Добірка наукової літератури з теми "Relativistic processe"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Relativistic processe".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Relativistic processe"

1

Supriadi, Bambang, Singgih Bektiarso, Arita Fajar Damasari, Putri Indah Ramadhani, Trias Rizqi Febrianti, and Lubna Lubna. "RESPON SISWA TERHADAP METODE PYTHAGORAS SEBAGAI ALTERNATIF PENYELESAIAN SOAL ENERGI RELATIVISTIK." ORBITA: Jurnal Kajian, Inovasi dan Aplikasi Pendidikan Fisika 8, no. 1 (May 18, 2022): 128. http://dx.doi.org/10.31764/orbita.v8i1.8582.

Повний текст джерела
Анотація:
ABSTRAKTeori relativitas khusus merupakan teori yang dikembangkan Albert Einstein berkaitan kerelativitasan ruang dan waktu. Penelitian bertujuan mengetahui respon siswa Sekolah Menengah Atas terhadap penyelesaian soal energi relativistik dengan metode phytagoras. Metode penelitian adalah metode penelitian survei dengan subjek penelitian siswa kelas XI MIPA 1 SMA Muhammadiyah 3 Jember tahun ajaran 2021/2022 berjumlah 28 orang. Penelitian merupakan penelitian pengembangan dari peneliti sebelumnya. Teknik pengambilan sampel pada penelitian ini yaitu menggunakan sampling jenuh menggunakan angket respon siswa. Angket yang digunakan menggunakan skala likert mengacu pada tiga respon siswa yakni kognitif, afektif dan konatif. Berdasarkan hasil penelitian diperoleh pengaruh positif terhadap penyelesaian energi relativitik dengan metode phytagoras dengan presentase dimensi kognitif sebesar 71,11 %, afektif sebesar 69,03 % dan konatif sebesar 70,75 %. Secara keseluruhan siswa memberikan respon sebesar 70,29 % yang termasuk pada kategori kuat. Kata kunci: pembelajaran fisika; metode phytagoras; energi relativistik. ABSTRACTThe special theory of relativity is a theory developed by albert einstein regarding the relativity of space and time. This study aims to determine the response of high school students to solving relativistic energy problems using the Pythagoras method. Phitagoras method is a survey research with 28 students in the class XI MIPA 1 SMA Muhammadiyah 3 Jember in the 2021/2022 academic year. This research is a development research from previous researchers. The sampling technique in this research is using saturated sampling using student response questionnaires. The questionnaire used using the Likert scale refers to three student responses, namely cognitive, affective and conative. Based on the results of the study obtained a positive influence on the completion of relativistic energy with the phytagoras method with the percentage of cognitive dimensions of 71.11%, affective of 69.03% and conative of 70.75%. Overall, students gave a response of 70.29% which is included in the strong category. Keywords: physics learning; the Pythagoras method; relativistic energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Whelan, Colm T., J. Rasch, H. R. J. Walters, S. Keller, H. Ast, and R. M. Dreizler. "Inner shell (e, 2e) processes." Canadian Journal of Physics 74, no. 11-12 (November 1, 1996): 804–10. http://dx.doi.org/10.1139/p96-114.

Повний текст джерела
Анотація:
The great advantage of coincidence measurements is that by suitable choice of the kinematical and geometrical arrangement one may probe delicate physical effects that would be swamped in less differential experiments. The calculation of the triple-differential cross section for the inner shell ionization of high-Z elements at relativistic energies presents a serious challenge to theory. Relativistic effects enter in both the kinematics and the nature of the target, and the large atom exerts a strong distorting influence. We consider such processes in a range of geometries and kinematics. We report the results of fully relativistic distorted wave calculations. Results are presented for silver, gold, and uranium targets and suggestions for further experimental arrangements proposed where delicate relativistic effects should be readily detectable.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

CHEVALIER, C., and F. DEBBASCH. "A UNIFYING APPROACH TO RELATIVISTIC DIFFUSIONS AND H-THEOREMS." Modern Physics Letters B 22, no. 06 (March 10, 2008): 383–92. http://dx.doi.org/10.1142/s0217984908014845.

