Добірка наукової літератури з теми "Réseaux de neurones à graphes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Réseaux de neurones à graphes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Réseaux de neurones à graphes"
Lemieux, Vincent. "L'articulation des réseaux sociaux." Recherches sociographiques 17, no. 2 (April 12, 2005): 247–60. http://dx.doi.org/10.7202/055716ar.
Повний текст джерелаDíaz Villalba, Alejandro. "Comment outiller l’étude des autorités avec l’analyse de réseaux dans les grammaires françaises des XVIe et XVIIe siècles." SHS Web of Conferences 138 (2022): 03003. http://dx.doi.org/10.1051/shsconf/202213803003.
Повний текст джерела-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 31. http://dx.doi.org/10.3845/ree.2006.074.
Повний текст джерела-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 37. http://dx.doi.org/10.3845/ree.2006.075.
Повний текст джерела-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 43. http://dx.doi.org/10.3845/ree.2006.076.
Повний текст джерела-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 47. http://dx.doi.org/10.3845/ree.2006.077.
Повний текст джерела-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 50. http://dx.doi.org/10.3845/ree.2006.078.
Повний текст джерела-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 55. http://dx.doi.org/10.3845/ree.2006.079.
Повний текст джерелаDalud-Vincent, Monique. "Une autre manière de modéliser les réseaux sociaux. Applications à l’étude de co-publications." Nouvelles perspectives en sciences sociales 12, no. 2 (August 22, 2017): 41–68. http://dx.doi.org/10.7202/1040904ar.
Повний текст джерелаBélanger, M., N. El-Jabi, D. Caissie, F. Ashkar, and J. M. Ribi. "Estimation de la température de l'eau de rivière en utilisant les réseaux de neurones et la régression linéaire multiple." Revue des sciences de l'eau 18, no. 3 (April 12, 2005): 403–21. http://dx.doi.org/10.7202/705565ar.
Повний текст джерелаДисертації з теми "Réseaux de neurones à graphes"
Carboni, Lucrezia. "Graphes pour l’exploration des réseaux de neurones artificiels et de la connectivité cérébrale humaine." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALM060.
Повний текст джерелаThe main objective of this thesis is to explore brain and artificial neural network connectivity from agraph-based perspective. While structural and functional connectivity analysis has been extensivelystudied in the context of the human brain, there is a lack of a similar analysis framework in artificialsystems.To address this gap, this research focuses on two main axes.In the first axis, the main objective is to determine a healthy signature characterization of the humanbrain resting state functional connectivity. To achieve this objective, a novel framework is proposed,integrating traditional graph statistics and network reduction tools, to determine healthy connectivitypatterns. Hence, we build a graph pair-wise comparison and a classifier to identify pathological statesand rank associated perturbed brain regions. Additionally, the generalization and robustness of theproposed framework were investigated across multiple datasets and variations in data quality.The second research axis explores the benefits of brain-inspired connectivity exploration of artificialneural networks (ANNs) in the future perspective of more robust artificial systems development. Amajor robustness issue in ANN models is represented by catastrophic forgetting when the networkdramatically forgets previously learned tasks when adapting to new ones. Our work demonstrates thatgraph modeling offers a simple and elegant framework for investigating ANNs, comparing differentlearning strategies, and detecting deleterious behaviors such as catastrophic forgetting.Moreover, we explore the potential of leveraging graph-based insights to effectively mitigatecatastrophic forgetting, laying a foundation for future research and explorations in this area
Albano, Alice. "Dynamique des graphes de terrain : analyse en temps intrinsèque." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066260/document.
