Добірка наукової літератури з теми "Relativistic Optics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Relativistic Optics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Relativistic Optics"

1

Keitel, Christoph H. "Relativistic quantum optics." Contemporary Physics 42, no. 6 (November 2001): 353–63. http://dx.doi.org/10.1080/00107510110084723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Miron, Radu, and Tomoaki Kawaguchi. "Relativistic geometrical optics." International Journal of Theoretical Physics 30, no. 11 (November 1991): 1521–43. http://dx.doi.org/10.1007/bf00675616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Umstadter, Donald, Szu-yuan Chen, Robert Wagner, Anatoly Maksimchuk, and Gennady Sarkisov. "Nonlinear optics in relativistic plasmas." Optics Express 2, no. 7 (March 30, 1998): 282. http://dx.doi.org/10.1364/oe.2.000282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mourou, Gerard A., Toshiki Tajima, and Sergei V. Bulanov. "Optics in the relativistic regime." Reviews of Modern Physics 78, no. 2 (April 28, 2006): 309–71. http://dx.doi.org/10.1103/revmodphys.78.309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Miron, R., and G. Zet. "Relativistic optics of nondispersive media." Foundations of Physics 25, no. 9 (September 1995): 1371–82. http://dx.doi.org/10.1007/bf02055336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

KIM, Chul Min, and Chang Hee NAM. "Relativistic Optics Explored with PW Lasers." Physics and High Technology 24, no. 4 (April 30, 2015): 9. http://dx.doi.org/10.3938/phit.24.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thompson, Robert T. "General relativistic contributions in transformation optics." Journal of Optics 14, no. 1 (December 15, 2011): 015102. http://dx.doi.org/10.1088/2040-8978/14/1/015102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zet, G., and V. Manta. "Post-Newtonian estimation in relativistic optics." International Journal of Theoretical Physics 32, no. 6 (June 1993): 1013–20. http://dx.doi.org/10.1007/bf01215307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Janner, A. "Looking for a relativistic crystal optics." Ferroelectrics 161, no. 1 (November 1994): 191–206. http://dx.doi.org/10.1080/00150199408213367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abe, Y., K. F. F. Law, Ph Korneev, S. Fujioka, S. Kojima, S. H. Lee, S. Sakata, et al. "Whispering Gallery Effect in Relativistic Optics." JETP Letters 107, no. 6 (March 2018): 351–54. http://dx.doi.org/10.1134/s0021364018060012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Relativistic Optics"

1

Kjellsson, Lindblom Tor. "Relativistic light-matter interaction." Doctoral thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-147749.

Повний текст джерела
Анотація:
During the past decades, the development of laser technology has produced pulses with increasingly higher peak intensities. These can now be made such that their strength rivals, and even exceeds, the atomic potential at the typical distance of an electron from the nucleus. To understand the induced dynamics, one can not rely on perturbative methods and must instead try to get as close to the full machinery of quantum mechanics as practically possible. With increasing field strength, many exotic interactions such as magnetic, relativistic and higher order electric effects may start to play a significant role. To keep a problem tractable, only those effects that play a non-negligible role should be accounted for. In order to do this, a clear notion of their relative importance as a function of the pulse properties is needed.  In this thesis I study the interaction between atomic hydrogen and super-intense laser pulses, with the specific aim to contribute to the knowledge of the relative importance of different effects. I solve the time-dependent Schrödinger and Dirac equations, and compare the results to reveal relativistic effects. High order electromagnetic multipole effects are accounted for by including spatial variation in the laser pulse. The interaction is first described using minimal coupling. The spatial part of the pulse is accounted for by a series expansion of the vector potential and convergence with respect to the number of expansion terms is carefully checked. A significantly higher demand on the spatial description is found in the relativistic case, and its origin is explained. As a response to this demanding convergence behavior, an alternative interaction form for the relativistic case has been developed and presented. As a guide mark for relativistic effects, I use the classical concept of quiver velocity, vquiv, which is the peak velocity of a free electron in the polarization direction of a monochromatic electromagnetic plane wave that interacts with the electron. Relativistic effects are expected when vquiv reaches a substantial fraction of the speed of light c, and in this thesis I consider cases up to vquiv=0.19c. For the present cases, relativistic effects are found to emerge around vquiv=0.16c .
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shen, Xiaozhe. "Optics measurement and correction for the Relativistic Heavy Ion Collider." Thesis, Indiana University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3636204.