Повний текст джерела
Анотація:
A new, wide class of relativistic stochastic processes is introduced. All relativistic processes considered so far in the literature (the Relativistic Ornstein–Uhlenbeck Process as well as the Franchi–Le Jan and the Dunkel–Hänggi processes) are members of this class. The stochastic equations of motion and the associated forward Kolmogorov equations are obtained for each process in the class. The corresponding manifestly covariant transport equation is also obtained. In particular, the manifestly covariant equations for the Franchi–Le Jan and the Dunkel–Hänggi processes are derived here for the first time. Finally, the manifestly covariant approach is used to prove a new H-theorem for all processes in the class.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nakel, W. "Relativistic (e,2e) processes." Physics Reports 315, no. 6 (July 1, 1999): 409–71. http://dx.doi.org/10.1016/s0370-1573(98)00129-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

REIMER, ANITA. "HADRON-INITIATED EMISSION PROCESSES IN BLAZAR JETS." International Journal of Modern Physics D 18, no. 10 (October 2009): 1511–15. http://dx.doi.org/10.1142/s021827180901559x.

Повний текст джерела
Анотація:
Despite many advances in AGN physics, observationally as well as theoretically, the relativistic matter composition of extragalactic jets remains concealed. In contrast to the so called leptonic AGN emission models, hadronic models consider relativistic protons to be present in those sources, in addition to the relativistic electrons and positrons, and possibly cold material. Here I briefly discuss most processes that are commonly believed to characterize the so-called hadronic AGN emission models, and these include leptonic as well as hadronic processes. As an application predictions for the neutrino output during the TeV-flare of 3C 279 in 2006 are provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vyas, Ashish, Ram Kishor Singh, and R. P. Sharma. "Study of coexisting stimulated Raman and Brillouin scattering at relativistic laser power." Laser and Particle Beams 32, no. 4 (October 27, 2014): 657–63. http://dx.doi.org/10.1017/s0263034614000688.

Повний текст джерела
Анотація:
AbstractThis paper presents a model to study the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) simultaneously at relativistic laser power. At high intensity, the relativistic mass correction for the plasma electrons becomes significant and the plasma refractive index gets modified which leads to the relativistic self-focusing of the pump beam. This filamentation process affects the scattering processes (SRS and SBS) and at the same time the pump filamentation process also gets modified in the presence of the coexisting SRS and SBS due to the pump depletion. We have also demonstrated that the pump depletion and relativistic filamentation affects the back-reflectivity of scattered beams (SRS and SBS) significantly, for the coexistence case.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

VILA, GABRIELA S. "RADIATIVE PROCESSES IN JETS." International Journal of Modern Physics D 19, no. 06 (June 2010): 659–69. http://dx.doi.org/10.1142/s0218271810016841.

Повний текст джерела
Анотація:
Relativistic jets and collimated outflows are ubiquitous phenomena in astrophysical settings, from young stellar objects up to Active Galactic Nuclei. The observed emission from some of these jets can cover the whole electromagnetic spectrum, from radio to gamma-rays. The relevant features of the spectral energy distributions depend on the nature of the source and on the characteristics of the surrounding environment. Here the author reviews the main physical processes that command the interactions between populations of relativistic particles locally accelerated in the jets, with matter, radiation and magnetic fields. Special attention is given to the conditions that lead to the dominance of the different radiative mechanisms. Examples from various types of sources are used to illustrate these effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Enßlin, Torsten A., and Christoph Pfrommer. "Particle acceleration processes in the cosmic large-scale structure." Proceedings of the International Astronomical Union 2, no. 14 (August 2006): 372–73. http://dx.doi.org/10.1017/s1743921307011040.

Повний текст джерела
Анотація:
AbstractThe energetic shock waves associated with the violent large-scale structure formation process are able to accelerate relativistic electrons and protons. The induced non-thermal emission, especially at long radio wavelength, provides a fascinating perspective into structure formation, the relativistic Universe, and cosmic magnetic fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hsiao, Ju-Tang, Hsiao-Ling Sun, Sheng-Fang Lin, and Keh-Ning Huang. "Photoionization Processes of the Single-Ionized Boron." Journal of Atomic, Molecular, and Optical Physics 2011 (March 13, 2011): 1–9. http://dx.doi.org/10.1155/2011/452026.