Повний текст джерелаWe are surrounded by a multitude of interaction networks from different contexts. These networks can be modeled as graphs, called complex networks. They have a community structure, i.e. groups of nodes closely related to each other and less connected with the rest of the graph. An other phenomenon studied in complex networks in many contexts is diffusion. The spread of a disease is an example of diffusion. These phenomena are dynamic and depend on an important parameter, which is often little studied: the time scale in which they are observed. According to the chosen scale, the graph dynamics can vary significantly. In this thesis, we propose to study dynamic processes using a suitable time scale. We consider a notion of relative time which we call intrinsic time, opposed to "traditional" time, which we call extrinsic time. We first study diffusion phenomena using intrinsic time, and we compare our results with an extrinsic time scale. This allows us to highlight the fact that the same phenomenon observed at two different time scales can have a very different behavior. We then analyze the relevance of the use of intrinsic time scale for detecting dynamic communities. Comparing communities obtained according extrinsic and intrinsic scales shows that the intrinsic time scale allows a more significant detection than extrinsic time scale
Albano, Alice. "Dynamique des graphes de terrain : analyse en temps intrinsèque." Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066260.
Повний текст джерелаWe are surrounded by a multitude of interaction networks from different contexts. These networks can be modeled as graphs, called complex networks. They have a community structure, i.e. groups of nodes closely related to each other and less connected with the rest of the graph. An other phenomenon studied in complex networks in many contexts is diffusion. The spread of a disease is an example of diffusion. These phenomena are dynamic and depend on an important parameter, which is often little studied: the time scale in which they are observed. According to the chosen scale, the graph dynamics can vary significantly. In this thesis, we propose to study dynamic processes using a suitable time scale. We consider a notion of relative time which we call intrinsic time, opposed to "traditional" time, which we call extrinsic time. We first study diffusion phenomena using intrinsic time, and we compare our results with an extrinsic time scale. This allows us to highlight the fact that the same phenomenon observed at two different time scales can have a very different behavior. We then analyze the relevance of the use of intrinsic time scale for detecting dynamic communities. Comparing communities obtained according extrinsic and intrinsic scales shows that the intrinsic time scale allows a more significant detection than extrinsic time scale
Limnios, Stratis. "Graph Degeneracy Studies for Advanced Learning Methods on Graphs and Theoretical Results Edge degeneracy: Algorithmic and structural results Degeneracy Hierarchy Generator and Efficient Connectivity Degeneracy Algorithm A Degeneracy Framework for Graph Similarity Hcore-Init: Neural Network Initialization based on Graph Degeneracy." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX038.
Повний текст джерелаExtracting Meaningful substructures from graphs has always been a key part in graph studies. In machine learning frameworks, supervised or unsupervised, as well as in theoretical graph analysis, finding dense subgraphs and specific decompositions is primordial in many social and biological applications among many others.In this thesis we aim at studying graph degeneracy, starting from a theoretical point of view, and building upon our results to find the most suited decompositions for the tasks at hand.Hence the first part of the thesis we work on structural results in graphs with bounded edge admissibility, proving that such graphs can be reconstructed by aggregating graphs with almost-bounded-edge-degree. We also provide computational complexity guarantees for the different degeneracy decompositions, i.e. if they are NP-complete or polynomial, depending on the length of the paths on which the given degeneracy is defined.In the second part we unify the degeneracy and admissibility frameworks based on degree and connectivity. Within those frameworks we pick the most expressive, on the one hand, and computationally efficient on the other hand, namely the 1-edge-connectivity degeneracy, to experiment on standard degeneracy tasks, such as finding influential spreaders.Following the previous results that proved to perform poorly we go back to using the k-core but plugging it in a supervised framework, i.e. graph kernels. Thus providing a general framework named core-kernel, we use the k-core decomposition as a preprocessing step for the kernel and apply the latter on every subgraph obtained by the decomposition for comparison. We are able to achieve state-of-the-art performance on graph classification for a small computational cost trade-off.Finally we design a novel degree degeneracy framework for hypergraphs and simultaneously on bipartite graphs as they are hypergraphs incidence graph. This decomposition is then applied directly to pretrained neural network architectures as they induce bipartite graphs and use the coreness of the neurons to re-initialize the neural network weights. This framework not only outperforms state-of-the-art initialization techniques but is also applicable to any pair of layers convolutional and linear thus being applicable however needed to any type of architecture
Hafidi, Hakim. "Robust machine learning for Graphs/Networks." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT004.
Повний текст джерелаThis thesis addresses advancements in graph representation learning, focusing on the challengesand opportunities presented by Graph Neural Networks (GNNs). It highlights the significanceof graphs in representing complex systems and the necessity of learning node embeddings that capture both node features and graph structure. The study identifies key issues in GNNs, such as their dependence on high-quality labeled data, inconsistent performanceacross various datasets, and susceptibility to adversarial attacks.To tackle these challenges, the thesis introduces several innovative approaches. Firstly, it employs contrastive learning for node representation, enabling self-supervised learning that reduces reliance on labeled data. Secondly, a Bayesian-based classifier isproposed for node classification, which considers the graph’s structure to enhance accuracy. Lastly, the thesis addresses the vulnerability of GNNs to adversarialattacks by assessing the robustness of the proposed classifier and introducing effective defense mechanisms.These contributions aim to improve both the performance and resilience of GNNs in graph representation learning
Hérault, Laurent. "Réseaux de neurones récursifs pour l'optimisation combinatoire : application à la théorie des graphes et à la vision par ordinateur." Grenoble INPG, 1991. http://www.theses.fr/1991INPG0019.
Повний текст джерелаLachaud, Guillaume. "Extensions and Applications of Graph Neural Networks." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS434.
Повний текст джерелаGraphs are used everywhere to represent interactions between entities, whether physical such as atoms, molecules or people, or more abstract such as cities, friendships, ideas, etc. Amongst all the methods of machine learning that can be used, the recent advances in deep learning have made graph neural networks the de facto standard for graph representation learning. This thesis can be divided in two parts. First, we review the theoretical underpinnings of the most powerful graph neural networks. Second, we explore the challenges faced by the existing models when training on real world graph data. The powerfulness of a graph neural network is defined in terms of its expressiveness, i.e., its ability to distinguish non isomorphic graphs; or, in an equivalent manner, its ability to approximate permutation invariant and equivariant functions. We distinguish two broad families of the most powerful models. We summarise the mathematical properties as well as the advantages and disadvantages of these models in practical situations. Apart from the choice of the architecture, the quality of the graph data plays a crucial role in the ability to learn useful representations. Several challenges are faced by graph neural networks given the intrinsic nature of graph data. In contrast to typical machine learning methods that deal with tabular data, graph neural networks need to consider not only the features of the nodes but also the interconnectedness between them. Due to the connections between nodes, training neural networks on graphs can be done in two settings: in transductive learning, the model can have access to the test features in the training phase; in the inductive setting, the test data remains unseen. We study the differences in terms of performance between inductive and transductive learning for the node classification task. Additionally, the features that are fed to a model can be noisy or even missing. In this thesis we evaluate these challenges on real world datasets, and we propose a novel architecture to perform missing data imputation on graphs. Finally, while graphs can be the natural way to describe interactions, other types of data can benefit from being converted into graphs. In this thesis, we perform preliminary work on how to extract the most important parts of skin lesion images that could be used to create graphs and learn hidden relations in the data
Pineau, Edouard. "Contributions to representation learning of multivariate time series and graphs." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT037.
Повний текст джерелаMachine learning (ML) algorithms are designed to learn models that have the ability to take decisions or make predictions from data, in a large panel of tasks. In general, the learned models are statistical approximations of the true/optimal unknown decision models. The efficiency of a learning algorithm depends on an equilibrium between model richness, complexity of the data distribution and complexity of the task to solve from data. Nevertheless, for computational convenience, the statistical decision models often adopt simplifying assumptions about the data (e.g. linear separability, independence of the observed variables, etc.). However, when data distribution is complex (e.g. high-dimensional with nonlinear interactions between observed variables), the simplifying assumptions can be counterproductive. In this situation, a solution is to feed the model with an alternative representation of the data. The objective of data representation is to separate the relevant information with respect to the task to solve from the noise, in particular if the relevant information is hidden (latent), in order to help the statistical model. Until recently and the rise of modern ML, many standard representations consisted in an expert-based handcrafted preprocessing of data. Recently, a branch of ML called deep learning (DL) completely shifted the paradigm. DL uses neural networks (NNs), a family of powerful parametric functions, as learning data representation pipelines. These recent advances outperformed most of the handcrafted data in many domains.In this thesis, we are interested in learning representations of multivariate time series (MTS) and graphs. MTS and graphs are particular objects that do not directly match standard requirements of ML algorithms. They can have variable size and non-trivial alignment, such that comparing two MTS or two graphs with standard metrics is generally not relevant. Hence, particular representations are required for their analysis using ML approaches. The contributions of this thesis consist of practical and theoretical results presenting new MTS and graphs representation learning frameworks.Two MTS representation learning frameworks are dedicated to the ageing detection of mechanical systems. First, we propose a model-based MTS representation learning framework called Sequence-to-graph (Seq2Graph). Seq2Graph assumes that the data we observe has been generated by a model whose graphical representation is a causality graph. It then represents, using an appropriate neural network, the sample on this graph. From this representation, when it is appropriate, we can find interesting information about the state of the studied mechanical system. Second, we propose a generic trend detection method called Contrastive Trend Estimation (CTE). CTE learns to classify pairs of samples with respect to the monotony of the trend between them. We show that using this method, under few assumptions, we identify the true state underlying the studied mechanical system, up-to monotone scalar transform.Two graph representation learning frameworks are dedicated to the classification of graphs. First, we propose to see graphs as sequences of nodes and create a framework based on recurrent neural networks to represent and classify them. Second, we analyze a simple baseline feature for graph classification: the Laplacian spectrum. We show that this feature matches minimal requirements to classify graphs when all the meaningful information is contained in the structure of the graphs
Kalainathan, Diviyan. "Generative Neural Networks to infer Causal Mechanisms : algorithms and applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS516.
Повний текст джерелаCausal discovery is of utmost importance for agents who must plan, reason and decide based on observations; where mistaking correlation with causation might lead to unwanted consequences. The gold standard to discover causal relations is to perform experiments.However, experiments are in many cases expensive, unethical, or impossible to realize. In these situations, there is a need for observational causal discovery, that is, the estimation of causal relations from observations alone.Causal discovery in the observational data setting traditionally involves making significant assumptions on the data and on the underlying causal model.This thesis aims to alleviate some of the assumptions made on the causal models by exploiting the modularity and expressiveness of neural networks for causal discovery, leveraging both conditional independences and simplicity of the causal mechanisms through two algorithms.Extensive experiments on both simulated and real-world data and a throughout theoretical anaylsis prove the good performance and the soundness of the proposed approaches
Boulnois, Philippe. "Contribution à l'étude de différentes architectures de réseaux de neurones artificiels réalisant une transcription graphèmes-phonèmes pour le français." Compiègne, 1994. http://www.theses.fr/1994COMPD675.
Повний текст джерелаКниги з теми "Réseaux de neurones à graphes"
Michel, Verleysen, ed. Les réseaux de neurones artificiels. Paris: Presses universitaires de France, 1996.
Знайти повний текст джерелаMathis, Philippe. Graphes et réseaux: Modélisation multiniveau. Paris: Hermès science publications, 2003.
Знайти повний текст джерелаKamp, Yves. Réseaux de neurones récursifs pour mémoires associatives. Lausanne: Presses polytechniques et universitaires romandes, 1990.
Знайти повний текст джерелаRollet, Guy. Les RÉSEAUX DE NEURONES DE LA CONSCIENCE - Approche multidisciplinaire du phénomène. Paris: Editions L'Harmattan, 2013.
Знайти повний текст джерелаPersonnaz, L. Réseaux de neurones formels pour la modélisation, la commande et la classification. Paris: CNRS Editions, 2003.
Знайти повний текст джерелаAmat, Jean-Louis. Techniques avancées pour le traitement de l'information: Réseaux de neurones, logique floue, algorithmes génétiques. 2nd ed. Toulouse: Cépaduès-Ed., 2002.
Знайти повний текст джерелаJournées d'électronique (1989 Lausanne, Switzerland). Réseaux de neurones artificiels: Comptes rendus des Journées d'électronique 1989, Lausanne, 10-12 october 1983. Lausanne: Presses polytechniques romande, 1989.
Знайти повний текст джерелаAlmeida, Fernando Carvalho de. L'evaluation des risques de défaillance des entreprises à partir des réseaux de neurones insérés dans les systèmes d'aide à la décision. Grenoble: A.N.R.T, Université Pierre Mendes France (Grenoble II), 1993.
Знайти повний текст джерелаUniversité de Paris X: Nanterre, ed. L'avènement de la complexité dans la construction des apprentissages: Application à la pédagogie des recherches menées en informatique sur le chaos déterministe et les réseaux de neurones artificiels. Lille: A.N.R.T, Université de Lille III, 1996.
Знайти повний текст джерелаSeidou, Ousmane. Modélisation de la croissance de glace de lac par réseaux de neurones artificiels et estimation du volume de la glace abandonnée sur les berges des réservoirs hydroélectriques pendant les opérations d'hiver. Québec, QC: INRS--ETE, 2005.
Знайти повний текст джерелаЧастини книг з теми "Réseaux de neurones à graphes"
Martaj, Dr Nadia, and Dr Mohand Mokhtari. "Réseaux de neurones." In MATLAB R2009, SIMULINK et STATEFLOW pour Ingénieurs, Chercheurs et Etudiants, 807–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11764-0_17.
Повний текст джерелаBretto, Alain, Alain Faisant, and François Hennecart. "Connexité et flots dans les réseaux." In Éléments de théorie des graphes, 99–129. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_4.
Повний текст джерелаGolumbic, Martin Charles, and André Sainte-Laguë. "Tracing the topics in Les Réseaux (ou Graphes)." In The Zeroth Book of Graph Theory, 1–5. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61420-1_1.
Повний текст джерелаKipnis, C., and E. Saada. "Un lien entre réseaux de neurones et systèmes de particules: Un modele de rétinotopie." In Lecture Notes in Mathematics, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094641.
Повний текст джерелаLe Blanc, Benoît. "Réseaux informatiques et modèle des graphes petits-mondes." In Les réseaux, 91–100. CNRS Éditions, 2012. http://dx.doi.org/10.4000/books.editionscnrs.19279.
Повний текст джерелаGUYOMAR, Cervin, and Claire LEMAITRE. "Métagénomique et métatranscriptomique." In Des séquences aux graphes, 151–86. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9066.ch5.
Повний текст джерела"4. Les réseaux de neurones artificiels." In L'intelligence artificielle, 91–112. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2580-6.c006.
Повний текст джерелаMOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU, and Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales." In Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.
Повний текст джерелаBYTYN, Andreas, René AHLSDORF, and Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN." In Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.
Повний текст джерелаBENMAMMAR, Badr, and Asma AMRAOUI. "Application de l’intelligence artificielle dans les réseaux de radio cognitive." In Gestion et contrôle intelligents des réseaux, 233–60. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9008.ch9.
Повний текст джерелаТези доповідей конференцій з теми "Réseaux de neurones à graphes"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Повний текст джерелаGresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier, and Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix." In XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.
Повний текст джерелаORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez, and Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples." In Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.
Повний текст джерелаWalid, Tazarki, Fareh Riadh, and Chichti Jameleddine. "La Prevision Des Crises Bancaires: Un essai de modélisation par la méthode des réseaux de neurones [Not available in English]." In International Conference on Information and Communication Technologies from Theory to Applications - ICTTA'08. IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4529985.
Повний текст джерелаKim, Lila, and Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.
Повний текст джерелаGendrot, Cedric, Emmanuel Ferragne, and Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.
Повний текст джерелаQuintas, Sebastião, Alberto Abad, Julie Mauclair, Virginie Woisard, and Julien Pinquier. "Utilisation de réseaux de neurones profonds avec attention pour la prédiction de l’intelligibilité de la parole de patients atteints de cancers ORL." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-7.
Повний текст джерела