Повний текст джерела
Анотація:

The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mondal, Ritwik. "Relativistic theory of laser-induced magnetization dynamics." Doctoral thesis, Uppsala universitet, Materialteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-315247.

Повний текст джерела
Анотація:
Ultrafast dynamical processes in magnetic systems have become the subject of intense research during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization dynamics. In particular, we build relativistic theory to explain the magnetization dynamics observed at short timescales in pump-probe magneto-optical experiments and compute from first-principles the coherent laser-induced magnetization. In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham equation that includes all relativistic effects related to spin and orbital magnetism as well as the magnetic exchange interaction and any external electromagnetic field. As it describes both particle and antiparticle, a separation between them is sought because we focus on low-energy excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that captures all relativistic contributions in first order; the most significant one is the full spin-orbit interaction (gauge invariant and Hermitian). Noteworthy, we find that this relativistic framework explains a wide range of dynamical magnetic phenomena. To mention, (i) we show that the phenomenological Landau-Lifshitz-Gilbert equation of spin dynamics can be rigorously obtained from the Dirac-Kohn-Sham equation and we derive an exact expression for the tensorial Gilbert damping. (ii) We derive, from the gauge-invariant part of the spin-orbit interaction, the existence of a relativistic interaction that linearly couples the angular momentum of the electromagnetic field and the electron spin. We show this spin-photon interaction to provide the previously unknown origin of the angular magneto-electric coupling, to explain coherent ultrafast magnetism, and to lead to a new torque, the optical spin-orbit torque. (iii) We derive a definite description of magnetic inertia (spin nutation) in ultrafast magnetization dynamics and show that it is a higher-order spin-orbit effect. (iv) We develop a unified theory of magnetization dynamics that includes spin currents and show that the nonrelativistic spin currents naturally lead to the current-induced spin-transfer torques, whereas the relativistic spin currents lead to spin-orbit torques. (v) Using the relativistic framework together with ab initio magneto-optical calculations we show that relativistic laser-induced spin-flip transitions do not explain the measured large laser-induced demagnetization. Employing the ab initio relativistic framework, we calculate the amount of magnetization that can be imparted in a material by means of circularly polarized light – the so-called inverse Faraday effect. We show the existence of both spin and orbital induced magnetizations, which surprisingly reveal a different behavior. We establish that the laser-induced magnetization is antisymmetric in the light’s helicity for nonmagnets, antiferromagnets and paramagnets; however, it is only asymmetric for ferromagnets.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kemp, Gregory Elijah. "Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1375386740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Canova, Lorenzo. "Generation and shaping of ultra-short, ultra-high contrast pulses for high repetition rate relativistic optics." Phd thesis, Ecole Polytechnique X, 2009. http://pastel.archives-ouvertes.fr/pastel-00005764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hakl, Michael. "Infrared magneto-spectroscopy of relativistic-like electrons in three-dimensional solids." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY085/document.