Повний текст джерела
Анотація:
The relativistic calculations of the cross-section σ, the angular-distribution parameter β, and spin-polarization parameters {ξ,η,ζ} of photoelectrons using the multiconfiguration relativistic random-phase approximation theory for the photoionization of the B+ ion are presented. Precise energies and widths of all five Rydberg series of doublyexcited states (2pns)1P1o, (2pns)3P1o, (2pnd)1P1o, (2pnd)3P1o, and (2pnd)3D1o are determined. Our predictions are in very close agreement with experiments and are consistent with other calculations.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

TSUPKO, OLEG YU. "MAGNETO-PLASMA PROCESSES IN RELATIVISTIC ASTROPHYSICS: MODERN DEVELOPMENTS." International Journal of Modern Physics D 22, no. 07 (June 2013): 1330016. http://dx.doi.org/10.1142/s0218271813300164.

Повний текст джерела
Анотація:
This contribution is a review of some talks presented at the session "Magneto-Plasma Processes in Relativistic Astrophysics" of the Thirteenth Marcel Grossmann Meeting MG13. We discuss the modern developments of relativistic astrophysics, connected with presence of plasma and magnetic fields. The influence of magneto-plasma processes on the structure of the compact objects and accretion processes is considered. We also discuss a crucial role of magnetic field for the mechanism of core-collapse supernova explosions. Gravitational lensing in plasma is also considered.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Relativistic processe"

1

Glass, John T. "Relativistic ion-atom collision processes." Thesis, Queen's University Belfast, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dunkel, Jörn. "Relativistic Brownian motion and diffusion processes." kostenfrei, 2008. http://d-nb.info/991318757/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jaroschek, Claus. "Critical Kinetic Plasma Processes In Relativistic Astrophysics." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-46601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jamil, Omar. "A theoretical study of relativistic jets and accretion processes." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/161189/.

Повний текст джерела
Анотація:
The following work explores different aspects of the disc:jet connection in X-ray binaries. There is a detailed description of a new jet model (iShocks) that is used, firstly, to address the re-energization problem in the conical jet geometries. The adiabatic energy losses suffered by conical jets are successfully countered to reproduce the canonical flat/inverted synchrotron spectrum associated with compact radio jets. The iShocks model uses discrete packets of plasma, or shells, to simulate a jet. The shell collisions give rise to the shocks that are used to re-energize the emitting electrons. Multiple internal shocks, all along the jet, are shown to be necessary to achieve sufficient re-acceleration. The flat/inverted spectrum (ranging from the infra-red to the radio) is successfully reproduced and the high frequency break for such a spectrum is shown to be correlated with the jet power: vb ∼ L0.6 W. While the flat-spectrum synchrotron flux is also correlated with the jet power via: Fv ∼ L1.4 W. Both these correlations are in agreement with the previous analytical predictions. Themodel is also used to explore themassive ejections scenario in the source GRS 1915+105. Various iShocks set-ups are used to model the data that display the flaring behaviour observed in different frequencies (IR-mm-radio). The X-ray binary timing properties are also investigated with the aide of the iShocks model. In particular, the optical/X-ray correlations are the focus of the present study. These correlations have been observed to show some interesting behaviours, such as: the optical lagging the X-rays, and the optical emission showing awareness of the X-ray emission in the form of pre-cognition dips. A number of these correlations are successfully reproduced by translating the simulated X-ray light curves into the jet parameters used as the input for the iShocks model. In addition to relativistic jets, a study of the electron-positron pair processes is also included in the present work. The electron-positron pair annihilation is implemented in an existing Comptonization code (simulating the corona) to explore the possibility of masking an annihilation line from the X-ray binary sources. The results show that radiative processes such as inverse Compton scattering and bremsstrahlung radiation, in addition to thermal line broadening, can be very effective in making the e−/e+ annihilation line indistinguishable from the rest of the high energy spectrum.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Postavaru, Octavian [Verfasser]. "Strong-field relativistic processes in highly charged ions / Octavian Postavaru." Heidelberg : Universitätsbibliothek Heidelberg, 2010. http://d-nb.info/1024909743/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Guo-Xin. "Relativistic close coupling calculations for fundamental atomic processes in astrophysics." Columbus, Ohio : Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1078938510.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xxvi, 249 p.; also includes graphics (some col.). Includes abstract and vita. Advisor: Anil K. Pradhan, Dept. of Astronomy. Includes bibliographical references (p. 237-249).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Melzani, Mickaël. "Reconnexion magnétique non-collisionelle dans les plasmas relativistes et simulations particle-in-cell." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0946/document.

Повний текст джерела
Анотація:
L'objectif de cette thèse est l'étude de la reconnexion magnétique dans les plasmas non-collisionels et relativistes. De tels plasmas sont présents dans divers objets astrophysiques (MQs, AGNs, GRBs...), où la reconnexion pourrait expliquer la production de particules et de radiation de haute énergie, un chauffage, ou des jets. Une compréhension fondamentale de la reconnexion n'est cependant toujours pas acquise, en particulier dans les plasmas relativistes ion-électron. Nous présentons d'abord les bases de la reconnexion magnétique. Nous démontrons des résultats particuliers à la physique des plasmas relativistes, concernant par exemple la distribution de Maxwell-Jüttner. Ensuite, nous réalisons une étude détaillée de l'outil numérique utilisé : les simulations particle-in-cell (PIC). Le fait que le plasma réel contienne beaucoup plus de particules que le plasma PIC a des conséquences importantes (collisionalité, relaxation, bruit) que nous décrivons. Enfin, nous étudions la reconnexion magnétique dans les plasmas ion-électron et relativistes à l'aide de simulations PIC. Nous soulignons des points spécifiques : loi d'Ohm (l'inertie de bulk dominante), zone de diffusion, taux de reconnexion (et sa normalisation relativiste). Les ions et les électrons produisent des lois de puissance, avec un index qui dépend de la vitesse d'Alfvén et de la magnétisation, et qui peut être plus dur que dans le cas des chocs non-collisionels. De plus, les ions peuvent avoir plus ou moins d'énergie que les électrons selon la valeur du champ guide. Ces résultats fournissent une base solide à des modèles d'objets astrophysiques qui, jusque là, supposaient a priori ces résultats
The purpose of this thesis is to study magnetic reconnection in collisionless and relativistic plasmas. Such plasmas can be encountered in various astrophysical objects (microquasars, AGNs, GRBs...), where reconnection could explain high-energy particle and photon production, plasma heating, or transient large-scale outflows. However, a first principle understanding of reconnection is still lacking, especially in relativistic ion-electron plasmas. We first present the basis of reconnection physics. We derive results relevant to relativistic plasma physics, including properties of the Maxwell-Jüttner distribution. Then, we provide a detailed study of our numerical tool, particle-in-cell simulations (PIC). The fact that the real plasma contains far less particles than the PIC plasma has important consequences concerning relaxation times or noise, that we describe. Finally, we study relativistic reconnection in ion-electron plasmas with PIC simulations. We stress outstanding properties: Ohm's law (dominated by bulk inertia), structure of the diffusion zone, energy content of the outflows (thermally dominated), reconnection rate (and its relativistic normalization). Ions and electrons produce power law distributions, with indexes that depend on the inflow Alfvén speed and on the magnetization of the corresponding species. They can be harder than those produced by collisionless shocks. Also, ions can get more or less energy than the electrons, depending on the guide field strength. These results provide a solid ground for astrophysical models that, up to now, assumed with no prior justification the existence of such distributions or of such ion/electron energy repartition
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tardif, Camille. "Etude infinitésimale et asymptotique de certains flots stochastiques relativistes." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00703181.

Повний текст джерела
Анотація:
Nous étudions certains processus de Lévy à valeurs dans les groupes d'isométries respectifs des espace-temps de Minkowski, de De Sitter et de Anti-De-Sitter. Le groupe d'isométries est vu comme le fibré des repères de l'espace-temps et les processus de Lévy considérés se projettent sur le fibré unitaire en un processus markovien relativiste ; c'est-à-dire que les trajectoires dans l'espace-temps sont de genre temps et que le générateur est invariant par les isométries. Dans la première partie nous adaptons pour les diffusions hypoelliptiques générales un résultat de Ben Arous et Gradinaru concernant la singularité de la fonction de Green hypoelliptique. Nous déduisons de cela un critère d'effilement de Wiener local pour les diffusions relativistes dans le groupe de Poincaré, groupe des isométries de l'espace-temps de Minkowski. Dans les deux dernières parties nous nous intéressons au comportement asymptotique du flot stochastique associé à ces processus de Lévy dans les différents groupes d'isométries. Sous une condition d'intégrabilité de la mesure de Lévy nous calculons explicitement les coefficients de Lyapounov des processus dans le groupe de Poincaré. Nous effectuons un travail similaire pour les espace-temps de De Sitter et Anti-De-Sitter en nous limitant au cas des diffusions. Nous explicitons de plus la frontière de Poisson pour la diffusion dans le groupe d'isométries de l'espace-temps de De Sitter.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fitoussi, Thomas. "Les cascades électromagnétiques cosmologiques comme sondes du milieu intergalactique." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30235/document.

Повний текст джерела
Анотація:
Cette thèse vise à étudier le phénomène dit de " cascades électromagnétiques cosmologiques ". Ces cascades sont typiquement générées dans le milieu intergalactique par l'absorption de rayons gamma sur les photons du fond optique / UV et par la production de paires électron / positron associés. Ces leptons eux-mêmes interagissent avec les photons du fond diffus cosmologique via diffusion inverse Compton pour produire de nouveaux rayons gamma qui eux même peuvent s'annihiler, générant à partir d'un unique photon primaire toute une gerbe de photons et de particules secondaires. D'un point de vue observationnel, le développement de cette cascade introduit trois effets : une déformation du spectre à haute énergie, un retard temporel dans l'arrivée des rayons gamma et une extension de la taille apparente de la source. Les cascades électromagnétiques cosmologiques ont commencé à être étudiées dans les années soixante. Mais ce n'est qu'à partir des années 2010 avec l'arrivée du satellite Fermi (entre autres) et des observations dans la bande au GeV et au TeV que la discipline a explosé. Le phénomène est particulièrement important. D'une part il altère le spectre observé des sources rendant difficile la compréhension de la physique de ces dernières. D'autre part les cascades se développant dans le milieu extragalactique, elles sont très sensibles à la composition de ce dernier (fond diffus de photons, champ magnétique). Or ce milieu étant très ténu, il est difficile à étudier. Les cascades deviennent alors une formidable sonde pour accéder à sa compréhension et pouvoir en comprendre l'origine qui remonte au commencement de l'Univers. Pourtant les cascades cosmologiques sont un phénomène complexe faisant intervenir des interactions difficiles à modéliser (sections efficaces complexes) et le transport de particules dans un Univers en expansion (cosmologie). Face à cette complexité les expressions analytiques sont vite limitées et le passage au numérique devient inévitable. Dans le cadre de cette thèse un code de simulation Monte Carlo a donc été développé visant à reproduire aussi précisément que possible le phénomène des cascades. Ce code a été testé et validé en le confrontant aux expressions analytiques. Grâce à ce code, le rôle des différents paramètres physiques impactant le développement de la cascade a été étudié de manière systématique. Cette étude a permis de mieux comprendre la physique du phénomène. En particulier, l'impact des propriétés du milieu extragalactique (fond diffus extragalactique, champ magnétique extragalactique) sur les observables a été mis en évidence. Finalement, une seconde étude a été menée pour mesurer la contribution des cascades au fond gamma extragalactique. Des travaux récents montrent qu'une grande partie de l'émission diffuse à très haute énergie provient de sources ponctuelles non résolues (blazars en particulier). Ces sources gamma (résolues et non résolues) doivent en principe initier des cascades qui peuvent contribuer au fond diffus. En partant d'une modélisation de l'émission des blazars à différents redshifts, l'absorption et la contribution des cascades ont alors été calculées à l'aide du code Monte Carlo. Les résultats montrent que la contribution des cascades au fond gamma extragalactique pourrait violer les limites Fermi mais l'excès doit encore être confirmé
This thesis aims at studying "cosmological electromagnetic cascades". These cascades are initiated by the absorption of very high energy gamma-rays through gamma-gamma annihilation with optical / UV background photons of the intergalactic medium. In this interaction, electron/positron pairs are produced. The newly created leptons interact with photons of the Cosmological Microwave Background producing new gamma-rays through inverse Compton scattering which can also annihilate producing a cascade of secondary particles from a single primary photon. Observationally, the development of this cascade has three effects : the observed high energy spectrum is altered, observed photons arrive with a time delay with respect to primary photons and the source appears extended. Cosmological electromagnetic cascades start to being studied in the early sixties. But it is during the 2010's with the Fermi satellite and GeV to TeV observations that the field has really started to being explored. In the fast evolving backgound of gamma-ray astronomy, understanding the cascade physics has become a crucial stake. First the observed spectrum from a distant source is altered, which directly affects the modelling of high energy sources. Secondly, the cascades develop in the extragalactic medium and are very sensitive to its composition (background light, magnetic field). This medium is hard to study because it is extremely thin. Hence the cosmological cascades are a formidable probe to access its comprehension and its origin coming from the very beginning of our Universe. Yet the cosmological cascades are a complex phenomenon which involves complicated interactions (complex cross sections) and transport of particles in an expanding Universe. Analytical expressions are rapidly limited and numerical computations are required. In this thesis a Monte Carlo simulation code has been developed aiming at reproducing the cosmological cascades. This code has been tested and validated against analytical expressions. With the simulation code, a systematic study of the parameters impacting the development of the cascade has been led. This study allows a better understanding of the cascade physics. Especially, the impact of the intergalactic medium properties (extragalactic background light, extragalactic magnetic field) on the observables has been highlighted. Finally, a second study has been done to measure the contribution of cascades to the extragalactic gamma ray background. Recent works show that a great part of the diffuse emission at very high energy is explained by unresolved sources (blazars in particular). These gamma sources (resolved and unresolved) must in principle initiate cosmological cascades which can also contribute to the extragalactic gamma ray background. Starting from a modeling of the blazars at different redshifts, absorption and contribution of the cascades have been estimated with the simulation code. The results show that the contribution of the cascades might violate the Fermi limits but the excess must be confirmed
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lundman, Christoffer. "Photospheric emission from structured, relativistic jets : applications to gamma-ray burst spectra and polarization." Doctoral thesis, KTH, Partikel- och astropartikelfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136178.

Повний текст джерела
Анотація:
The radiative mechanism responsible for the prompt gamma-ray burst (GRB) emission remains elusive. For the last decade, optically thin synchrotron emission from shocks internal to the GRB jet appeared to be the most plausible explanation. However, the synchrotron interpretation is incompatible with a significant fraction of GRB observations, highlighting the need for new ideas. In this thesis, it is shown that the narrow, dominating component of the prompt emission from the bright GRB090902B is initially consistent only with emission released at the optically thick jet photosphere. However, this emission component then broadens in time into a more typical GRB spectrum, which calls for an explanation. In this thesis, a previously unconsidered way of broadening the spectrum of photospheric emission, based on considerations of the lateral jet structure, is presented and explored. Expressions for the spectral features, as well as polarization properties, of the photospheric emission observed from structured, relativistic jets are derived analytically under simplifying assumptions on the radiative transfer close to the photosphere. The full, polarized radiative transfer is solved through Monte Carlo simulations, using a code which has been constructed for this unique purpose. It is shown that the typical observed GRB spectrum can be obtained from the photosphere, without the need for additional, commonly assumed, physical processes (e.g. energy dissipation, particle acceleration, or additional radiative processes). Furthermore, contrary to common expectations, it is found that the observed photospheric emission can be highly linearly polarized (up to $\sim 40 \, \%$). In particular, it is shown that a shift of $\pi/2$ of the angle of polarization is the only shift allowed by the proposed model, consistent with the only measurement preformed to date. A number of ways to test the theory is proposed, mainly involving simultaneous spectral and polarization measurements. The simplest measurement, which tests not only the proposed theory but also common assumptions on the jet structure, involves only two consecutive measurements of the angle of polarization during the prompt emission.

QC 20131204

Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Relativistic processe"

1

Bertulani, Carlos A. Electromagnetic processes in relativistic heavy ion collisions. Julich: Zentralbibliothek der Kernforschungsanlage, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Becchi, Carlo M., and Giovanni Ridolfi. An introduction to relativistic processes and the standard model of electroweak interactions. Milano: Springer Milan, 2006. http://dx.doi.org/10.1007/88-470-0421-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Becchi, Carlo M., and Giovanni Ridolfi. An Introduction to Relativistic Processes and the Standard Model of Electroweak Interactions. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06130-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

An introduction to relativistic processes and the standard model of electroweak interactions. Milan, IT: Springer, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Center, Langley Research, ed. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Baikie, Grant. Relativistic Brownian Motion and Diffusion Processes. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Morawetz, Klaus. Relativistic Transport. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0022.

Повний текст джерела
Анотація:
The quantum kinetic equations for relativistic baryon-meson systems are derived from Kadanoff and Baym equations. It is shown that the virtual exchange of mesons create an effective Yukawa potential between the nucleons. Binding properties of nuclear matter are discussed and the problem of Coester line is explored which means that only three-particle correlations or relativistic effective masses can describe the binding of nuclear matter correctly. The derived kinetic equations show in-medium processes of scattering and particle creation and destruction which are forbidden for free-scattering. The corresponding in-medium cross sections are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Unified Non-Local Relativistic Theory of Transport Processes. Elsevier, 2016. http://dx.doi.org/10.1016/c2016-0-00437-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alexeev, Boris V. Unified Non-Local Relativistic Theory of Transport Processes. Elsevier, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alexeev, Boris V. Unified Non-Local Relativistic Theory of Transport Processes. Elsevier Science & Technology Books, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Relativistic processe"

1

Avetissian, Hamlet K. "Induced Nonstationary Transition Process." In Relativistic Nonlinear Electrodynamics, 161–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26384-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nagasawa, Masao. "Relativistic Quantum Particles." In Stochastic Processes in Quantum Physics, 231–62. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8383-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Avetissian, Hamlet K. "“Relativistic” Nonlinear Electromagnetic Processes in Graphene." In Relativistic Nonlinear Electrodynamics, 463–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26384-7_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Avetissian, Hamlet K. "Induced Channeling Process in a Crystal." In Relativistic Nonlinear Electrodynamics, 193–220. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26384-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lindgren, Ingvar. "Dynamical Bound-State Processes." In Relativistic Many-Body Theory, 277–93. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-15386-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kimball, J. C., and N. Cue. "High-Energy Processes in Crystals: Radiation, Pair Creation, Photon Splitting and Pion Creation." In Relativistic Channeling, 305–18. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-6394-2_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Avetissian, Hamlet K. "Quantum Theory of Induced Multiphoton Cherenkov Process." In Relativistic Nonlinear Electrodynamics, 69–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26384-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nagasawa, Masao. "Non-Relativistic Quantum Theory." In Stochastic Processes in Quantum Physics, 53–104. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8383-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Avetissian, Hamlet K. "Nonlinear Dynamics of Induced Compton and Undulator Processes." In Relativistic Nonlinear Electrodynamics, 129–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26384-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Böttcher, Markus, and Anita Reimer. "Radiation Processes." In Relativistic Jets from Active Galactic Nuclei, 39–80. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527641741.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Relativistic processe"

1

Debbasch, F., and C. Chevalier. "Relativistic Stochastic Processes." In NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS: XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics. AIP, 2007. http://dx.doi.org/10.1063/1.2746722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Johnson, W. R., M. S. Safronova, and A. Derevianko. "All-order methods in relativistic atomic structure theory." In ATOMIC PROCESSES IN PLASMAS. ASCE, 1998. http://dx.doi.org/10.1063/1.56557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zingale, M. "Quenching processes in flame-vortex interactions." In RELATIVISTIC ASTROPHYSICS: 20th Texas Symposium. AIP, 2001. http://dx.doi.org/10.1063/1.1419598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yong-Ki Kim. "Relativistic and quantum electrodynamic effects in highly-charged ions." In Atomic processes in plasmas. AIP, 1990. http://dx.doi.org/10.1063/1.39286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grant, I. P. "Relativistic atomic structure and electron–atom collisions." In X-ray and inner-shell processes. AIP, 1990. http://dx.doi.org/10.1063/1.39829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fontes, Christopher J. "All Overview of Relativistic Distorted-Wave Cross Sections." In ATOMIC PROCESSES IN PLASMAS: 14th APS Topical Conference on Atomic Processes in Plasmas. AIP, 2004. http://dx.doi.org/10.1063/1.1824855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Debbasch, F. "Relativistic Stochastic Processes: A review." In ALBERT EINSTEIN CENTURY INTERNATIONAL CONFERENCE. AIP, 2006. http://dx.doi.org/10.1063/1.2399614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pelletier, Guy. "High Energy Processes in Relativistic Flows." In HIGH ENERGY GAMMA-RAY ASTRONOMY: 2nd International Symposium on High Energy Gamma-Ray Astronomy. AIP, 2005. http://dx.doi.org/10.1063/1.1878395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rybicki, George B., and Benjamin C. Bromley. "Spectral line signatures of relativistic disks." In Accretion processes in astrophysical systems: Some like it hot! - eigth astrophysics conference. AIP, 1998. http://dx.doi.org/10.1063/1.55905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Su, Q. "Examples of classical and genuinely quantum relativistic phenomena." In The 8th international conference on multiphoton processes (ICOMP VIII). AIP, 2000. http://dx.doi.org/10.1063/1.1291982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Relativistic processe"

1

Соловйов, Володимир Миколайович, and D. N. Chabanenko. Financial crisis phenomena: analysis, simulation and prediction. Econophysic’s approach. Гумбольдт-Клуб Україна, November 2009. http://dx.doi.org/10.31812/0564/1138.

Повний текст джерела
Анотація:
With the beginning of the global financial crisis, which attracts the attention of the international community, the inability of existing methods to predict the events became obvious. Creation, testing, adaptation of the models to the concrete financial market segments for the purpose of monitoring, early prediction, prevention and notification of financial crises is gaining currency nowadays. Econophysics is an interdisciplinary research field, applying theories and methods originally developed by physicists in order to solve problems in economics, usually those including uncertainty or stochastic processes and nonlinear dynamics. Its application to the study of financial markets has also been termed statistical finance referring to its roots in statistical physics. The new paradigm of relativistic quantum econophysics is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kiv, Arnold E., Olexandr V. Merzlykin, Yevhenii O. Modlo, Pavlo P. Nechypurenko, and Iryna Yu Topolova. The overview of software for computer simulations in profile physics learning. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3260.

Повний текст джерела
Анотація:
The paper deals with the possibilities of using specialized (virtual labs and simulators, software for natural process simulation) and general (programming languages and libraries, spreadsheets, CAS) software in school researches. Such software as virtual labs, software for natural process simulation, programming languages and libraries in school researches can be used to simulate phenomena that cannot be learned in a school lab (for example, for modeling a radioactive decay or for demonstrating the states of relativistic mechanics). Also, virtual labs in school practice are usually used in those cases where students cannot perform an experiment in real labs. For example, it is convenient for distance learning. The using of programming languages and libraries in physics learning research requires both students’ physics research competencies and programming competencies. That is why using this software in physics classes can hardly be recommended. However, programming languages and libraries can become a powerful tool for the formation and development of research competencies of physics students in extracurricular learning activities. The implementation of the spreadheets and the CAS in school physics researches is the easiest and has its benefits.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії