Добірка наукової літератури з теми "Réseaux de neurones en graphes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Réseaux de neurones en graphes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Réseaux de neurones en graphes"

1

Lemieux, Vincent. "L'articulation des réseaux sociaux." Recherches sociographiques 17, no. 2 (April 12, 2005): 247–60. http://dx.doi.org/10.7202/055716ar.

Повний текст джерела
Анотація:
Sous l'influence première d'un article de Barnes (1954), les études anthropologiques sur les réseaux sociaux ont ouvert une voie de recherches qui apparaît encore pleine de promesses. Il faut bien avouer, pourtant, que jusqu'à maintenant peu d'analyses fondées sur des données empiriques ont emporté la conviction. Les études de réseaux n'ont pas encore fait la preuve de leur fécondité. Il leur manque un fondement théorique, pourtant disponible dans la théorie des graphes qui est justement une théorie des réseaux, qu'ils soient sociaux ou autres. Comme l'a noté Mitchell, la jonction n'existe pas — ou pas assez — entre les spécialistes de la théorie des graphes et les chercheurs sur le terrain (1969, p. 35). Pourtant, quelques bons exposés ont été écrits par des anthropologues, qui indiquent bien ce qu'on pourrait tirer d'une utilisation plus poussée de la théorie des graphes (en particulier Mitchell, 1969; Barnes, 1969a; et surtout Barnes, 1972). Malgré ces mises en place, la plupart des études empiriques ne dépassent guère l'analyse situationnelle qui, comme le note Barnes (1972, p. 13), peut fort bien se passer de la notion de réseau, en plus d'être inapte au dégagement d'hypothèses générales. Nous allons donner, à la fin de cet article, une brève illustration d'une étude proprement structurale des réseaux sociaux, au sens où l'entendent Harary, Norman et Cartwright (1968), dans leur ouvrage sur les graphes orientés. En utilisant des données recueillies sur le terrain, nous montrerons comment la notion d'articulation, tirée de la théorie des graphes, permet de poser et de traiter des problèmes théoriques, mais aussi pratiques, qui nous semblent propres aux réseaux sociaux. Auparavant, nous voudrions discuter de certaines questions préalables à une analyse vraiment spécifique des réseaux sociaux. Ils ont trait au concept même de réseau, à la constitution des unités d'analyse, et aux différentes voies d'analyse qui s'offrent au chercheur.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Díaz Villalba, Alejandro. "Comment outiller l’étude des autorités avec l’analyse de réseaux dans les grammaires françaises des XVIe et XVIIe siècles." SHS Web of Conferences 138 (2022): 03003. http://dx.doi.org/10.1051/shsconf/202213803003.

Повний текст джерела
Анотація:
L’article propose d’outiller, par le recours à l’analyse de réseaux, l’étude des références, c’est-à-dire les mentions et les citations d’autorités dans les textes métalinguistiques. Il s’agit, d’une part, de présenter les principes méthodologiques qui ont présidé à l’élaboration d’une visualisation sous forme de graphes de réseau : la modélisation et la construction d’une base de données de références et la génération du graphe dans un logiciel approprié. Il est question, d’autre part, de décrire les aspects liés à l’interprétation des graphes de réseaux, le but étant d’explorer le potentiel de l’outil dans l’histoire des idées linguistiques.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 31. http://dx.doi.org/10.3845/ree.2006.074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 37. http://dx.doi.org/10.3845/ree.2006.075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 43. http://dx.doi.org/10.3845/ree.2006.076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 47. http://dx.doi.org/10.3845/ree.2006.077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 50. http://dx.doi.org/10.3845/ree.2006.078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 55. http://dx.doi.org/10.3845/ree.2006.079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dalud-Vincent, Monique. "Une autre manière de modéliser les réseaux sociaux. Applications à l’étude de co-publications." Nouvelles perspectives en sciences sociales 12, no. 2 (August 22, 2017): 41–68. http://dx.doi.org/10.7202/1040904ar.

Повний текст джерела
Анотація:
Cet article a pour objectif de montrer pourquoi et comment la prétopologie (domaine des mathématiques qui recouvre la théorie des graphes et la topologie) peut apporter une modélisation et un traitement plus souples et mieux adaptés des réseaux sociaux.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bélanger, M., N. El-Jabi, D. Caissie, F. Ashkar, and J. M. Ribi. "Estimation de la température de l'eau de rivière en utilisant les réseaux de neurones et la régression linéaire multiple." Revue des sciences de l'eau 18, no. 3 (April 12, 2005): 403–21. http://dx.doi.org/10.7202/705565ar.

Повний текст джерела
Анотація:
La température de l'eau en rivière est un paramètre ayant une importance majeure pour la vie aquatique. Les séries temporelles décrivant ce paramètre thermique existent, mais elles sont moins nombreuses et souvent courtes, ou comptent parfois des valeurs manquantes. Cette étude présente la modélisation de la température de l'eau en utilisant des réseaux de neurones et la régression linéaire multiple pour relier la température de l'eau à celle de l'air et le débit du ruisseau Catamaran, situé au Nouveau-Brunswick, Canada. Une recherche multidisciplinaire à long terme se déroule présentement sur ce site. Les données utilisées sont de 1991 à 2000 et comprennent la température de l'air de la journée en cours, de la veille et de l'avant-veille, le débit ainsi que le temps transformé en série trigonométrique. Les données de 1991 à 1995 ont été utilisées pour l'entraînement ou la calibration du modèle tandis que les données de 1996 à 2000 ont été utilisées pour la validation du modèle. Les coefficients de détermination obtenus pour l'entraînement sont de 94,2 % pour les réseaux de neurones et de 92,6 % pour la régression linéaire multiple, ce qui donne un écart-type des erreurs de 1,01 C pour les réseaux de neurones et de 1,05 C pour la régression linéaire multiple. Pour la validation, les coefficients de détermination sont de 92,2 % pour les réseaux de neurones et de 91,6 % pour la régression linéaire multiple, ce qui se traduit en un écart-type des erreurs de 1,10 C pour les réseaux de neurones et de 1,25 C pour la régression linéaire multiple. Durant la période d'étude (1991-2000), le biais a été calculé à +0,11 C pour le modèle de réseaux de neurones et à -0,26 °C pour le modèle de régression. Ces résultats permettent de conclure qu'il est possible de prévoir la température de l'eau de petits cours d'eau en utilisant la température de l'air et le débit, aussi bien avec les réseaux de neurones qu'avec la régression linéaire multiple. Les réseaux de neurones semblent donner un ajustement aux données légèrement meilleur que celui offert par la régression linéaire multiple, toutefois ces deux approches de modélisation démontrent une bonne performance pour la prédiction de la température de l'eau en rivière.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Réseaux de neurones en graphes"

1

Carboni, Lucrezia. "Graphes pour l’exploration des réseaux de neurones artificiels et de la connectivité cérébrale humaine." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALM060.

Повний текст джерела
Анотація:
L'objectif principal de cette thèse est d'explorer la connectivité cérébrale et celle des réseaux de neurones artificiels d'un point de vue de leur connectivité. Un modèle par graphes pour l'analyse de la connectivité structurelle et fonctionnelle a été largement étudié dans le contexte du cerveau humain mais, un tel cadre d'analyse manque encore pour l'analyse des systèmes artificiels. Avec l'objectif d'intégrer l'analyse de la connectivité dans les système artificiels, cette recherche se concentre sur deux axes principaux. Dans le premier axe, l'objectif principal est de déterminer une caractérisation de la signature saine de la connectivité fonctionnelle de repos du cerveau humain. Pour atteindre cet objectif, une nouvelle méthode est proposée, intégrant des statistiques de graphe traditionnelles et des outils de réduction de réseau, pour déterminer des modèles de connectivité sains. Ainsi, nous construisons une comparaison en paires de graphes et un classifieur pour identifier les états pathologiques et identifier les régions cérébrales perturbées par une pathologie. De plus, la généralisation et la robustesse de la méthode proposée ont été étudiées sur plusieurs bases de données et variations de la qualité des données. Le deuxième axe de recherche explore les avantages de l'intégration des études de la connectivité inspirée du cerveau aux réseaux de neurones artificiels (ANNs) dans la perspective du développement de systèmes artificiels plus robustes. Un problème majeur de robustesse dans les modèles d'ANN est représenté par l'oubli catastrophique qui apparaît lorsque le réseau oublie dramatiquement les tâches précédemment apprises lors de l'adaptation à de nouvelles tâches. Notre travail démontre que la modélisation par graphes offre un cadre simple et élégant pour étudier les ANNs, comparer différentes stratégies d'apprentissage et détecter des comportements nuisibles tels que l'oubli catastrophique. De plus, nous soulignons le potentiel d'une adaptation à de nouvelles tâches en contrôlant les graphes afin d'atténuer efficacement l'oubli catastrophique et jetant ainsi les bases de futures recherches et explorations dans ce domaine
The main objective of this thesis is to explore brain and artificial neural network connectivity from agraph-based perspective. While structural and functional connectivity analysis has been extensivelystudied in the context of the human brain, there is a lack of a similar analysis framework in artificialsystems.To address this gap, this research focuses on two main axes.In the first axis, the main objective is to determine a healthy signature characterization of the humanbrain resting state functional connectivity. To achieve this objective, a novel framework is proposed,integrating traditional graph statistics and network reduction tools, to determine healthy connectivitypatterns. Hence, we build a graph pair-wise comparison and a classifier to identify pathological statesand rank associated perturbed brain regions. Additionally, the generalization and robustness of theproposed framework were investigated across multiple datasets and variations in data quality.The second research axis explores the benefits of brain-inspired connectivity exploration of artificialneural networks (ANNs) in the future perspective of more robust artificial systems development. Amajor robustness issue in ANN models is represented by catastrophic forgetting when the networkdramatically forgets previously learned tasks when adapting to new ones. Our work demonstrates thatgraph modeling offers a simple and elegant framework for investigating ANNs, comparing differentlearning strategies, and detecting deleterious behaviors such as catastrophic forgetting.Moreover, we explore the potential of leveraging graph-based insights to effectively mitigatecatastrophic forgetting, laying a foundation for future research and explorations in this area
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Albano, Alice. "Dynamique des graphes de terrain : analyse en temps intrinsèque." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066260/document.

Повний текст джерела
Анотація:
Nous sommes entourés par une multitude de réseaux d'interactions, issus de contextes très différents. Ces réseaux peuvent être modélisés par des graphes, appelés graphes de terrain. Ils possèdent une structure en communautés, c'est-à-dire en groupes de nœuds très liés entre eux, et peu liés avec les autres. Un phénomène que l'on étudie sur les graphes dans de nombreux contextes est la diffusion. La propagation d'une maladie en est un exemple. Ces phénomènes dépendent d'un paramètre important, mais souvent peu étudié : l'échelle de temps selon laquelle on les observe. Selon l'échelle choisie, la dynamique du graphe peut varier de manière très importante.Dans cette thèse, nous proposons d'étudier des processus dynamiques en utilisant une échelle de temps adaptée. Nous considérons une notion de temps relatif, que nous appelons le temps intrinsèque, par opposition au temps "classique", que nous appelons temps extrinsèque. Nous étudions en premier lieu des phénomènes de diffusion selon une échelle de temps intrinsèque, et nous comparons les résultats obtenus avec une échelle extrinsèque. Ceci nous permet de mettre en évidence le fait qu'un même phénomène observé dans deux échelles de temps différentes puisse présenter un comportement très différent. Nous analysons ensuite la pertinence de l'utilisation du temps intrinsèque pour la détection de communautés dynamiques. Les communautés obtenues selon les échelles de temps extrinsèques et intrinsèques nous montrent qu'une échelle intrinsèque permet la détection de communautés beaucoup plus significatives et détaillées que l'échelle extrinsèque
We are surrounded by a multitude of interaction networks from different contexts. These networks can be modeled as graphs, called complex networks. They have a community structure, i.e. groups of nodes closely related to each other and less connected with the rest of the graph. An other phenomenon studied in complex networks in many contexts is diffusion. The spread of a disease is an example of diffusion. These phenomena are dynamic and depend on an important parameter, which is often little studied: the time scale in which they are observed. According to the chosen scale, the graph dynamics can vary significantly. In this thesis, we propose to study dynamic processes using a suitable time scale. We consider a notion of relative time which we call intrinsic time, opposed to "traditional" time, which we call extrinsic time. We first study diffusion phenomena using intrinsic time, and we compare our results with an extrinsic time scale. This allows us to highlight the fact that the same phenomenon observed at two different time scales can have a very different behavior. We then analyze the relevance of the use of intrinsic time scale for detecting dynamic communities. Comparing communities obtained according extrinsic and intrinsic scales shows that the intrinsic time scale allows a more significant detection than extrinsic time scale
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Albano, Alice. "Dynamique des graphes de terrain : analyse en temps intrinsèque." Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066260.

Повний текст джерела
Анотація:
Nous sommes entourés par une multitude de réseaux d'interactions, issus de contextes très différents. Ces réseaux peuvent être modélisés par des graphes, appelés graphes de terrain. Ils possèdent une structure en communautés, c'est-à-dire en groupes de nœuds très liés entre eux, et peu liés avec les autres. Un phénomène que l'on étudie sur les graphes dans de nombreux contextes est la diffusion. La propagation d'une maladie en est un exemple. Ces phénomènes dépendent d'un paramètre important, mais souvent peu étudié : l'échelle de temps selon laquelle on les observe. Selon l'échelle choisie, la dynamique du graphe peut varier de manière très importante.Dans cette thèse, nous proposons d'étudier des processus dynamiques en utilisant une échelle de temps adaptée. Nous considérons une notion de temps relatif, que nous appelons le temps intrinsèque, par opposition au temps "classique", que nous appelons temps extrinsèque. Nous étudions en premier lieu des phénomènes de diffusion selon une échelle de temps intrinsèque, et nous comparons les résultats obtenus avec une échelle extrinsèque. Ceci nous permet de mettre en évidence le fait qu'un même phénomène observé dans deux échelles de temps différentes puisse présenter un comportement très différent. Nous analysons ensuite la pertinence de l'utilisation du temps intrinsèque pour la détection de communautés dynamiques. Les communautés obtenues selon les échelles de temps extrinsèques et intrinsèques nous montrent qu'une échelle intrinsèque permet la détection de communautés beaucoup plus significatives et détaillées que l'échelle extrinsèque
We are surrounded by a multitude of interaction networks from different contexts. These networks can be modeled as graphs, called complex networks. They have a community structure, i.e. groups of nodes closely related to each other and less connected with the rest of the graph. An other phenomenon studied in complex networks in many contexts is diffusion. The spread of a disease is an example of diffusion. These phenomena are dynamic and depend on an important parameter, which is often little studied: the time scale in which they are observed. According to the chosen scale, the graph dynamics can vary significantly. In this thesis, we propose to study dynamic processes using a suitable time scale. We consider a notion of relative time which we call intrinsic time, opposed to "traditional" time, which we call extrinsic time. We first study diffusion phenomena using intrinsic time, and we compare our results with an extrinsic time scale. This allows us to highlight the fact that the same phenomenon observed at two different time scales can have a very different behavior. We then analyze the relevance of the use of intrinsic time scale for detecting dynamic communities. Comparing communities obtained according extrinsic and intrinsic scales shows that the intrinsic time scale allows a more significant detection than extrinsic time scale
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hladiš, Matej. "Réseaux de neurones en graphes et modèle de langage des protéines pour révéler le code combinatoire de l'olfaction." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5024.

Повний текст джерела
Анотація:
Les mammifères identifient et interprètent une myriade de stimuli olfactifs par un mécanisme de codage complexe reposant sur la reconnaissance des molécules odorantes par des centaines de récepteurs olfactifs (RO). Ces interactions génèrent des combinaisons uniques de récepteurs activés, appelées code combinatoire, que le cerveau humain interprète comme la sensation que nous appelons l'odeur. Jusqu'à présent, le grand nombre de combinaisons possibles entre les récepteurs et les molécules a empêché une étude expérimentale à grande échelle de ce code et de son lien avec la perception des odeurs. La révélation de ce code est donc cruciale pour répondre à la question à long terme de savoir comment nous percevons notre environnement chimique complexe. Les RO appartiennent à la classe A des récepteurs couplés aux protéines G (RCPG) et constituent la plus grande famille multigénique connue. Pour étudier de façon systématique le codage olfactif, nous avons développé M2OR, une base de données exhaustive compilant les 25 dernières années d'essais biologiques sur les RO. À l'aide de cet ensemble de données, un modèle d'apprentissage profond sur mesure a été conçu et entraîné. Il combine l'intégration de jetons [CLS] d'un modèle de langage des protéines avec des réseaux de neurones en graphes et un mécanisme d'attention multi-têtes. Ce modèle prédit l'activation des RO par les odorants et révèle le code combinatoire résultant pour toute molécule odorante. Cette approche est affinée en développant un nouveau modèle capable de prédire l'activité d'un odorant à une concentration spécifique, permettant alors d'estimer la valeur d'EC50 de n'importe quelle paire OR-odorant. Enfin, les codes combinatoires dérivés des deux modèles sont utilisés pour prédire la perception olfactive des molécules. En incorporant des biais inductifs inspirés par la théorie du codage olfactif, un modèle d'apprentissage automatique basé sur ces codes est plus performant que l'état de l'art actuel en matière de prédiction d'odeurs. À notre connaissance, il s'agit de l'application la plus aboutie liant le code combinatoire à la prédiction de l'odeur d'une molécule. Dans l'ensemble, ce travail établit un lien entre les interactions complexes molécule odorante-récepteur et la perception humaine
Mammals identify and interpret a myriad of olfactory stimuli using a complex coding mechanism involving interactions between odorant molecules and hundreds of olfactory receptors (ORs). These interactions generate unique combinations of activated receptors, called the combinatorial code, which the human brain interprets as the sensation we call smell. Until now, the vast number of possible receptor-molecule combinations have prevented a large-scale experimental study of this code and its link to odor perception. Therefore, revealing this code is crucial to answering the long-term question of how we perceive our intricate chemical environment. ORs belong to the class A of G protein-coupled receptors (GPCRs) and constitute the largest known multigene family. To systematically study olfactory coding, we develop M2OR, a comprehensive database compiling the last 25 years of OR bioassays. Using this dataset, a tailored deep learning model is designed and trained. It combines the [CLS] token embedding from a protein language model with graph neural networks and multi-head attention. This model predicts the activation of ORs by odorants and reveals the resulting combinatorial code for any odorous molecule. This approach is refined by developing a novel model capable of predicting the activity of an odorant at a specific concentration, subsequently allowing the estimation of the EC50 value for any OR-odorant pair. Finally, the combinatorial codes derived from both models are used to predict the odor perception of molecules. By incorporating inductive biases inspired by olfactory coding theory, a machine learning model based on these codes outperforms the current state-of-the-art in smell prediction. To the best of our knowledge, this is the most comprehensive and successful application of combinatorial coding to odor quality prediction. Overall, this work provides a link between the complex molecule-receptor interactions and human perception
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Limnios, Stratis. "Graph Degeneracy Studies for Advanced Learning Methods on Graphs and Theoretical Results Edge degeneracy: Algorithmic and structural results Degeneracy Hierarchy Generator and Efficient Connectivity Degeneracy Algorithm A Degeneracy Framework for Graph Similarity Hcore-Init: Neural Network Initialization based on Graph Degeneracy." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX038.

Повний текст джерела
Анотація:
L'extraction de sous-structures significatives a toujours été un élément clé de l’étude des graphes. Dans le cadre de l'apprentissage automatique, supervisé ou non, ainsi que dans l'analyse théorique des graphes, trouver des décompositions spécifiques et des sous-graphes denses est primordial dans de nombreuses applications comme entre autres la biologie ou les réseaux sociaux.Dans cette thèse, nous cherchons à étudier la dégénérescence de graphe, en partant d'un point de vue théorique, et en nous appuyant sur nos résultats pour trouver les décompositions les plus adaptées aux tâches à accomplir. C'est pourquoi, dans la première partie de la thèse, nous travaillons sur des résultats structurels des graphes à arête-admissibilité bornée, prouvant que de tels graphes peuvent être reconstruits en agrégeant des graphes à degré d’arête quasi-borné. Nous fournissons également des garanties de complexité de calcul pour les différentes décompositions de la dégénérescence, c'est-à-dire si elles sont NP-complètes ou polynomiales, selon la longueur des chemins sur lesquels la dégénérescence donnée est définie.Dans la deuxième partie, nous unifions les cadres de dégénérescence et d'admissibilité en fonction du degré et de la connectivité. Dans ces cadres, nous choisissons les plus expressifs, d'une part, et les plus efficaces en termes de calcul d'autre part, à savoir la dégénérescence 1-arête-connectivité pour expérimenter des tâches de dégénérescence standard, telle que la recherche d’influenceurs.Suite aux résultats précédents qui se sont avérés peu performants, nous revenons à l'utilisation du k-core mais en l’intégrant dans un cadre supervisé, i.e. les noyaux de graphes. Ainsi, en fournissant un cadre général appelé core-kernel, nous utilisons la décomposition k-core comme étape de prétraitement pour le noyau et appliquons ce dernier sur chaque sous-graphe obtenu par la décomposition pour comparaison. Nous sommes en mesure d'obtenir des performances à l’état de l’art sur la classification des graphes au prix d’une légère augmentation du coût de calcul.Enfin, nous concevons un nouveau cadre de dégénérescence de degré s’appliquant simultanément pour les hypergraphes et les graphes biparties, dans la mesure où ces derniers sont les graphes d’incidence des hypergraphes. Cette décomposition est ensuite appliquée directement à des architectures de réseaux de neurones pré-entrainés étant donné qu'elles induisent des graphes biparties et utilisent le core d'appartenance des neurones pour réinitialiser les poids du réseaux. Cette méthode est non seulement plus performant que les techniques d'initialisation de l’état de l’art, mais il est également applicable à toute paire de couches de convolution et linéaires, et donc adaptable à tout type d'architecture
Extracting Meaningful substructures from graphs has always been a key part in graph studies. In machine learning frameworks, supervised or unsupervised, as well as in theoretical graph analysis, finding dense subgraphs and specific decompositions is primordial in many social and biological applications among many others.In this thesis we aim at studying graph degeneracy, starting from a theoretical point of view, and building upon our results to find the most suited decompositions for the tasks at hand.Hence the first part of the thesis we work on structural results in graphs with bounded edge admissibility, proving that such graphs can be reconstructed by aggregating graphs with almost-bounded-edge-degree. We also provide computational complexity guarantees for the different degeneracy decompositions, i.e. if they are NP-complete or polynomial, depending on the length of the paths on which the given degeneracy is defined.In the second part we unify the degeneracy and admissibility frameworks based on degree and connectivity. Within those frameworks we pick the most expressive, on the one hand, and computationally efficient on the other hand, namely the 1-edge-connectivity degeneracy, to experiment on standard degeneracy tasks, such as finding influential spreaders.Following the previous results that proved to perform poorly we go back to using the k-core but plugging it in a supervised framework, i.e. graph kernels. Thus providing a general framework named core-kernel, we use the k-core decomposition as a preprocessing step for the kernel and apply the latter on every subgraph obtained by the decomposition for comparison. We are able to achieve state-of-the-art performance on graph classification for a small computational cost trade-off.Finally we design a novel degree degeneracy framework for hypergraphs and simultaneously on bipartite graphs as they are hypergraphs incidence graph. This decomposition is then applied directly to pretrained neural network architectures as they induce bipartite graphs and use the coreness of the neurons to re-initialize the neural network weights. This framework not only outperforms state-of-the-art initialization techniques but is also applicable to any pair of layers convolutional and linear thus being applicable however needed to any type of architecture
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hafidi, Hakim. "Robust machine learning for Graphs/Networks." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT004.

Повний текст джерела
Анотація:
Cette thèse aborde les progrès de l’apprentissage des représentation des nœuds d’ungraphe, en se concentrant sur les défis et les opportunités présentées par les réseaux de neuronespour graphe (GNN). Elle met en évidence l’importance des graphes dans la représentation dessystèmes complexes et la nécessité d’apprendre des représentations de nœuds qui capturent à la fois les caractéristiques des nœuds et la structure des graphes. L’ étude identifie les problèmes clés des réseaux de neurones pour graphe, tels que leur dépendance à l’ ´égard de données étiquetées de haute qualité, l’incohérence des performances dansdivers ensembles de données et la vulnérabilité auxattaques adverses.Pour relever ces défis, la thèse introduit plusieursapproches innovantes. Tout d’abord, elle utilise l’apprentissage contrastif pour la représentation des nœuds, permettant un apprentissage auto-supervisé qui réduit la dépendance aux données étiquetées.Deuxièmement, un classificateur bayésien est proposé pour la classification des nœuds, qui prenden compte la structure du graphe pour améliorer la précision. Enfin, la thèse aborde la vulnérabilité des GNN aux attaques adversariaux en évaluant la robustesse du classificateur proposé et en introduisant des mécanismes de défense efficaces. Ces contributionsvisent à améliorer à la fois la performance et la résilience des GNN dans l’apprentissage de lareprésentation des nœuds
This thesis addresses advancements in graph representation learning, focusing on the challengesand opportunities presented by Graph Neural Networks (GNNs). It highlights the significanceof graphs in representing complex systems and the necessity of learning node embeddings that capture both node features and graph structure. The study identifies key issues in GNNs, such as their dependence on high-quality labeled data, inconsistent performanceacross various datasets, and susceptibility to adversarial attacks.To tackle these challenges, the thesis introduces several innovative approaches. Firstly, it employs contrastive learning for node representation, enabling self-supervised learning that reduces reliance on labeled data. Secondly, a Bayesian-based classifier isproposed for node classification, which considers the graph’s structure to enhance accuracy. Lastly, the thesis addresses the vulnerability of GNNs to adversarialattacks by assessing the robustness of the proposed classifier and introducing effective defense mechanisms.These contributions aim to improve both the performance and resilience of GNNs in graph representation learning
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hérault, Laurent. "Réseaux de neurones récursifs pour l'optimisation combinatoire : application à la théorie des graphes et à la vision par ordinateur." Grenoble INPG, 1991. http://www.theses.fr/1991INPG0019.

Повний текст джерела
Анотація:
Cette these traite de la resolution de problemes d'optimisation tres complexes (np. Complets) par le biais de l'etude des systemes complexes artificiels qui imitent les systemes physiques et qui sont simules avec des reseaux neuromimetiques. La solution optimale est identifiee a un etat fondamental d'un systeme physique. Plusieurs techniques neuronales sont presentees pour approcher la solution optimale. Elles utilisent soit l'analyse canonique, soit l'analyse microcanonique, definies en mecanique statistique. Parmi ces methodes, nous presentons l'utilisation des reseaux de hopfield analogiques, le recuit simule, l'approximation du champ moyen, le recuit en champ moyen et le recuit microcanonique. Elles sont particulierement bien adaptees aux problemes de graphes qui traitent de coupure et de connectivite, de morphisme et d'extraction de sous-graphes possedant des proprietes extremales. Dans ce cadre, les problemes de k-partitionnement de graphe, de mise en correspondance de graphes, et d'extraction de la plus grande clique sont traites. Dans la derniere partie, nous abordons le probleme de groupement perceptif en vision par ordinateur. On montre que ce probleme se ramene, par le biais de la theorie de la gestalt definie en psychologie experimentale, a un probleme d'optimisation combinatoire soluble par reseaux de neurones
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lachaud, Guillaume. "Extensions and Applications of Graph Neural Networks." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS434.

Повний текст джерела
Анотація:
Les graphes sont utilisés partout pour représenter les interactions, qu'elles soient physiques comme entre les atomes, les molécules ou les humains, ou plus abstraites comme les villes, les amitiés, les idées, etc. Parmi toutes les méthodes d'apprentissage automatique qui peuvent être utilisées, les dernières avancées en apprentissage profond font des réseaux de neurones de graphes la référence de l'apprentissage de représentation des graphes. Cette thèse se divise en deux parties. Dans un premier temps, nous faisons un état de l'art des fondations mathématiques des réseaux de neurones de graphes les plus puissants. Dans un second temps, nous explorons les défis auxquels sont confrontés ces modèles quand ils sont entraînés sur des jeux de données réels. La puissance d'un réseau de neurones est définie par rapport à son expressivité, c'est-à-dire sa capacité à distinguer deux graphes non isomorphes ; ou, de manière équivalente, sa capacité à approximer les fonctions qui sont invariantes ou équivariantes par rapport aux permutations. Nous discernons deux grandes familles de modèles expressifs. Nous présentons leurs propriétés mathématiques ainsi que les avantages et les inconvénients de ces modèles lors d'applications pratiques. En parallèle du choix de l'architecture, la qualité de la donnée joue un rôle crucial dans la capacité d'un modèle à apprendre des représentations utiles. Les réseaux de neurones de graphes sont confrontés à des problèmes spécifiques aux graphes. À l'inverse des modèles développés pour les données tabulaires, les réseaux de neurones de graphes doivent prendre en compte aussi bien les attributs des nœuds que leur interdépendance. À cause de ces liens, l'apprentissage d'un réseau de neurones sur des graphes peut se faire de deux manières : en apprentissage transductif, où le modèle a accès aux attributs des données de test pendant l'entraînement ; en apprentissage inductif, où les données de test restent cachées. Nous étudions les différences en termes de performance entre l'apprentissage transductif et inductif pour la classification de nœuds. De plus, les attributs des nœuds peuvent être bruités ou manquants. Dans cette thèse, nous évaluons ces défis sur des jeux de données réels, et nous proposons une nouvelle architecture de réseau de neurones de graphes pour imputer les attributs manquants des nœuds d'un graphe. Enfin, si les graphes sont le moyen privilégié de décrire les interactions, d'autres types de données peuvent aussi bénéficier d'une conversion sous forme de graphes. Dans cette thèse, nous effectuons un travail préliminaire sur l'extraction des parties les plus importantes d'images de lésions de la peau. Ces patches pourraient être utilisés pour créer des graphes et découvrir des relations latentes dans la donnée
Graphs are used everywhere to represent interactions between entities, whether physical such as atoms, molecules or people, or more abstract such as cities, friendships, ideas, etc. Amongst all the methods of machine learning that can be used, the recent advances in deep learning have made graph neural networks the de facto standard for graph representation learning. This thesis can be divided in two parts. First, we review the theoretical underpinnings of the most powerful graph neural networks. Second, we explore the challenges faced by the existing models when training on real world graph data. The powerfulness of a graph neural network is defined in terms of its expressiveness, i.e., its ability to distinguish non isomorphic graphs; or, in an equivalent manner, its ability to approximate permutation invariant and equivariant functions. We distinguish two broad families of the most powerful models. We summarise the mathematical properties as well as the advantages and disadvantages of these models in practical situations. Apart from the choice of the architecture, the quality of the graph data plays a crucial role in the ability to learn useful representations. Several challenges are faced by graph neural networks given the intrinsic nature of graph data. In contrast to typical machine learning methods that deal with tabular data, graph neural networks need to consider not only the features of the nodes but also the interconnectedness between them. Due to the connections between nodes, training neural networks on graphs can be done in two settings: in transductive learning, the model can have access to the test features in the training phase; in the inductive setting, the test data remains unseen. We study the differences in terms of performance between inductive and transductive learning for the node classification task. Additionally, the features that are fed to a model can be noisy or even missing. In this thesis we evaluate these challenges on real world datasets, and we propose a novel architecture to perform missing data imputation on graphs. Finally, while graphs can be the natural way to describe interactions, other types of data can benefit from being converted into graphs. In this thesis, we perform preliminary work on how to extract the most important parts of skin lesion images that could be used to create graphs and learn hidden relations in the data
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pineau, Edouard. "Contributions to representation learning of multivariate time series and graphs." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT037.

Повний текст джерела
Анотація:
Les algorithmes de machine learning sont construits pour apprendre, à partir de données, des modèles statistiques de décision ou de prédiction, sur un large panel de tâches. En général, les modèles appris sont des approximations d'un "vrai" modèle de décision, dont la pertinence dépend d'un équilibre entre la richesse du modèle appris, la complexité de la distribution des données et la complexité de la tâche à résoudre à partir des données. Cependant, il est souvent nécessaire d'adopter des hypothèses simplificatrices sur la donnée (e.g. séparabilité linéaire, indépendance des observations, etc.). Quand la distribution des donnée est complexe (e.g. grande dimension avec des interactions non-linéaires entre les variables observées), les hypothèses simplificatrices peuvent être contre-productives. Il est alors nécessaire de trouver une représentation alternatives des données avant d'apprendre le modèle de décision. L'objectif de la représentation des données est de séparer l'information pertinente du bruit, en particulier quand l'information est latente (i.e. cachée dans la donnée), pour aider le modèle statistique de décision. Jusqu'à récemment, beaucoup de représentations standards étaient construites à la main par des experts. Avec l'essor des techniques nouvelles de machine learning, et en particulier l'utilisation de réseaux de neurones, des techniques d'apprentissage de représentation ont surpassées les représentations manuelles dans de nombreux domaines. Dans cette thèse, nous nous sommes intéressés à l'apprentissage de représentation de séries temporelles multivariées (STM) et de graphes. STM et graphes sont des objets complexes qui ont des caractéristiques les rendant difficilement traitables par des algorithmes standards de machine learning. Par exemple, ils peuvent avoir des tailles variables et ont des alignements non-triviaux, qui empêchent l'utilisation de métriques standards pour les comparer entre eux. Il est alors nécessaire de trouver pour les échantillons observés (STM ou graphes) une représentation alternatives qui les rend comparables. Les contributions de ma thèses sont un ensemble d'analyses, d'approches pratiques et de résultats théoriques présentant des nouvelles manières d'apprendre une représentation de STM et de graphes. Deux méthodes de représentation de STM ont dédiées au suivi d'état caché de systèmes mécaniques. La première propose une représentation basée "model-based" appelée Sequence-to-graph (Seq2Graph). Seq2Graph se base sur l'hypothèse que les données observées ont été généré par un modèle causal simple, dont l'espace des paramètres sert d'espace de représentation. La second méthode propose une méthode générique de détection de tendances dans des séries temporelles, appelée Contrastive Trend Estimation (CTE), qui fait l'hypothèse que le vieillissement d'un système mécanique est monotone. Une preuve d'identifiabilité et une extension à des problèmes d'analyse de survie rendent cette approche puissante pour le suivi d'état de système mécaniques. Deux méthodes de représentation de graphes pour la classification sont aussi proposées. Une première propose de voir les graphes comme des séquences de nœuds et donc de les traiter avec un outil standard de représentation de séquences : un réseau de neurones récurrents. Une second méthode propose une analyse théorique et pratique du spectre du Laplacien pour la classification de graphes
Machine learning (ML) algorithms are designed to learn models that have the ability to take decisions or make predictions from data, in a large panel of tasks. In general, the learned models are statistical approximations of the true/optimal unknown decision models. The efficiency of a learning algorithm depends on an equilibrium between model richness, complexity of the data distribution and complexity of the task to solve from data. Nevertheless, for computational convenience, the statistical decision models often adopt simplifying assumptions about the data (e.g. linear separability, independence of the observed variables, etc.). However, when data distribution is complex (e.g. high-dimensional with nonlinear interactions between observed variables), the simplifying assumptions can be counterproductive. In this situation, a solution is to feed the model with an alternative representation of the data. The objective of data representation is to separate the relevant information with respect to the task to solve from the noise, in particular if the relevant information is hidden (latent), in order to help the statistical model. Until recently and the rise of modern ML, many standard representations consisted in an expert-based handcrafted preprocessing of data. Recently, a branch of ML called deep learning (DL) completely shifted the paradigm. DL uses neural networks (NNs), a family of powerful parametric functions, as learning data representation pipelines. These recent advances outperformed most of the handcrafted data in many domains.In this thesis, we are interested in learning representations of multivariate time series (MTS) and graphs. MTS and graphs are particular objects that do not directly match standard requirements of ML algorithms. They can have variable size and non-trivial alignment, such that comparing two MTS or two graphs with standard metrics is generally not relevant. Hence, particular representations are required for their analysis using ML approaches. The contributions of this thesis consist of practical and theoretical results presenting new MTS and graphs representation learning frameworks.Two MTS representation learning frameworks are dedicated to the ageing detection of mechanical systems. First, we propose a model-based MTS representation learning framework called Sequence-to-graph (Seq2Graph). Seq2Graph assumes that the data we observe has been generated by a model whose graphical representation is a causality graph. It then represents, using an appropriate neural network, the sample on this graph. From this representation, when it is appropriate, we can find interesting information about the state of the studied mechanical system. Second, we propose a generic trend detection method called Contrastive Trend Estimation (CTE). CTE learns to classify pairs of samples with respect to the monotony of the trend between them. We show that using this method, under few assumptions, we identify the true state underlying the studied mechanical system, up-to monotone scalar transform.Two graph representation learning frameworks are dedicated to the classification of graphs. First, we propose to see graphs as sequences of nodes and create a framework based on recurrent neural networks to represent and classify them. Second, we analyze a simple baseline feature for graph classification: the Laplacian spectrum. We show that this feature matches minimal requirements to classify graphs when all the meaningful information is contained in the structure of the graphs
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Halal, Taha. "Graph-based learning and optimization." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG043.

Повний текст джерела
Анотація:
Les graphes, structures de données fondamentales, sont utilisés pour représenter des schémas complexes dans divers domaines. Les réseaux de neurones graphiques (GNN), un paradigme d'apprentissage profond conçu pour les données structurées en graphes, offrent une solution d'apprentissage profond efficace pour extraire des informations de ces relations complexes. Cette thèse explore l'application des GNNs pour relever deux défis clés : maximiser l'influence dans les réseaux sociaux et prédire les liens manquants dans les graphes de connaissances avec des données limitées. Avec des applications allant de l'optimisation des campagnes de santé publique et de la lutte contre la désinformation à la complétion des bases de connaissances, cette recherche répond au besoin de méthodes efficaces et robustes dans ces domaines. La maximisation de l'influence (IM) se concentre sur l'identification des nœuds les plus influents au sein d'un réseau social pour maximiser la diffusion d'informations ou d'idées. Cette thèse explore des méthodes pour résoudre le problème de l'IM, en particulier dans des scénarios réels avec des réseaux massifs et divers thèmes d'information. Nous construisons nos modèles en nous basant sur S2V-DQN, une approche qui combine les réseaux Deep Q-Networks (DQN) pour l'apprentissage par renforcement avec Structure2Vec (S2V) pour l'intégration de graphes. Nous développons d'abord notre modèle IM-GNN qui intègre des fonctionnalités GNN avancées telles que les mécanismes d'attention graphique et le codage positionnel, démontrant des performances concurrentielles par rapport aux méthodes existantes pour la maximisation de l'influence. Nous étendons ensuite nos recherches pour aborder la maximisation de l'influence sensible au sujet (TIM) où la diffusion de l'information est influencée par son contenu thématique, exigeant que les modèles considèrent non seulement la structure du réseau mais aussi les sujets des messages partagés. C'est là que les limites des méthodes traditionnelles d'IM deviennent apparentes. Notre modèle TIM-GNN gère efficacement cette complexité en incorporant un entraînement sensible au sujet et des méthodes probabilistes pour construire des graphes de diffusion sensibles au sujet. Pour résoudre les problèmes de latence des requêtes, nous introduisons TIM-GNNx, qui intègre des mécanismes d'attention croisée et une matrice Q précalculée. Nos expériences sur des ensembles de données réels démontrent que notre modèle atteint des performances concurrentielles en termes de diffusion d'influence par rapport aux méthodes de l'état de l'art tout en offrant des améliorations significatives en termes de latence et de robustesse. Notre modèle TIM-GNNx trouve un équilibre entre l'efficacité des requêtes et la maximisation de l'influence, ce qui le rend particulièrement adapté aux applications en temps réel. Dans le domaine des graphes de connaissances, nous explorons la prédiction de liens à peu d'exemples (FSLP), où l'objectif est de prédire les relations manquantes avec des exemples d'entraînement limités. Notre étude se concentre sur la possibilité d'intégrer une méthode de complétion de graphe de connaissances basée sur les chemins, PathCon, avec un cadre de méta-apprentissage MetaR pour résoudre les limites de ce dernier. Bien que nos recherches initiales n'aient pas apporté d'améliorations significatives ou de contributions scientifiques notables, elles ont fourni des informations pertinentes sur les défis de cette tâche et ont éclairé le développement d'un prototype pour le projet AIDA. Ce prototype démontre la valeur pratique de nos recherches et ouvre la voie à de futures explorations dans ce domaine. Dans l'ensemble, cette thèse apporte des solutions nouvelles et efficaces basées sur GNN pour la maximisation de l'influence et explore des pistes prometteuses pour la prédiction de liens à peu d'exemples dans les graphes de connaissances, repoussant les limites de ces domaines de recherche
Graphs are a fundamental data structure used to represent complex patterns in various domains. Graph Neural Networks (GNNs), a deep learning paradigm specifically designed for graph-structured data, offer a powerful deep learning solution for extracting insights from these intricate relationships. This thesis explores the application of GNNs to address two key challenges: maximizing influence in social networks and predicting missing links in knowledge graphs with limited data. With applications ranging from optimizing public health campaigns and combating misinformation to knowledge base completion, this research addresses the need for computationally efficient and robust methods in these domains. Influence maximization (IM) focuses on identifying the most influential nodes within a social network to maximize the spread of information or ideas. This thesis explores methods for tackling the IM problem, particularly in real-world scenarios with massive networks and diverse information themes. We build our models upon the S2V-DQN framework, a powerful approach that combines Deep Q-Networks (DQNs) for reinforcement learning with Structure2Vec (S2V) for graph embedding. We first develop our IM-GNN model that incorporates advanced GNN features such as graph attention mechanisms and positional encoding, demonstrating competitive performance against existing learning-based and non-learning based methods for influence maximization. We further extend our research to tackle Topic-aware Influence Maximization (TIM) where the spread of information is influenced by its thematic content, requiring models to consider not only network structure but also the topics of the messages being shared. This is where the limitations of traditional IM methods become apparent. Our TIM-GNN model effectively handles this complexity by incorporating topic-aware training and probabilistic methods for constructing topic-aware diffusion graphs. To address query latency concerns, we introduce TIM-GNNx, which integrates cross-attention mechanisms and a pre-computed Q-matrix. Our experiments on real-world datasets demonstrate that our proposed model achieves competitive performance in terms of influence spread compared to state-of-the-art methods while also offering significant improvements in query time latency and robustness to changes in the diffusion graph. Notably, our TIM-GNNx model strikes a balance between query efficiency and maximizing influence, making it particularly well-suited for real-time applications. In the realm of knowledge graphs, we explore Few-Shot Link Prediction (FSLP), where the goal is to predict missing relationships with limited training examples, which is crucial for addressing the long-tail phenomenon. In knowledge graphs, the long-tail phenomenon refers to the fact that a large number of entities (nodes) and relations (edges) have very few connections or occurrences. This results in a distribution where a small number of popular entities or relations have many connections, while the vast majority have very few. Our investigation focuses on the feasibility of integrating a path-based knowledge graph completion method PathCon with a meta-learning framework MetaR to address the limitations of the latter. While our initial investigations did not yield significant improvements or notable scientific contributions, they provided valuable insights into the challenges of this task and informed the development of a prototype, deployed as an API, for the AIDA project. This prototype demonstrates the practical value of our research and paves the way for future explorations in this area. Overall, this thesis contributes novel and efficient GNN-based solutions for influence maximization and explores promising directions for few-shot link prediction in knowledge graphs, pushing the boundaries of these research areas
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Réseaux de neurones en graphes"

1

Michel, Verleysen, ed. Les réseaux de neurones artificiels. Paris: Presses universitaires de France, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mathis, Philippe. Graphes et réseaux: Modélisation multiniveau. Paris: Hermès science publications, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kamp, Yves. Réseaux de neurones récursifs pour mémoires associatives. Lausanne: Presses polytechniques et universitaires romandes, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rollet, Guy. Les RÉSEAUX DE NEURONES DE LA CONSCIENCE - Approche multidisciplinaire du phénomène. Paris: Editions L'Harmattan, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Personnaz, L. Réseaux de neurones formels pour la modélisation, la commande et la classification. Paris: CNRS Editions, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Amat, Jean-Louis. Techniques avancées pour le traitement de l'information: Réseaux de neurones, logique floue, algorithmes génétiques. 2nd ed. Toulouse: Cépaduès-Ed., 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Journées d'électronique (1989 Lausanne, Switzerland). Réseaux de neurones artificiels: Comptes rendus des Journées d'électronique 1989, Lausanne, 10-12 october 1983. Lausanne: Presses polytechniques romande, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Almeida, Fernando Carvalho de. L'evaluation des risques de défaillance des entreprises à partir des réseaux de neurones insérés dans les systèmes d'aide à la décision. Grenoble: A.N.R.T, Université Pierre Mendes France (Grenoble II), 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Université de Paris X: Nanterre, ed. L'avènement de la complexité dans la construction des apprentissages: Application à la pédagogie des recherches menées en informatique sur le chaos déterministe et les réseaux de neurones artificiels. Lille: A.N.R.T, Université de Lille III, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Seidou, Ousmane. Modélisation de la croissance de glace de lac par réseaux de neurones artificiels et estimation du volume de la glace abandonnée sur les berges des réservoirs hydroélectriques pendant les opérations d'hiver. Québec, QC: INRS--ETE, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Réseaux de neurones en graphes"

1

Martaj, Dr Nadia, and Dr Mohand Mokhtari. "Réseaux de neurones." In MATLAB R2009, SIMULINK et STATEFLOW pour Ingénieurs, Chercheurs et Etudiants, 807–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11764-0_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bretto, Alain, Alain Faisant, and François Hennecart. "Connexité et flots dans les réseaux." In Éléments de théorie des graphes, 99–129. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Golumbic, Martin Charles, and André Sainte-Laguë. "Tracing the topics in Les Réseaux (ou Graphes)." In The Zeroth Book of Graph Theory, 1–5. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61420-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kipnis, C., and E. Saada. "Un lien entre réseaux de neurones et systèmes de particules: Un modele de rétinotopie." In Lecture Notes in Mathematics, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Le Blanc, Benoît. "Réseaux informatiques et modèle des graphes petits-mondes." In Les réseaux, 91–100. CNRS Éditions, 2012. http://dx.doi.org/10.4000/books.editionscnrs.19279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

GUYOMAR, Cervin, and Claire LEMAITRE. "Métagénomique et métatranscriptomique." In Des séquences aux graphes, 151–86. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9066.ch5.

Повний текст джерела
Анотація:
Ce chapitre propose une étude de la métagénomique, en présentant les méthodes répondant à la question de l'identification des organismes présents dans des communautés microbiennes, avec ou sans références, ainsi qu'à la détermination de l'aspect fonctionnel (métatranscriptomique, inférence de réseaux métaboliques) ou encore à la comparaison d'échantillons métagénomiques.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"2. RÉSEAUX ET GRAPHES: VOCABULAIRE ET EXEMPLES." In Le vagabond stoïque, 52–100. Les Presses de l’Université de Montréal, 2004. http://dx.doi.org/10.1515/9782760624696-003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"4. Les réseaux de neurones artificiels." In L'intelligence artificielle, 91–112. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2580-6.c006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

MOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU, and Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales." In Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.

Повний текст джерела
Анотація:
Ce chapitre traite des méthodes d’analyse de séries chronologiques denses en télédétection. Il présente les principales exigences en termes de prétraitements des données, puis un aperçu des quatre principaux axes en détection de changement basée sur l'analyse de séries chronologiques denses : carte de classification, classification de trajectoire, frontières statistiques et approches d'ensemble. Il fournit aussi les détails sur deux des algorithmes les plus largement utilisés dans ce contexte d’analyse. Il aborde également la question de l'apprentissage profond pour la télédétection, en détaillant trois types d'architectures de réseau adaptées à l'analyse de séries chronologiques d'images satellitaires : les réseaux de neurones récurrents, les réseaux de neurones convolutifs et les modèles hybrides combinant ces deux derniers modèles de réseau.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

BYTYN, Andreas, René AHLSDORF, and Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN." In Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.

Повний текст джерела
Анотація:
Les réseaux de neurones convolutifs (CNN) utilisés pour l’analyse des signaux vidéo sont très gourmands en calculs. De telles applications embarquées nécessitent des implémentations efficaces en termes de coût et de puissance. Ce chapitre présente une solution basée sur un processeur de jeu d’instructions spécifique à l’application (ASIP) qui représente un bon compromis entre efficacité et programmabilité.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Réseaux de neurones en graphes"

1

Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.

Повний текст джерела
Анотація:
« L’intelligence artificielle connaît un essor fulgurant depuis ces dernières années. Lapprentissage automatique et plus précisément lapprentissage profond grâce aux réseaux de neurones convolutifs ont permis des avancées majeures dans le domaine de la reconnaissance des formes. Cette présentation fait suite à mon travail de thèse. La première partie retrace lhistorique et décrit les principes de fonctionnement de ces réseaux. La seconde présente une revue de la littérature de leurs applications dans la pratique médicale de plusieurs spécialités, pour des tâches diagnostiques nécessitant une démarche visuelle (classification dimages et détection de lésions). Quinze articles, évaluant les performances de ces solutions dautomatisation, ont été analysés. La troisième partie est une discussion à propos des perspectives et des limites présentées par les réseaux de neurones convolutifs, ainsi que leurs possibles applications en chirurgie orale. »
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier, and Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix." In XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

SENECHAL, Nadia, and Giovanni COCO. "Dynamique du trait de côte : approche par réseaux de neurones sur différentes bases de données." In Journées Nationales Génie Cotier - Genie Civil, 963–70. Editions Paralia, 2024. http://dx.doi.org/10.5150/jngcgc.2024.099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez, and Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples." In Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.

Повний текст джерела
Анотація:
Les avancées récentes dans le domaine de l'intelligence artificielle (IA), en particulier dans la reconnaissance d'images et le traitement du langage naturel, ouvrent de nouvelles perspectives qui vont bien au-delà de la recherche académique. L'IA, portée par ces succès populaires, repose sur des algorithmes basés sur des "réseaux de neurones" et elle se nourrit des vastes quantités d'informations accessibles sur Internet, notamment via des ressources telles que l'encyclopédie en ligne Wikipédia, la numérisation de livres et de revues, ainsi que des bibliothèques de photographies. Si l'on en croit les propres dires du programme informatique ChatGPT, son réseau de neurones compte plus de 175 millions de paramètres. Quant à notre cerveau, qui était le modèle initial de cette approche connexionniste, il compte environ 86 milliards de neurones formant un vaste réseau interconnecté... Dans ce travail, nous proposons une approche plus modeste de l'IA en nous contentant de décrire les résultats que l'on peut obtenir avec un seul neurone synthétique isolé, le modèle historique du perceptron (proposé par Frank Rosenblatt dans les années 1950). C'est un "Retour vers le futur" de l'IA qui est entrepris pour fabriquer et tester un neurone artificiel à partir de composants électroniques simples. Celui-ci doit permettre de différencier un chien d'un chat à partir de données anatomiques collectées sur ces animaux.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Walid, Tazarki, Fareh Riadh, and Chichti Jameleddine. "La Prevision Des Crises Bancaires: Un essai de modélisation par la méthode des réseaux de neurones [Not available in English]." In International Conference on Information and Communication Technologies from Theory to Applications - ICTTA'08. IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4529985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Lila, and Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gendrot, Cedric, Emmanuel Ferragne, and Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Quintas, Sebastião, Alberto Abad, Julie Mauclair, Virginie Woisard, and Julien Pinquier. "Utilisation de réseaux de neurones profonds avec attention pour la prédiction de l’intelligibilité de la parole de patients atteints de cancers ORL." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії