by Bayesian networks. The second part focuses on learning gene regulatory networks. We proposed a model in the Bayesian networks framework taking into account two kinds of information. The first one, commonly used, is gene expression levels. The second one, more original, is the mutations on the DNA sequence which can explain gene expression variations. The use of these combined data, called genetical genomics, aims to improve the structural learning quality. Our different proposals appeared to be efficient on simulated genetical genomics data and allowed to learn a regulatory network for observed data from Arabidopsis thaliana
Книги з теми "Réseaux de régulation des gènes"
La régulation du marché de l'électricité: Concurrence et accès aux réseaux. Paris: Harmattan, 2006.
Знайти повний текст джерела1966-, Fleury Marie-Josée, ed. Le système sociosanitaire au Québec: Gouvernance, régulation et participation. Montréal, Qué: G. Morin, 2007.
Знайти повний текст джерелаL, Grigsby Leonard, ed. Power system stability and control. Boca Raton: Taylor & Francis, 2007.
Знайти повний текст джерелаPower system satbility and control. 3rd ed. Boca Raton: Taylor & Francis, 2012.
Знайти повний текст джерелаC, Dorf Richard, ed. The electrical engineering handbook. Boca Raton, FL: CRC/Taylor & Francis, 2006.
Знайти повний текст джерелаC, Dorf Richard, ed. Systems and controls, embedded systems, energy, and machines. Boca Raton, FL: CRC Press/Taylor & Francis, 2005.
Знайти повний текст джерелаBryan, Cullen, and Roche-UCLA Symposium on Mechanisms of Control of Gene Expression (1987 : Steamboat Springs, Colo.), eds. Mechanisms of control of gene expression: Proceedings of a Roche-UCLA Symposium, held at Steamboat Springs, Colorado, March 29-April 4, 1987. New York: Liss, 1988.
Знайти повний текст джерелаNaima, Moustaid-Moussa, and Berdanier Carolyn D, eds. Nutrient-gene interactions in health and disease. Boca Raton: CRC Press, 2001.
Знайти повний текст джерелаWilson, Robert, 1951 Sept. 29-, ed. Control and automation of electric power distribution systems. Boca Raton: Taylor & Francis, 2007.
Знайти повний текст джерелаCruz, Luis F. de la., ed. Regulation of growth hormone and somatic growth: Proceedings of the International Meeting on Regulation of Somatic Growth, Lugo, Spain, 14-16 October 1991. Amsterdam: Excerpta Medica, 1992.
Знайти повний текст джерелаЧастини книг з теми "Réseaux de régulation des gènes"
BONNAFFOUX, Arnaud. "Inférence de réseaux de régulation de gènes à partir de données dynamiques multi-échelles." In Approches symboliques de la modélisation et de l’analyse des systèmes biologiques, 7–50. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9029.ch1.
Повний текст джерела"Au-delà de la séquence d’ADN, la régulation des gènes." In L'épigénétique en images, 18–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2245-4-005.
Повний текст джерела"Au-delà de la séquence d’ADN, la régulation des gènes." In L'épigénétique en images, 18–24. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2245-4.c005.
Повний текст джерелаRIBEIRO, Tony, Maxime FOLSCHETTE, Laurent TRILLING, Nicolas GLADE, Katsumi INOUE, Morgan MAGNIN, and Olivier ROUX. "Les enjeux de l’inférence de modèles dynamiques à partir de séries temporelles." In Approches symboliques de la modélisation et de l’analyse des systèmes biologiques, 97–139. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9029.ch3.
Повний текст джерелаBERNOT, Gilles, Hélène COLLAVIZZA, and Jean-Paul COMET. "Méthodes de vérification formelle pour la modélisation en biologie : le cas des réseaux de régulation biologique." In Approches symboliques de la modélisation et de l’analyse des systèmes biologiques, 275–335. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9029.ch8.
Повний текст джерелаBadouard, Romain, and Marguerite Borelli. "Réseaux sociaux et régulation des contenus : un enjeu de politique internationale." In Annuaire français de relations internationales, 875–86. Éditions Panthéon-Assas, 2023. http://dx.doi.org/10.3917/epas.ferna.2023.01.0875.
Повний текст джерелаKARIMI, Battle, and Lionel RANJARD. "Biogéographie bactérienne des sols à l’échelle de la France." In La biogéographie, 181–212. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9060.ch7.
Повний текст джерела