Повний текст джерела
Анотація:
L'utilisation de l'équation de Dirac/Weyl conduit à une simplification conceptuelle dans une description de la structure de la bande dans les solides à faible échelle d'énergie. En particulier, les excitations d'électrons-trous peuvent être considérées comme analogues au cas relativiste tel que conductivité optique linéaire, le suppression de backscattering ou la manifestation des arcs de Fermi et la chiralité des particules. En outre, la phase semi-métallique est également un élément crucial pour la classification des matériaux. La taille de le gap est affectée qualitativement par le type de dispersion d'énergie par un croisement continu des bandes linéaires à paraboliques. Cela peut être compris comme une limite classique ou ultra-relativiste du mouvement d'une particule massive.La spectroscopie infrarouge de la transformation de Fourier est une technique unique pour étudier les excitations optiques dans une large gamme d'énergies et représente en combinaison avec le champ magnétique élevé un outil puissant pour sondage de la structure électronique et surmonte le principal obstacle des systèmes sans gap qui est un dopage fort en raison de désordre structurel.La première partie du travail est consacrée à l'arséniure de cadmium, où nous élaborons une approche de distinction qualitative entre les systèmes Dirac et Kane qui ont été utilisés pour prouver sur la base de la réponse magnéto-optique observée la réalisation du modèle Kane presque sans gap avec une similitude frappante avec HgCdTe, en contradiction avec l'existence de cônes purement Dirac. La magnéto-réflectivité dans un champ magnétique à champ élevé la résonance cyclotron caractéristiques par un radical-B dépendance avec un comportement particulier dans la limite quantique. En revanche, la magnéto-transmission montrait des transitions de niveau Landau qui doit être interprétées que comme un type plat-à-cône afin de préserver une cohérence totale du modèle. Les cônes de Dirac prédits par la théorie sont susceptibles de coexister dans le modèle de Kane sous la forme d'une sous-structure décrite par le modèle de Bodnar qui se rapproche de la structure cristalline complexe par une simple cellule antifluorite qui permet d'utiliser la théorie du k.p classique.Dans la deuxième partie, nous nous concentrons sur le bismuth comme isolant topologique 3D archétype. Nous étudions une condition particulière obéie pour le BHZ-hamiltonien qui apporte des propriétés intriguantes comme une relation inhabituelle de spin gap et la résonance du cyclotron, l'épinglage spécifique entre les fancharts des sous-groupes Landau ou les g-facteurs compensés dans les bandes de conduction et de valence. Les mesures de photoluminescence ont montré une émission directgap, ce qui donne un nouvel aperçu de la structure largement acceptée à partir des données ARPES, où la “chameau structure” de la bande de valence doit être expliquée dans le confinement de surface et le point de Dirac de l'état de surface doit être repositionné par rapport aux bandes en bulk. La réponse magnéto-optique peut être pleinement expliquée dans une image classique du paramagnétisme de Pauli comme un simple effet d'occupation. Un tel comportement se manifeste dans la transmission en tant que fractionnement progressif du bord d'absorption interbande avec une saturation successive due à la polarisation spin partielle ou totale des électrons. Le dichroïsme relatif entraîne également une forte rotation de Faraday linéaire décrite par un modèle simple de la constante Verdet qui ne dépend pas sur le niveau de Fermi
The use of the Dirac/Weyl equation leads to a conceptual simplification in a description of the band structure in solids at low energy scales. In particular, electron-hole excitations can be regarded as an analogue to the relativistic case with several expected phenomena to be observed in the condensed systems such as a suppressed back-scattering, linear optical conductivity or the manifestation of the Fermi arcs and particle's chirality. Moreover, the semimetallic phase also symbolizes a boundary between the trivial and topological insulators and thus play a crucial role for the material classification. The size of the gap qualitatively affects the type of the energy dispersion by a continuous crossover from the linear to parabolic bands. This fact can be easily understood as a classical or ultra-relativistic limit of the motion of a free massive particle.Infrared Fourier transform spectroscopy is a unique technique for studying optical excitations in a wide range of energies and it represents in combination with the high magnetic field a powerful tool for probing electronic structure and overcomes the main obstacle of the gapless systems that is a strong doping due to the structural disorder.The first part of the work is devoted to cadmium arsenide, where we elaborate an approach to qualitatively distinguish between the Dirac and Kane systems that was used to prove on the basis of the observed magneto-optical response the realization of the nearly gapless Kane model with a striking similarity to HgCdTe, contradicting the existence of purely Dirac cones. The magneto-reflectivity revealed a strong splitting of the plasma edge that turns into the cyclotron resonance characteristic by a squareroot-of-B dependence in the high magnetic field with a particular behaviour in the quantum limit independent on the initial Fermi level. In contrast, the magneto-transmission revealed interband Landau level transitions that could be only interpreted as a flat-to-cone type in order to preserve a full consistency of the model. The Dirac cones predicted by theory are feasible to coexist within the Kane model in the form of a substructure described by the Bodnar model that approximates the complex crystal structure by a simple antifluorite cell, which allows to use the conventional k.p-theory.In the second part, we focus on bismuth selenide entitled as an archetypal 3D topological insulator. We study a peculiar condition fulfilled for the BHZ-hamiltonian that brings intriguing properties such as an unusual relation of the spin gap and cyclotron resonance, the specific pinning between fancharts of Landau subsets or the compensated g-factors of the conduction and valence bands. The photoluminescence measurements showed a direct-gap emission, that gives a new insight to the widely accepted structure from ARPES data, where the declared camel-back structure of the valence band needs to be explained within the surface confinement and the Dirac point of the surface state should be repositioned with respect to the bulk bands. The magneto-optical response can be fully explained in a classical picture of the Pauli paramagnetism as a purely occupational effect. Such behaviour is evinced in the transmission as a gradual splitting of the interband absorption edge with a successive saturation due to the partial or total spin polarization of electrons. The related dichroism drives also a strong linear Faraday rotation described by a simple model of the Verdet constant that depends only on the Fermi level
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Böhle, Frederik. "Near-single-cycle laser for driving relativistic plasma mirrors at kHz repetition rate - development and application." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX116/document.

Повний текст джерела
Анотація:
Les impulsions laser ultrabrèves nous permettent de suivre en temps réel les phénomènes ultrarapides au sein de la matière à l’échelle microscopique. C’est précisément pour l’invention de la chimie à l’échelle femtoseconde, ou femtochimie, qu’Ahmed Zewail se vit décerner le prix Nobel de chimie en 1999. Depuis les utilisateurs du laser cherchent à augmenter la résolution temporelle, c’est-à-dire réduire la durée des impulsions laser. Aujourd’hui, nous savons générer des flashs lumineux à l’échelle attoseconde dans le domaine spectral de l’extrême ultraviolet (XUV) mais l’efficacité de génération reste faible et le développement de sources laser attosecondes intenses constitue un sujet de recherche très actif sur le plan international.Notre groupe au LOA se concentre sur la génération d’impulsions attoseconde sur miroir plasma en régime relativiste. Pour cela, il cherche à développer une source d’impulsions femtosecondes à forte cadence et fort contraste et suffisamment énergétiques pour atteindre des intensités relativistes (>> 10^18W/cm2) lorsqu’elles sont fortement focalisées sur un plasma surdense. Un plasma surdense réfléchit la lumière incidente et par conséquent agit comme un miroir qui se déplaçant à vitesse relativiste et qui comprime l’impulsion incidente, produisant ainsi un flash attoseconde par cycle optique. En utilisant des impulsions proches d’un cycle optique, il est donc envisageable de générer une seule impulsion attoseconde intense pendant l’interaction.Dans la première partie de mon travail de thèse, j’ai réalisé un compresseur nonlinéaire pour réduire la durée des impulsions issues d’une chaîne à double dérive de fréquence (10mJ, 25fs, 1kHz) à phase enveloppe-porteuse (CEP) stabilisée. En propageant les impulsions du laser à haute intensité dans une fibre creuse remplie de gaz rare, j’ai réussi à générer des impulsions de 1.3 cycle optique avec une puissance crête autour de 1TW avec une CEP stabilisée. Dans un deuxième temps, j’ai mis en forme spatialement et temporellement les impulsions issues du compresseur à fibre pour générer à la fois des impulsions attosecondes intenses et des faisceaux d’électrons énergétiques sur un miroir plasma à gradient de densité contrôlé. Ces expériences nous permis, pour la première fois, de mettre en évidence la production d’impulsions attosecondes isolées dans l’XUV, l’émission corrélée de faisceaux d’électrons énergétiques en régime relativiste ainsi qu’un nouveau régime d’accélération d’électrons à très long gradient plasma
Very short light pulses allow us to resolve ultrafast processes in molecules, atoms and condensed matter. This started with the advent of Femtochemistry, for which Ahmed Zewail received the Novel Prize in Chemistry in 1999. Ever since, researcher have been trying to push the temporal resolution further and we have now reached attosecond pulse durations. Their generation, however, remains very challenging and various different generation mechanisms are the topic of heated research around the world.Our group focuses on attosecond pulse generation and ultrashort electron bunch acceleration on solid targets. In particular, this thesis deals with the upgrade of a high intensity, high contrast, kHz, femtosecond laser chain to reach the relativistic interaction regime on solid targets. Few cycle driving laser pulses should allow the generation of intense isolated attosecond pulses. A requirement to perform true attosecond pump-probe exeriments.To achive this, a HCF postcompression scheme has been conceived and implemented to shorten the duration of a traditional laser amplifier. With this a peak intensity of 1TW was achieved with near-single-cycle pulse duration. For controlled experiments, a vacuum beamline was developed and implemented to accurately control the laser and plasma conditions on target.During the second part of this thesis, this laser chain was put in action to drive relativistic harmonic generation on solid targets. It was the first time ever that this has been achieved at 1 kHz. By CEP gating the few-cycle-pulses, single attosecond pulses were generated. This conclusion has been supported by numerical simulations. Additionally a new regime to accelerate electron bunches on soft gradients has been detected
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cunningham, Eric Flint. "Photoemission by Large Electron Wave Packets Emitted Out the Side of a Relativistic Laser Focus." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3054.

Повний текст джерела
Анотація:
There are at least two common models for calculating the photoemission of accelerated electrons. The 'extended-charge-distribution' method uses the quantum probability current (multiplied by the electron charge) as a source current for Maxwell's equations. The 'point-like-emitter' method treats the electron like a point particle instead of like a diffuse body of charge. Our goal is to differentiate between these two viewpoints empirically. To do this, we consider a large electron wave packet in a high-intensity laser field, in which case the two viewpoints predict measurable photoemission rates that differ by orders of magnitude. Under the treatment of the 'extended-charge-distribution' model, the strength of the radiated field is significantly limited by interferences between different portions of the oscillating charge density. Alternatively, no suppression of photoemission occurs under the 'point-like-emitter' model because the electron is depicted as having no spatial extent. We designed an experiment to characterize the photoemission rates of electrons accelerated in a relativistic laser focus. Free electron wave packets are produced through ionization by an intense laser pulse at the center of a large vacuum chamber. These quantum wave packets can become comparable in size to the laser wavelength through natural spreading and interactions with the sharp ponderomotive gradients of the laser focus. Electron radiation emitted out the side of the focus is collected by one-to-one imaging into a 105-micron gold-jacketed fiber, which carries the light to a single photon detector located outside the chamber. The electron radiation is red-shifted due to mild relativistic acceleration, and we use this signature to spectrally filter the outgoing light to discriminate against background. In addition, the temporal resolution of the electronics allows distinction between light that travels directly from the focus into the collection system and laser light that may scatter from the chamber wall.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gustas, Dominykas. "High-repetition-rate relativistic electron acceleration in plasma wakefields driven by few-cycle laser pulses." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX118/document.

Повний текст джерела
Анотація:
Le progrès continu de la technologie laser a récemment permis l’avancement spectaculaire d’accélérateurs de particules par onde de sillage. Cette technique permet la génération de champs électriques très forts, pouvant dépasser de trois ordres de grandeurs ceux présents dans les accélérateurs conventionnels. L’accélération résultante a lieu sur une distance très courte, par conséquent les effets de la charge d’espace et de la dispersion de vitesse sont considérablement réduits. Les paquets de particules ainsi générés peuvent alors atteindre des durées de l’ordre de la femtoseconde, qui en fait un outil prometteur pour la réalisation d’expériences de diffraction ultra-rapide avec une résolution inégalée de l’ordre de quelques femtosecondes. La génération de tels paquets d’électrons avec des lasers de 1 J et d’une durée de 30 fs est à présent bien établie. Ces paramètres permettent de produire des faisceaux d’électrons de quelques centaines de MeV, et sont donc inadaptés aux expériences de diffraction. De plus, le taux de répétition de ces lasers de haute puissance est limité à quelques Hz, ce qui est insuffisant pour des expériences exigeant une bonne statistique de mesure. Notre groupe a utilisé un laser de pointe développé au laboratoire par le groupe PCO générant des impulsions de quelques millijoules, d’une durée de 3.4 fs - à peine 1.3 cycle optique - à une cadence de 1 kHz, pour accélérer des électrons par onde de sillage. Ce travail de thèse présente d’une part la première démonstration d’un accélérateur des particules relativistes opéré dans le régime de la bulle à haute cadence. L’utilisation de buses microscopiques a permis l’obtention de charges de dizaines de pC par tir. De plus, cette thèse vise à l’élargissement de notre compréhension des lois d’échelle d’accélération laser-plasma. Nous espérons que notre travail visant à la fiabilisation et l’optimisation de cette source permettra à terme de proposer un instrument accessible et fiable à la communauté scientifique, que ce soit pour la diffraction d’électrons, l’irradiation ultra-brève d’échantillons ou la génération de rayons X
Continuing progress in laser technology has enabled dramatic advances in laser wakefield acceleration (LWFA), a technique that permits driving particles by electric fields three orders of magnitude higher than in conventional radio-frequency accelerators. Due to significantly reduced space charge and velocity dispersion effects, the resultant relativistic electron bunches have also been identified as a candidate tool to achieve unprecedented sub-10 fs temporal resolution in ultrafast electron diffraction (UED) experiments. High repetition rate operation is desirable to improve data collection statistics and thus washout shot-to-shot charge fluctuations inherent to plasma accelerators. It is well known that high-quality electron beams can be achieved in the blowout, or "bubble" regime, which is at present regularly accessed with ≈ 30 fs Joule-class lasers that can perform up to few shots per second. Our group on the contraryutilized a cutting edge laser system producing few-mJ pulses compressed nearly to a single optical cycle (3.4 fs) to demonstrate for the first time an MeV-grade particle accelerator with properties characteristic to the blowout regime operating at 1 kHz repetition rate. We further investigate the plasma density profile and exact laser pulse waveform effects on the source output, and show that using special gas microjets a charge of tens of pC/shot can be achieved. We expect this technique to lead to a generation of highly accessible and robust instruments for the scientific community to conduct UED experiments or to be used for other applications. This work also serves to expand our knowledge on the scalability of laser-plasma acceleration
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kaur, Jaismeen. "Development of an intense attosecond source based on relativistic plasma mirrors at high repetition rate." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE007.

Повний текст джерела
Анотація:
Le travail expérimental présenté dans ce manuscrit a été réalisé au Laboratoire d'Optique Appliquée (LOA, Palaiseau, France) sur un système laser compact multi-mJ kHz, capable de délivrer des impulsions quasi-mono-cycle à phase enveloppe-porteuse (CEP) stabilisée. Le premier volet expérimental a consisté à améliorer les performances de la source laser grâce à l’intégration d'un étage d’amplification multi-passage cryogéné dans la chaîne destiné à augmenter l'énergie d'impulsion disponible, à améliorer la stabilité de la CEP, ainsi qu’à fiabiliser les performances quotidiennes du laser. En parallèle, une nouvelle technique a été testée, basée sur la propagation nonlinéaire dans une cellule multi-passage (MPC), afin de post-comprimer temporellement et d’améliorer le contraste temporel des impulsions laser. Dans l’avenir, une fois mis à l’échelle et intégré dans la chaîne laser, ce dispositif innovant de mise en forme temporelle d’impulsions laser, augmenter encore plus l’éclairement atteignable pour les expériences.Le deuxième volet expérimental est axé sur l'utilisation de la chaîne laser afin de piloter des miroirs plasma relativistes et de générer du rayonnement attoseconde (1 as = 10-18 s) dans le domaine spectral de l’ultraviolet extrême, ainsi que des faisceaux d’électrons et d’ions fortement énergétiques. Nous avons pu produire des faisceaux d'électrons relativistes par injection localisée d’électrons du plasma dans le champ laser réfléchi de manière nonlinéaire par le miroir plasma. En outre, nous avons pu générer des faisceaux quasi-collimatés de protons avec des énergies proches du MeV dans le cadre d’une expérience pompe-sonde contrôlée. En stabilisant la forme d'onde des impulsions laser, nous avons pu restreindre temporellement le processus de génération d’harmoniques en-dessous du cycle laser et ainsi produire des impulsions attoseconde uniques. Nous avons réalisé une étude paramétrique complète afin d'optimiser les propriétés spatio-temporelles des impulsions attosecondes XUV ainsi émises, jetant ainsi les bases de leur refocalisation pour les applications
The experimental work presented in this manuscript was carried out at Laboratoire d’Optique Appliquée (LOA, Palaiseau, France) on a compact kHz multi-mJ energy laser system capable of delivering waveform-controlled near-single-cycle pulses. The first part of this work is focused on improving the performance of this laser source by integrating a cryogenically-cooled multi-pass amplifier in the laser chain in order to increase the output energy, enhance the laser waveform stability, making the laser source more stable and reliable, and with more overall reproducible day-to-day performance. Furthermore, we explore laser post-compression and temporal contrast enhancement in a multipass cell. In the future, this post-compression scheme when power-scaled and integrated into the laser chain will further enhance the focused pulse intensity for experiments.The second part of this work focuses on using the laser system to drive relativistic plasma mirrors on the surface of initially-solid targets to generate highly energetic particle beams (ions and electrons) and harmonic radiation in the extreme ultraviolet region, corresponding to attosecond pulses (1 as = 10-18 s) in the time domain. We could produce relativistic electron beams by localized injection of electrons into the nonlinearly reflected laser field by the plasma mirror. Additionally, we could generate nearly-collimated MeV-class proton beams in a controlled pump-probe experiment. By stabilizing the waveform of the driving laser pulses, we could temporally gate the interaction process on the target surface and produce isolated attosecond pulses. We performed a comprehensive parameter study to fully characterize and optimize the spatio-spectral properties of the emitted XUV attosecond pulses, laying the groundwork for their refocusing for applications
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Relativistic Optics"

1

Ivanovich, Ri͡azanov Mikhail, Strikhanov Mikhail Nikolaevich, Tishchenko Alexey Alexandrovich, and SpringerLink (Online service), eds. Diffraction Radiation from Relativistic Particles. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Joachim, Ulrich, ed. Relativistic collisions of structured atomic particles. Berlin: Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guangjun, Mao, ed. Relativistic microscopic quantum transport equation. Hauppauge, N.Y: Nova Science Publishers, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

L, Malli G., North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Relativistic and Electron Correlation Effects in Molecules and Solids (1992 : Vancouver, B.C.), eds. Relativistic and electron correlation effects in molecules and solids. New York: Plenum Press, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Umstadter, Donald P. Relativistic Nonlinear Optics. Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Novel Approach to Relativistic Dynamics: Integrating Gravity, Electromagnetism and Optics. Springer International Publishing AG, 2024.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Novel Approach to Relativistic Dynamics: Integrating Gravity, Electromagnetism and Optics. Springer International Publishing AG, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Borovsky, A. V., A. L. Galkin, O. B. Shiryaev, and T. Auguste. Laser Physics at Relativistic Intensities. Springer, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Relativistic many-body theory: A new field-theoretical approach. New York: Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yaghjian, Arthur. Relativistic Dynamics of a Charged Sphere: Updating the Lorentz-Abraham Model. Springer London, Limited, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Relativistic Optics"

1

Faraoni, Valerio. "Relativistic Optics." In Special Relativity, 171–90. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01107-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsamparlis, Michael. "Relativistic Optics." In Solved Problems and Systematic Introduction to Special Relativity, 195–98. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-31706-4_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Miron, Radu, and Mihai Anastasiei. "Relativistic Geometrical Optics." In The Geometry of Lagrange Spaces: Theory and Applications, 223–49. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0788-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kaplan, A. E., and Y. J. Ding. "Nonlinear Optics of a Single Slightly-Relativistic Cyclotron Electron." In Nonlinear Optics and Optical Computing, 131–47. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0629-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Umstadter, D., S. Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner. "Nonlinear Optics in the Relativistic Regime." In Springer Series in Chemical Physics, 98–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mourou, Gérard. "Relativistic Optics: A new Route to Attosecond Physics and Relativistic Engineering." In Springer Series in Optical Sciences, 127–41. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Evans, Myron W. "Relativistic Magneto-Optics and the Evans-Vigier Field." In The Enigmatic Photon, 199–211. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-010-9044-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lamb, Willis E. "Super Classical Quantum Mechanics: The Interpretation of Non-Relativistic Quantum Mechanics." In Frontiers of Laser Physics and Quantum Optics, 1–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-07313-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Miron, Radu, and Tomoaki Kawaguchi. "The electromagnetic field in the higher order relativistic geometrical optics." In New Developments in Differential Geometry, 319–24. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0149-0_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bonifacio, R., and L. De Salvo Souza. "Bistable Behavior of a Relativistic Electron Beam in a Magnetic Structure (Wiggler)." In Instabilities and Chaos in Quantum Optics II, 139–46. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2548-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Relativistic Optics"

1

Vais, O. E., M. G. Lobok, and V. Yu Bychenkov. "High-brilliance synchrotron radiation in relativistic self-trapping regime." In 2024 International Conference Laser Optics (ICLO), 197. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jeffrey, Evan, Joseph Altepeter, and Paul G. Kwiat. "Relativistic Quantum Cryptography." In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.fwb1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Postavaru, Octavian, and Antonela Toma. "Relativistic Mollow spectrum." In Frontiers in Optics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/fio.2021.jw7a.60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marjoribanks, R. S., P. Audebert, J.-P. Geindre, F. Quéré, C. Thaury, P. Monot, and Ph Martin. "Control of Relativistic and Non-Relativistic High- Harmonic Generation from Overdense Laser Plasmas." In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.jwg6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mourou, Gerard A. "The Exawatt Laser: From Relativistic to Ultra Relativistic Optics." In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4385860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mourou, Gerard. "The Exawatt laser: from relativistic to ultra relativistic optics." In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4387077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bauke, Heiko, Michael Klaiber, Enderalp Yakaboylu, Karen Z. Hatsagortsyan, Sven Ahrens, Carsten Müller, and Christoph H. Keitel. "Computational relativistic quantum dynamics and its application to relativistic tunneling and Kapitza-Dirac scattering." In SPIE Optics + Optoelectronics, edited by Joachim Hein, Georg Korn, and Luis O. Silva. SPIE, 2013. http://dx.doi.org/10.1117/12.2021736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kaur, Jaismeen, Marie Ouillé, Zhao Cheng, Stefan Haessler, Julius Huijts, Lucas Rovige, Aline Vernier, Igor Andriyash, Jérôme Faure, and Rodrigo Lopez-Martens. "Waveform control of relativistic laser-matter interactions." In Ultrafast Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ufo.2023.m2.4.

Повний текст джерела
Анотація:
We report on the first experimental evidence of direct waveform control of relativistic-intensity laser-plasma interactions driven by a kHz near-single-cycle laser source. We show how the driving laser waveform has a clear and reproducible imprint on the spatio-spectral emission properties of secondary particle and radiation beams from gas jets and plasma mirrors.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Umstadter, D. "Developments in relativistic nonlinear optics." In SUPERSTRONG FIELDS IN PLASMAS: Second International Conference on Superstrong Fields in Plasmas. AIP, 2002. http://dx.doi.org/10.1063/1.1470293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Umstadter, D., S. Y. Chen, G. S. Sarkisov, A. Maksimchuk, and R. Wagner. "Nonlinear optics in relativistic plasmas." In Superstrong fields in plasmas. AIP, 1998. http://dx.doi.org/10.1063/1.55266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Relativistic Optics"

1

Umstadter, Donald, Bradley Shadwick, Sudeep Banerjee, and Serguei Kalmykov. Propagation and Interactions of Ultrahigh Power Light: Relativistic Nonlinear Optics. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada611383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, C., A. Marusic, and M. Minty. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1159698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pikin A., J. G. Alessi, E. N. Beebe, D. Raparia, and L. Snydstrup. Optics modification of the electron collector for the Relativistic Heavy Ion Collider Electron Beam Ion Source. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1054190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pikin A., J. G. Alessi, E. N. Beebe, D. Raparia, and L. Snydstrup. Optics modification of the electron collector for the Relativistic Heavy Ion Collider Electron Beam Ion Source. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1062001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії