Добірка наукової літератури з теми "Reconfigurable cable-driven parallel robots"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Reconfigurable cable-driven parallel robots".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Reconfigurable cable-driven parallel robots":

1

Vargas-Riaño, Julio, Óscar Agudelo-Varela, and Ángel Valera. "Applying Screw Theory to Design the Turmell-Bot: A Cable-Driven, Reconfigurable Ankle Rehabilitation Parallel Robot." Robotics 12, no. 6 (November 14, 2023): 154. http://dx.doi.org/10.3390/robotics12060154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The ankle is a complex joint with a high injury incidence. Rehabilitation Robotics applied to the ankle is a very active research field. We present the kinematics and statics of a cable-driven reconfigurable ankle rehabilitation robot. First, we studied how the tendons pull mid-foot bones around the talocrural and subtalar axes. We proposed a hybrid serial-parallel mechanism analogous to the ankle. Then, using screw theory, we synthesized a cable-driven robot with the human ankle in the closed-loop kinematics. We incorporated a draw-wire sensor to measure the axes’ pose and compute the product of exponentials. We also reconfigured the cables to balance the tension and pressure forces using the axis projection on the base and platform planes. Furthermore, we computed the workspace to show that the reconfigurable design fits several sizes. The data used are from anthropometry and statistics. Finally, we validated the robot’s statics with MuJoCo for various cable length groups corresponding to the axes’ range of motion. We suggested a platform adjusting system and an alignment method. The design is lightweight, and the cable-driven robot has advantages over rigid parallel robots, such as Stewart platforms. We will use compliant actuators for enhancing human–robot interaction.
2

Zhao, Tao, Bin Zi, Sen Qian, Zeqiang Yin, and Dan Zhang. "Typical configuration analysis of a modular reconfigurable cable-driven parallel robot." International Journal of Advanced Robotic Systems 16, no. 2 (March 1, 2019): 172988141983475. http://dx.doi.org/10.1177/1729881419834756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To obtain better flexibility and multifunction in varying practical applications, several typical configurations of a modular reconfigurable cable-driven parallel robot are analyzed in this article. The spatial topology of the modular reconfigurable cable-driven parallel robot can be reconfigured by manually detaching or attaching the different number of modular branches as well as changing the connection points on the end-effector to satisfy diverse task requirements. The structure design of the modular reconfigurable cable-driven parallel robot is depicted in detail, including the design methodology, mechanical description, and control architecture. The inverse kinematics and dynamics of the modular reconfigurable cable-driven parallel robot considering diverse configurations are derived according to the vector closed rule and Lagrange method, respectively. The numerical simulation and related experiments of a typical configuration are achieved and analyzed. The results verify the effectiveness and feasibility of the inverse kinematics and dynamics models for the modular reconfigurable cable-driven parallel robot.
3

Rodriguez-Barroso, Alejandro, Roque Saltaren, Gerardo A. Portilla, Juan S. Cely, and Marco Carpio. "Cable-Driven Parallel Robot with Reconfigurable End Effector Controlled with a Compliant Actuator." Sensors 18, no. 9 (August 22, 2018): 2765. http://dx.doi.org/10.3390/s18092765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Redundancy in cable-driven parallel robots provides additional degrees of freedom that can be used to achieve different objectives. In this robot, this degree of freedom is used to act on a reconfigurable end effector with one degree of freedom. A compliant actuator actuated by one motor exerts force on both bodies of the platform. Due to the high tension that appears in this cable in comparison with the rest of the cables, an elastic model was developed for solving the kinestostatic and wrench analysis. A linear sensor was used in one branch of this cable mechanism to provide the needed intermediate values. The position of one link of the platform was fixed in order to focus this analysis on the relationship between the cables and the platform’s internal movement. Position values of the reconfigurable end effector were calculated and measured as well as the tension at different regions of the compliant actuator. The theoretical values were compared with dynamic simulations and real prototype results.
4

Dierichs, Karola, Ondřej Kyjánek, Martin Loučka, and Achim Menges. "Construction robotics for designed granular materials: in situ construction with designed granular materials at full architectural scale using a cable-driven parallel robot." Construction Robotics 3, no. 1-4 (October 25, 2019): 41–52. http://dx.doi.org/10.1007/s41693-019-00024-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The article presents a cable-driven parallel robot for the in situ construction with designed granular materials at full architectural scale. Granular materials are defined as high numbers of particles larger than a micrometer, between which only short-range repulsive forces are acting. Therefore, they can have the properties of both a solid and a liquid. These materials are, thus, highly pertinent as construction materials, since they are fully recyclable and reconfigurable. Going even beyond these basic properties, a designed granular material allows to tune its overall characteristics through the design of the individual particle. Granular materials can only be deployed in situ and at full scale. Suitable robotic construction systems need to be developed. Cable-driven parallel robots are defined as robotic systems, in which an “end effector” is operated by a set of cables, which are driven by computer numerically controlled motors. The cables are running through elevated pulleys. A cable-driven parallel robot, thus, allows for a “working space”, which covers an entire building site. It is comparatively lightweight and, thus, transportable between different construction sites, it is rapidly deployable, since the entire set-up takes one day only, and it is adaptable, since the pulleys can be installed in various geometric configurations. The results of this investigation show that cable-driven parallel robots are suitable as construction systems for the full-scale in situ construction of spatial enclosures with designed granular materials. This opens up a new field of research into the potentials of these full-scale, lightweight, rapidly deployable and adaptable robotic construction systems.
5

Rodriguez-Barroso, Saltaren, Portilla, Cely, and Yakrangi. "Potential Energy Distribution of Redundant Cable-Driven Robot Applied to Compliant Grippers: Method and Computational Analysis." Sensors 19, no. 15 (August 2, 2019): 3403. http://dx.doi.org/10.3390/s19153403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cable-driven parallel robots with a redundant configuration have infinite solutions for their cable tension distribution to provide a specific wrench to the end-effector. Redundancy is commonly used to increase the workspace and stiffness or to achieve secondary objectives like energetic minimization or additional movements. This article presents a method based on energy distribution to handle the redundancy of cable-driven parallel robots. This method allows the deformation and tension of each link to be related to the total energy available in the parallel robot. The study of energy distribution expression allows deformation, tension, and position to be combined. It also defines the range of tension and deformation that cables can achieve without altering the wrench exerted on the end-effector. This range is used with a passive reconfigurable end-effector to control the position of two grippers attached to some cables which act as compliant actuators. The relationship between the actuators’ energy and their corresponding gripper positions is also provided. In this way, energy measurement from the actuators allows the grasping state to be sensed. The results are validated using multibody dynamic software.
6

García-Vanegas, Andrés, María J. García-Bonilla, Manuel G. Forero, Fernando J. Castillo-García, and Antonio Gonzalez-Rodriguez. "AgroCableBot: Reconfigurable Cable-Driven Parallel Robot for Greenhouse or Urban Farming Automation." Robotics 12, no. 6 (December 1, 2023): 165. http://dx.doi.org/10.3390/robotics12060165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a Cable-Driven Parallel Robot developed to automate repetitive and essential tasks in crop production in greenhouse and urban garden environments is introduced. The robot has a suspended configuration with five degrees-of-freedom, composed of a fixed platform (frame) and a moving platform known as the end-effector. To generate its movements and operations, eight cables are used, which move through eight pulley systems and are controlled by four winches. In addition, the robot is equipped with a seedbed that houses potted plants. Unlike conventional suspended cable robots, this robot incorporates four moving pulley systems in the frame, which significantly increases its workspace. The development of this type of robot requires precise control of the end-effector pose, which includes both the position and orientation of the robot extremity. To achieve this control, analysis is performed in two fundamental aspects: kinematic analysis and dynamic analysis. In addition, an analysis of the effective workspace of the robot is carried out, taking into account the distribution of tensions in the cables. The aim of this analysis is to verify the increase of the working area, which is useful to cover a larger crop area. The robot has been validated through simulations, where possible trajectories that the robot could follow depending on the tasks to be performed in the crop are presented. This work supports the feasibility of using this type of robotic systems to automate specific agricultural processes, such as sowing, irrigation, and crop inspection. This contribution aims to improve crop quality, reduce the consumption of critical resources such as water and fertilizers, and establish them as technological tools in the field of modern agriculture.
7

Cheng, Hung Hon, and Darwin Lau. "Cable Attachment Optimization for Reconfigurable Cable-Driven Parallel Robots Based on Various Workspace Conditions." IEEE Transactions on Robotics 39, no. 5 (October 2023): 3759–75. http://dx.doi.org/10.1109/tro.2023.3288838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carpio Alemán, Marco, Roque Saltaren, Alejandro Rodriguez, Gerardo Portilla, and Juan Placencia. "Rotational Workspace Expansion of a Planar CDPR with a Circular End-Effector Mechanism Allowing Passive Reconfiguration." Robotics 8, no. 3 (July 19, 2019): 57. http://dx.doi.org/10.3390/robotics8030057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cable-Driven Parallel Robots (CDPR) operate over a large positional workspace and a relatively large orientation workspace. In the present work, the expansion of the orientation Wrench Feasible Workspace (WFW) in a planar four-cable passive reconfigurable parallel robot with three degrees of freedom was determined. To this end, we proposed a circular-geometry effector mechanism, whose structure allows automatic mobility of the two anchor points of the cables supporting the End Effector (EE). The WFW of the proposed circular structure robot was compared with that of a traditional robot with a rectangular geometry and fixed anchor points. Considering the feasible geometric and tension forces on the cables, the generated workspace volume of the robot was demonstrated in an analysis-by-intervals. The results were validated by simulating the orientation movements of the robot in ADAMS software and a real experimental test was developed for a hypothetical case. The proposed design significantly expanded the orientation workspace of the robot. The remaining limitation is the segment of the travel space in which the mobile connection points can slide. Overcoming this limitation would enable the maximum rotation of the EE.
9

Schütz, Daniel, Annika Raatz, and Jürgen Hesselbach. "Adapted task configuration of a reconfigurable binary parallel robot with PRRRP structure." Robotica 31, no. 2 (May 24, 2012): 285–93. http://dx.doi.org/10.1017/s0263574712000240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SUMMARYBinary-actuated robots offer a discrete workspace with the advantage that no feedback control is needed, as their actuators have two mechanical end-positions. This contribution focuses on a planar parallel robot with a PRRRP structure and driven by rodless pneumatic cylinders. Thus, the robot's workspace only features four destination points, which can be reached quickly and with high repeatability. Because of the fact that there is no possibility to reach in discrete points, an adapted task configuration is essential. The objective of this work is to establish and validate a synthesis and calibration technique for binary parallel robots with a PRRRP structure.
10

SUDIONO, Randy Raharja, Yusuke SUGAHARA, Mitsuru ENDO, Daisuke MATSUURA, and Yukio TAKEDA. "Cable Traversing Robots on Spatially Structured Cableway for Reconfigurable Parallel Cable System." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2019 (2019): 1A1—S02. http://dx.doi.org/10.1299/jsmermd.2019.1a1-s02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Reconfigurable cable-driven parallel robots":

1

Kumar, Atal Anil. "Conception et commande d'un robot à câbles pour la manipulation dextre de pièces sur des chaînes de production." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0269.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’objectif de cette thèse est de concevoir et de contrôler un système de Robot Parallèle à Câbles (RPC) à quatre câbles pour la manipulation dextre de pièces sur des chaînes de production. Pour une ligne de fabrication déjà installée, l’espace de travail est souvent limité et l’ajout d’un nouveau robot-sériel sur le sol de l’atelier est parfois difficile. L’utilisation du plafond pour fixer une machine lourde n’est pas toujours possible car il pourrait être nécessaire de renforcer la structure. Le RPC est un moyen de réaliser la tâche avec une faible modification de l’atelier existant. La nouveauté du travail réside dans le fait que la majorité des conceptions existantes placent les moteurs d’actionnement et les treuils de la plate-forme de base, alors que dans ce travail, les moteurs d’actionnement sont embarqués sur la plate-forme mobile, ce qui permet de fixer facilement le RPC dans la chaîne de fabrication avec des points d’ancrage simples. Tout d’abord, l’espace de travail du RPC pour l’environnement souhaité est étudié. La nature sous-actionnée du robot et la contrainte d’une force de tension positive du câble imposés en raison de la flexibilité des câbles limitent sont la base d’une étude sur l’espace de travail respectant les conditions d’équilibre statique. Les équations d’équilibre statique classiques ont été utilisés pour calculer l’espace de travail du robot et le comportement correspondant de la plateforme mobile. Les angles d’orientation de la plate-forme ont été présentés. Plusieurs études de cas ont été montres avec différentes charges utiles attachées à la plate-forme mobile. Les dimensions de la plate-forme mobile et la structure de base ont également été modifiées afin de calculer le domaine de l’espace de travail où les performances du robot peuvent être satisfaisantes. Les dimensions du prototype ont été fixées en tenant compte de l’espace de travail. Par la suite, le modèle dynamique classique du RPC a été utilisé pour mettre en œuvre la loi de contrôle. La deuxième partie de la thèse présente la conception et la mise en œuvre des lois de contrôle pour la RPC. La linéarisation classique de la rétroaction entrée- sortie (IOFL) est développée et des résultats de simulation ont été présentés. Le rôle de la dynamique interne présente dans le système en raison de la sous-performance a été démontré en utilisant leur diagramme de phase. Deux solutions possibles ont été envisagées afin de réduire l’effet des dynamiques internes sur le système. La première solution consiste à utiliser des proportions appropriées pour la plate-forme et la structure de base. Des résultats de simulation ont été présentés pour montrer le comportement de la plate-forme lorsque les dimensions sont modifiées. Une linéarisation modifiée de la rétroaction (MFL) a été proposé comme une solution ad-hoc pour éliminer les effets de la dynamique interne. Les résultats de la simulation obtenus montrent que la solution ad-hoc proposée fonctionne efficacement et nettement mieux que la technique classique de l’IOFL pour certaines dimensions du RPC. L’utilisation de cette approche pour différents cas de RPC doit faire l’objet d’une étude enquête. Les résultats expérimentaux validant la technique de l’IOFL sont présentés pour démontrer le comportement satisfaisant de le RPC avec le contrôle. L’objectif global du projet est de développer un robot parallèle à câble qui peut travailler avec un opérateur dans une chaîne de fabrication pleinement fonctionnelle et aider le travailleur à soulever les objets lourds ou chauds. Cette thèse réalise la première étape pour rendre un prototype de RPC qui sera par la suite amélioré pour le rendre collaboratif
This thesis aims to design and control an underactuated Cable-Driven Parallel Robot (CDPR) with four cables for the agile handling of parts in a manufacturing line. For already installed manufacturing lines, most of the available working space is often used, and adding a new serial robot on the workshop ground is sometimes difficult. Using the ceiling to fix heavy machines is not always possible, and it could be necessary to reinforce the structure. CDPR is a way to achieve the work with a light structure, with low modification of the existing workshop. The novelty of the work lies in the fact that the majority of the existing designs place the actuating motors and the winches on the base platform, whereas in this work, the actuating motors are placed on the moving platform, making it convenient for the CDPR to be fixed in the manufacturing line with simple anchor points. First, the workspace of the CDPR for the desired environment is investigated. The underactuated nature of the robot and the positive cable tension constraint imposed due to the flexibility of the cable limit the workspace investigation to static equilibrium conditions. The classical static equilibrium equations have been used to calculate the robot workspace and the corresponding behavior of the plat- form orientation angles have been presented. Several case studies have been shown with different payloads attached to the moving platform. The dimensions of the moving platform and the base structure have also been changed to understand the possible region of the workspace where the robot performance can be satisfactory. The prototype dimensions have been fixed taking into account the workspace performance. Following this, the classical dynamic model developed in the field of CDPR has been used to implement the control law on the CDPR. The second part of the thesis presents the design and implementation of the control laws for the CDPR. The classical Input-Output Feedback Linearization (IOFL) technique is developed and simulation results have been presented. The role of internal dynamics present in the system because of the underactuation is demonstrated using their phase-plane plots. Two possible solutions have been suggested to reduce the effect of internal dynamics on the system. The first solution is to use appropriate dimensions for the platform and the base structure. Simulation results have been presented to show the behavior of the platform when the dimensions are changed. A Modified Feedback Linearization (MFL) has been proposed as an ad-hoc solution for eliminating the effects of the internal dynamics. The simulation results obtained show that the proposed ad-hoc solution performs efficiently and significantly better than the classical IOFL technique for certain dimensions of the CDPR. The use of this approach for different cases of CDPR needs to be investigated. Experimental results validating the IOFL technique are presented to demonstrate the satisfactory behavior of the CDPR with the control law developed during the thesis. The overall objective of the project is to develop a CDPR that can work with an operator in a fully functional manufacturing line and aid the worker in lifting heavy or hot objects. This thesis achieves the first step in making a functional prototype of a CDPR which will be improved further to make it collaborative
2

Rasheed, Tahir. "Collaborative Mobile Cable-Driven Parallel Robots." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse présente un nouveau concept de robots parallèles à câble mobile (RPCM) comme un nouveau système robotique. RPCM est composé d'un robot parallèle à câble (RPC) classique monté sur plusieurs bases mobiles. Les RPCMs combinent l'autonomie des robots mobiles avec les avantages des RPCs, à savoir un grand espace de travail, un rapport charge utile/poids élevé, une faible inertie de l'effecteur final, une capacité de déploiement et une reconfigurabilité. De plus, les RPCMs présentent une nouvelle innovation technique qui pourrait contribuer à apporter plus de flexibilité et de polyvalence par rapport aux solutions robotiques industrielles existantes. Deux prototypes de RPCMs appelés FASTKIT et MoPICK ont été développés au cours de cette thèse. FASTKIT est composé de deux bases mobiles portant une plate-forme mobile à six degrés de liberté, tirée par huit câbles, dans le but de fournir une solution robotique économique et polyvalente pour la logistique. MoPICK est composé d'une plate-forme mobile à trois degrés de liberté tirée par quatre câbles montés sur quatre bases mobiles. Les applications ciblées de MoPICK sont des tâches mobiles dans un environnement contraint, par exemple un atelier ou des opérations logistiques dans un entrepôt. Les contributions de cette thèse sont les suivantes. Tout d'abord, toutes les conditions nécessaires à l'atteinte de l'équilibre statique d'un RPCM sont étudiées. Ces conditions sont utilisées pour développer un algorithme de distribution de tension pour le contrôle en temps réel des câbles RPCM. Les conditions d'équilibre sont également utilisées pour étudier l'espace de travail clé en main des RPCMs. Ensuite, les performances cinématiques et les capacités de torsion des RPCMs sont étudiées. Enfin, la dernière partie de la thèse présente des stratégies de planification de trajectoires multiples pour les RPCMs afin de reconfigurer l'architecture géométrique du RPC pour réaliser la tâche souhaitée
This thesis presents a novel concept of Mobile Cable - Driven Parallel Robots (MCDPRs) as a new robotic system. MCDPR is composed of a classical C able - D riven P a rallel R obot (CDPR) mounted on multiple mobile bases. MCDPRs combines the autonomy of mobile robots with the advantages of CDPRs, namely, large workspace, high payload - to - weight ratio, low end - effector inertia, deployability and reconfigurability. Moreover , MCDPRs presents a new technical innovation that could help to bring more flexibility and versatility with respect to existing industrial robotic solutions. Two MCDPRs prototypes named FASTKIT and MoPICK have been developed during the course of this the sis. FASTKIT is composed of two mobile bases carrying a six degrees - of - freedom moving - platform, pulled by eight cables , with a goal to provide a low cost and versatile robotic solution for logistics. MoPICK is composed of a three degrees - of - freedom movi ng - platform pulled by four cables mounted on four mobile bases. The targeted applications of MoPICK are mobile tasks in a constrained environment, for example, a workshop or logistic operations in a warehouse. The contributions of this thesis are as follow s. Firstly, all the necessary conditions are studied that required to achieve the static equilibrium of a MCDPR . These conditions are used to develop a Tension Distribution Algorithm for the real time control of the MCDRP cables. The equilibrium conditions are also used to investigate the Wrench - Feasible - Workspace of MCDPRs. Afterwards, the kinematic performance and twist capabilities of the MCDPRs are investigated. Finally, the last part of the thesis presents multiple path planning strategies for MCDPRs i n order to reconfigure the CDPR’s geometric architecture for performing the desired task
3

Ida, Edoardo <1991&gt. "Dynamics of undeactuated cable-driven parallel robots." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9574/1/Ida_edoardo_tesi.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis focuses on the dynamics of underactuated cable-driven parallel robots (UACDPRs), including various aspects of robotic theory and practice, such as workspace computation, parameter identification, and trajectory planning. After a brief introduction to CDPRs, UACDPR kinematic and dynamic models are analyzed, under the relevant assumption of inextensible cables. The free oscillatory motion of the end-effector (EE), which is a unique feature of underactuated mechanisms, is studied in detail, from both a kinematic and a dynamic perspective. The free (small) oscillations of the EE around equilibria are proved to be harmonic and the corresponding natural oscillation frequencies are analytically computed. UACDPR workspace computation and analysis are then performed. A new performance index is proposed for the analysis of the influence of actuator errors on cable tensions around equilibrium configurations, and a new type of workspace, called tension-error-insensitive, is defined as the set of poses that a UACDPR EE can statically attain even in presence of actuation errors, while preserving tensions between assigned (positive) bounds. EE free oscillations are then employed to conceive a novel procedure aimed at identifying the EE inertial parameters. This approach does not require the use of force or torque measurements. Moreover, a self-calibration procedure for the experimental determination of UACDPR initial cable lengths is developed, which consequently enables the robot to automatically infer the EE initial pose at machine start-up. Lastly, trajectory planning of UACDPRs is investigated. Two alternative methods are proposed, which aim at (i) reducing EE oscillations even when model parameters are uncertain or (ii) eliminate EE oscillations in case model parameters are perfectly known. EE oscillations are reduced in real-time by dynamically scaling a nominal trajectory and filtering it with an input shaper, whereas they can be eliminated if an off-line trajectory is computed that accounts for the system internal dynamics.
4

Baklouti, Sana. "Vibration Analysis and Reduction of Cable-Driven Parallel Robots." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0034/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse vise à améliorer le positionnement statique et la précision de suivi de trajectoire des Robots Parallèles à Câbles (RPC) tout en prenant en compte leur élasticité globale. A cet effet, deux stratégies de commandes complémentaires valables pour toute configuration de RPC sont proposées.Tout d'abord, une analyse de robustesse est réalisée pour aboutir à une commande robuste des RPC référencée modèle. Un modèle de RPC approprié est défini en fonction de l'application visée et les principales sources d'erreurs de pose de la plate-forme mobile sont identifiées.Une première méthode de commande est proposée sur la base des résultats de l'analyse de robustesse. Cette première méthode réside dans le couplage d'une commande référencée modèle d’un contrôleur PID.Dans le cadre de cette thèse, un modèle élasto-dynamique de RPC est exprimé afin de compenser le comportement oscillatoire de sa plate-forme mobile dû à l'élongation des câbles et de son comportement dynamique.La deuxième méthode de commande utilise des filtres "input-shaping" dans la commande référencée modèle proposée afin d'annuler les mouvements oscillatoires de la plate-forme mobile. Ainsi, le signal d'entrée est modifié pour que le RPC annule automatiquement les vibrations résiduelles. Les résultats théoriques obtenus sont validés expérimentalement à l'aide d'un prototype de RPC non redondant en actionnement et en configuration suspendue. Les résultats expérimentaux montrent la pertinence des stratégies de commande proposées en termes d'amélioration de la précision de suivi de trajectoire et de réduction des vibrations
This thesis aims at improving the static positioning and trajectory tracking accuracy of Cable- Driven Parallel Robots (CDPRs) while considering their overall elasticity. Accordingly, two complementary control strategies that are valid for any CDPR configuration are proposed.First, a robustness analysis is performed to lead to a robust model-based control of CDPRs. As a result, an appropriate CDPR model is defined as a function of the targeted application and the main sources of CDPR moving-platforms pose errors are identified.A first control method is determined based on the results of the robustness analysis. This first method lies in the coupling of a model-based feed-forward control scheme for CDPR with a PID feedback controller.Here, an elasto-dynamic model of the CDPR is expressed to compensate the oscillatory motions of its moving-platform due to cable elongations and its dynamic behavior.The second control method uses input-shaping filters into the proposed model-based feed-forward control in order to cancel the oscillatory motions the movingplatform. Thus, the input signal is modified for the CDPR to self-cancel residual vibrations.Experimental validations are performed while using suspended and non-redundant CDPR prototype. The proposed feed-forward model-based control schemes are implemented, and their effectiveness is discussed.Results show the relevance of the proposed control strategies in terms of trajectory tracking accuracy improvement and vibration reduction
5

Abbasnejad, Matikolaei Ghasem <1984&gt. "Displacement Analysis of Under-Constrained Cable-Driven Parallel Robots." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6627/1/Abbasnejad_Ghasem_tesi.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This dissertation studies the geometric static problem of under-constrained cable-driven parallel robots (CDPRs) supported by n cables, with n ≤ 6. The task consists of determining the overall robot configuration when a set of n variables is assigned. When variables relating to the platform posture are assigned, an inverse geometric static problem (IGP) must be solved; whereas, when cable lengths are given, a direct geometric static problem (DGP) must be considered. Both problems are challenging, as the robot continues to preserve some degrees of freedom even after n variables are assigned, with the final configuration determined by the applied forces. Hence, kinematics and statics are coupled and must be resolved simultaneously. In this dissertation, a general methodology is presented for modelling the aforementioned scenario with a set of algebraic equations. An elimination procedure is provided, aimed at solving the governing equations analytically and obtaining a least-degree univariate polynomial in the corresponding ideal for any value of n. Although an analytical procedure based on elimination is important from a mathematical point of view, providing an upper bound on the number of solutions in the complex field, it is not practical to compute these solutions as it would be very time-consuming. Thus, for the efficient computation of the solution set, a numerical procedure based on homotopy continuation is implemented. A continuation algorithm is also applied to find a set of robot parameters with the maximum number of real assembly modes for a given DGP. Finally, the end-effector pose depends on the applied load and may change due to external disturbances. An investigation into equilibrium stability is therefore performed.
6

Abbasnejad, Matikolaei Ghasem <1984&gt. "Displacement Analysis of Under-Constrained Cable-Driven Parallel Robots." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6627/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This dissertation studies the geometric static problem of under-constrained cable-driven parallel robots (CDPRs) supported by n cables, with n ≤ 6. The task consists of determining the overall robot configuration when a set of n variables is assigned. When variables relating to the platform posture are assigned, an inverse geometric static problem (IGP) must be solved; whereas, when cable lengths are given, a direct geometric static problem (DGP) must be considered. Both problems are challenging, as the robot continues to preserve some degrees of freedom even after n variables are assigned, with the final configuration determined by the applied forces. Hence, kinematics and statics are coupled and must be resolved simultaneously. In this dissertation, a general methodology is presented for modelling the aforementioned scenario with a set of algebraic equations. An elimination procedure is provided, aimed at solving the governing equations analytically and obtaining a least-degree univariate polynomial in the corresponding ideal for any value of n. Although an analytical procedure based on elimination is important from a mathematical point of view, providing an upper bound on the number of solutions in the complex field, it is not practical to compute these solutions as it would be very time-consuming. Thus, for the efficient computation of the solution set, a numerical procedure based on homotopy continuation is implemented. A continuation algorithm is also applied to find a set of robot parameters with the maximum number of real assembly modes for a given DGP. Finally, the end-effector pose depends on the applied load and may change due to external disturbances. An investigation into equilibrium stability is therefore performed.
7

Abdolshah, Saeed. "Trajectory planning and control of cable-driven parallel robots." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of this work is to investigate on trajectory planning and control of cable-driven parallel robots to improve the system performance. Stiffness and dexterity are the performance indices widely used in design and control of robotic systems. No previous work on adaptive cable-driven systems has discussed how to control the position of the pulley blocks to achieve optimal dexterity and stiffness. Considering a quasi-static motion of the end-effector, we neglected the active stiffness of the system and proposed pulley blocks trajectory planning strategies that maximize dexterity and elastic stiffness indices simultaneously for some cases of adaptive cable-driven designs by taking advantage of the increased redundancy. For non-adaptive design of cable-driven parallel robots, it is impossible to change the dexterity and elastic stiffness indices for a certain position of end-effector due to fixed orientation and length of cables; however, active stiffness can be modified by changing the tension in cables. Tension increment can be desirable due to stiffness augmentation, higher trajectory tracking performance, more precise motion and disturbance rejection; however, it can increase power consumption, and saturation in actuators may occur. Usually, cable tension distribution methods work based on a fixed minimum tension in cables. Such values are chosen through experiments to gain the desired trajectory tracking performance of the system, considering capability of actuators at the same time. To improve the system performance we proposed Dynamic Minimum Tension Control (DMTC) method. In this approach, the minimum tension is changing on-the-fly according to stiffness, dynamics of the system, and error values as feedback. We used a simple test bed to compare traditional fixed minimum tension utilization, and the proposed approach. Experimental results showed that the DMTC is more efficient than traditional approaches in terms of accuracy and energy consumption. Also an appropriate control algorithm can improve the system performance. The linear quadratic optimal control can play an important role in controlling cable-driven parallel robots by providing all the states of the system for the feedback, including velocity and position, in addition to optimal results. A linear quadratic optimal controller was designed and tested. The significant experimental results are presented and discussed.
L’obiettivo di questo progetto è di investigare la pianificazione di traiettoria ed il controllo di robot paralleli a cavi al fine di migliorare le prestazioni del sistema. Rigidezza e destrezza sono indici di prestazione ampiamente utilizzati del progetto e controllo di sistemi robotici. Allo stato dell’arte, non esistono lavori relativi a sistemi a cavi adattativi riguardanti il controllo della posizione delle pulegge per ottenere indici di rigidezza e destrezza ottimali. Considerando un moto quasi-statico dell’organo terminale e trascurando la rigidezza attiva del sistema, è stato possibile proporre strategie di pianificazione di moto delle pulegge che massimizzino gli indici di destrezza e rigidezza elastica. E’ stato possibile massimizzare simultaneamente tali indici per alcuni casi di robot a cavi adattativi sfruttando la ridondanza dei sistemi analizzati. Per il progetto di robot a cavi paralleli non adattativi, è impossibile cambiare gli indici di destrezza e di rigidezza elastica per una certa posizione dell’organo terminale a causa dell’orientazione e della lunghezza dei cavi fissata; comunque, la rigidezza attiva può essere modificata cambiando la tensione dei cavi. L’incremento della tensione dei cavi può essere desiderabile a causa dell’aumento di rigidezza, del miglioramento delle prestazioni di inseguimento di traiettoria, più precisamente movimento e risposta ai disturbi; tuttavia, può aumentare il consumo energetico e portare a saturazione gli attuatori. Tipicamente i metodi di distribuzione delle tensioni operano mantenendo costante il valore di tensione minimo da applicare ai cavi. Tali valori sono scelti attraverso esperimenti per raggiungere le prestazioni di inseguimento della traiettoria desiderata, considerando anche le capacità degli attuatori. Per migliorare le prestazioni del sistema, viene proposto un metodo dinamico di controllo delle tensioni minime (DMTC). In questo approccio è possibile variare la tensione minima in tempo reale sulla base della rigidezza, della dinamica del sistema e del valore dell’errore ottenuto come feedback. Attraverso un semplice apparato sperimentale, è stato possibile confrontare il metodo tradizionale di distribuzione delle tensioni basato sulla tensione minima fissa ed il metodo proposto. I risultati sperimentali hanno mostrato che il metodo Dinamico di Controllo delle Tensioni Minime risulta più efficiente rispetto all'approccio tradizionale in termini di accuratezza e consumo energetico. Inoltre, un appropriato algoritmo di controllo può migliorare le prestazioni del sistema. Il controllo ottimo lineare quadratico riveste un ruolo fondamentale nel controllo di un robot a cavi parallelo fornendo tutti gli stati del sistema per la retroazione, incluse velocità e posizione, in aggiunta ai risultati ottimali. Un controllo ottimo lineare quadratico è stato progettato e testato. I risultati significativi sono quindi stati presentati e discussi.
8

Lessanibahri, Saman. "Cable-Driven Parallel Robots with Large Translation and Orientation Workspaces." Thesis, Ecole centrale de Nantes, 2020. https://tel.archives-ouvertes.fr/tel-03174262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les Robots Parallèles à Câbles (RPC) sont considérés comme des manipulateurs parallèles avec des câbles flexibles au lieu de liens rigides. Un RPC se compose d'un bâti, d'une plate-forme mobile et de câbles les reliant l'un à l'autre. Les RPC sont réputés pour leurs performances avantageuses par rapport aux robots parallèles classiques en termes d’espace de travail en translation, de reconfigurabilité, de capacité de charge utile importante et de performances dynamiques élevées. Cependant, l'amplitude de rotation de la plateforme mobile des RPC est généralement limitée en raison des collisions de types câble/câble et câble/plateforme mobile. L'objectif de cette thèse est ainsi de concevoir, d'analyser et de prototyper des RPC hybrides ayant à la fois un grand espace de travail en translation et un grand espace de travail en orientation en utilisant des boucles de câbles. Ce travail de recherche présente le développement de trois RPC hybrides adaptés aux tâches nécessitant de grands espaces de travail en orientation et en translation comme le balayage tomographique, les dispositifs d'orientation de caméras et l'inspection
Cable-Driven Parallel Robots (CDPRs) also noted as wire-driven robots are parallel manipulators with flexible cables instead of rigid links. A CDPR consists of a base frame, a moving-platform and a set of cables connecting the moving-platform to the base frame. CDPRs are well-known for their advantageous performance over classical parallel robots in terms of translation workspace, reconfigurability, payload capacity and high dynamic performance. However, most of the CDPRs provide limited amplitudes of rotation of the moving-platform due to cable/cable and cable/moving-platform collisions. The objective of this thesis is to design, analyze and build hybrid CDPRs to enlarge the orientation workspace in addition to their large translation workspace by exploiting cableloops. This research work presents development of three hybrid CDPRs with drastically augmented orientation workspace suitable for tasks requiring large orientation and translational workspaces like tomography scanning, camera-orienting devices, visual surveillance and inspection
9

Yuan, Han. "Static and dynamic stiffness analysis of cable-driven parallel robots." Thesis, Rennes, INSA, 2015. http://www.theses.fr/2015ISAR0003/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse contribue à l'analyse des raideurs statique et dynamique des robots parallèles à câbles dans un objectif d'amélioration de la précision de positionnement statique et de la précision de suivi de trajectoire. Les modélisations statique et dynamique proposées des câbles considèrent l'effet du poids du câble sur son profil et l'effet de masse du câble sur la dynamique de ce dernier. Sur la base du modèle statique de câble proposé, l'erreur de pose statique au niveau de l'organe terminal du robot est définie et sa variation en fonction de la charge externe appliquée est utilisée pour évaluer la raideur statique globale de la structure. Un nouveau modèle dynamique vibratoire de robots à câbles est proposé en considérant le couplage de la dynamique des câbles avec les vibrations de l'organe terminal. Des validations expérimentales sont réalisées sur des prototypes de robots à câbles. Une série d'expériences de statique, d'analyses modales, d'analyses en régime libre et de suivi de trajectoire sont réalisées. Les modèles statiques et dynamiques proposés sont confirmés. Les dynamiques des câbles et du robot ainsi que leur couplage sont discutées montrant la pertinence des modèles développés pour l’amélioration des performances des robots à câbles en termes de design et le contrôle. Outre l'analyse des raideurs statique et dynamique, les modèles proposés sont appliqués dans l'amélioration du calcul de la distribution des efforts dans les câbles des robots redondants. Une nouvelle méthode de calcul de la distribution des efforts dans les câbles basée sur la détermination de la limite inférieure des forces dans les câbles est présentée. La prise en compte de la dépendance à la position dans l'espace de travail permet de limiter les efforts dans les câbles et ainsi d'améliorer l'efficience des robots d'un point de vue énergétique
This thesis contributes to the analysis of the static and dynamic stiffness of cable-driven parallel robots (CDPRs) aiming to improve the static positioning accuracy and the trajectory tracking accuracy. The proposed static and dynamic cable modeling considers the effect of cable weight on the cable profile and the effect of cable mass on the cable dynamics. Based on the static cable model, the static pose error of the end-effector is defined and the variation of the end-effector pose error with the external load is used to evaluate the static stiffness of CDPRs. A new dynamic model of CDPRs is proposed with considering the coupling of the cable dynamics and the end-effector vibrations. Experimental validations are carried out on CDPR prototypes. Static experiments, modal experiments, free vibration experiments and trajectory experiments are performed. The proposed static and dynamic models are verified. Cable dynamics, robot dynamics and their coupling are discussed. Results show the relevance of the proposed models on improving the performances of CDPRs in terms of design and control. Besides stiffness analysis, the proposed models are applied on the force distribution of redundant actuated CDPRs. A new method on the calculation of the cable forces is proposed, where the determination of the lower-boundary of the cable forces is presented. The consideration of the pose-dependence of the lower force boundary can minimize the cable forces and improve the energy efficiency of CDPRs
10

Azizian, Kaveh. "Optimum-synthesis methods for cable-driven parallel mechanisms." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29255/29255.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Reconfigurable cable-driven parallel robots":

1

Gouttefarde, Marc, Tobias Bruckmann, and Andreas Pott, eds. Cable-Driven Parallel Robots. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75789-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pott, Andreas, and Tobias Bruckmann, eds. Cable-Driven Parallel Robots. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09489-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pott, Andreas. Cable-Driven Parallel Robots. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76138-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bruckmann, Tobias, and Andreas Pott, eds. Cable-Driven Parallel Robots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31988-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pott, Andreas, and Tobias Bruckmann, eds. Cable-Driven Parallel Robots. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20751-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gosselin, Clément, Philippe Cardou, Tobias Bruckmann, and Andreas Pott, eds. Cable-Driven Parallel Robots. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-61431-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Caro, Stéphane, Andreas Pott, and Tobias Bruckmann, eds. Cable-Driven Parallel Robots. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32322-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tang, Xiaoqiang, Zhufeng Shao, and Rui Yao. Research and Application of Cable-Driven and Rigid Parallel Robots. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7452-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zi, Bin. Hun he qu dong rou suo bing lian ji qi ren li xue fen xi yu gen zong kong zhi ji shu: Mechanics Analysis and Tracking Control Technology of Hybrid-Driven Based Cable Parallel Robots. 8th ed. Beijing Shi: Ke xue chu ban she, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pott, Andreas, and Tobias Bruckmann. Cable-Driven Parallel Robots. Springer London, Limited, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Reconfigurable cable-driven parallel robots":

1

Gagliardini, Lorenzo, Marc Gouttefarde, and Stéphane Caro. "Design of Reconfigurable Cable-Driven Parallel Robots." In Intelligent Systems, Control and Automation: Science and Engineering, 85–113. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68646-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dai, Xiaowei, Yuru Zhang, Dangxiao Wang, and Jian Song. "Structural Characteristics of Force/Moment Polytopes of Cable Driven Parallel Mechanisms." In Advances in Reconfigurable Mechanisms and Robots II, 375–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23327-7_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Qian, Sen, Bin Zi, and Xue Han. "Design and Analysis of a Circular-Orbit Underconstrained Cable Parallel Robot." In Advances in Reconfigurable Mechanisms and Robots II, 807–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23327-7_69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Izard, Jean-Baptiste, Marc Gouttefarde, Micaël Michelin, Olivier Tempier, and Cedric Baradat. "A Reconfigurable Robot for Cable-Driven Parallel Robotic Research and Industrial Scenario Proofing." In Mechanisms and Machine Science, 135–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31988-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ennaiem, Ferdaws, Abdelbadiâ Chaker, Med Amine Laribi, Juan Sandoval, Sami Bennour, Abdelfattah Mlika, Lotfi Romdhane, and Saïd Zeghloul. "A Reconfigurable 6-DoF Cable-Driven Parallel Robot with an Extended Rotational Workspace." In Mechanism Design for Robotics, 322–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75271-2_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gagliardini, Lorenzo, Stéphane Caro, Marc Gouttefarde, Philippe Wenger, and Alexis Girin. "A Reconfigurable Cable-Driven Parallel Robot for Sandblasting and Painting of Large Structures." In Mechanisms and Machine Science, 275–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09489-2_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barbazza, Luca, Damiano Zanotto, Giulio Rosati, and Sunil K. Agrawal. "Optimal Design of a Reconfigurable End-Effector for Cable-Suspended Parallel Robots." In Mechanisms and Machine Science, 267–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48375-7_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Xu, Yuan Li, Bin Zi, Qingjun Wu, and Jiahao Zhao. "Obstacle Avoidance Planning and Experimental Study of Reconfigurable Cable-Driven Parallel Robot Based on Deep Reinforcement Learning." In Intelligent Robotics and Applications, 541–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13844-7_51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Missineo, Gianni, Ferdaws Ennaiem, Juan Sandoval, Giuseppe Carbone, and Med Amine Laribi. "Development of a Reconfigurable Planar Cable-Driven Parallel Robot Combined with a Visual Servoing Module for Upper Limb Rehabilitation." In New Advances in Mechanisms, Transmissions and Applications, 219–28. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29815-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rushton, Mitchell, and Amir Khajepour. "Variable-Structure Cable-Driven Parallel Robots." In Mechanisms and Machine Science, 206–14. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75789-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Reconfigurable cable-driven parallel robots":

1

Gagliardini, Lorenzo, Stephane Caro, Marc Gouttefarde, and Alexis Girin. "A reconfiguration strategy for Reconfigurable Cable-Driven Parallel Robots." In 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015. http://dx.doi.org/10.1109/icra.2015.7139404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rasheed, Tahir, Philip Long, David Marquez-Gamez, and Stéphane Caro. "Optimal Kinematic Redundancy Planning for Planar Mobile Cable-Driven Parallel Robots." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mobile Cable-Driven Parallel Robots (MCDPRs) are special type of Reconfigurable Cable Driven Parallel Robots (RCDPRs) with the ability of undergoing an autonomous change in their geometric architecture. MCDPRs consists of a classical Cable-Driven Parallel Robot (CDPR) carried by multiple Mobile Bases (MBs). Generally MCDPRs are kinematically redundant due to the additional mobilities generated by the motion of the MBs. As a consequence, this paper introduces a methodology that aims to determine the best kinematic redundancy scheme of Planar MCDPRs (PMCDPRs) with one degree of kinematic redundancy for pick-and-place operations. This paper also discusses the Static Equilibrium (SE) constraints of the PMCDPR MBs that are needed to be respected during the task. A case study of a PMCDPR with two MBs, four cables and a three degree-of-freedom (DoF) Moving Platform (MP) is considered.
3

Nguyen, Dinh Quan, and Marc Gouttefarde. "Study of reconfigurable suspended cable-driven parallel robots for airplane maintenance." In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). IEEE, 2014. http://dx.doi.org/10.1109/iros.2014.6942781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nguyen, Dinh Quan, Marc Gouttefarde, Olivier Company, and Francois Pierrot. "On the analysis of large-dimension reconfigurable suspended cable-driven parallel robots." In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014. http://dx.doi.org/10.1109/icra.2014.6907701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alamdari, Aliakbar, and Venkat Krovi. "Parallel Articulated-Cable Exercise Robot (PACER): Novel Home-Based Cable-Driven Parallel Platform Robot for Upper Limb Neuro-Rehabilitation." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper examines the design, analysis and control of a novel hybrid articulated-cable parallel platform for upper limb rehabilitation in three dimensional space. The proposed lightweight, low-cost, modular reconfigurable parallel-architecture robotic device is comprised of five cables and a single linear actuator which connects a six degrees-of-freedom moving platform to a fixed base. This novel design provides an attractive architecture for implementation of a home-based rehabilitation device as an alternative to bulky and expensive serial robots. The manuscript first examines the kinematic analysis prior to developing the dynamic equations via the Newton-Euler formulation. Subsequently, different spatial motion trajectories are prescribed for rehabilitation of subjects with arm disabilities. A low-level trajectory tracking controller is developed to achieve the desired trajectory performance while ensuing that the unidirectional tensile forces in the cables are maintained. This is now evaluated via a simulation case-study and the development of a physical testbed is underway.
6

Masone, Carlo, Heinrich H. Bulthoff, and Paolo Stegagno. "Cooperative transportation of a payload using quadrotors: A reconfigurable cable-driven parallel robot." In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016. http://dx.doi.org/10.1109/iros.2016.7759262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Raman, Adhiti, Ameya Salvi, Matthias Schmid, and Venkat Krovi. "Reinforcement Learning Control of a Reconfigurable Planar Cable Driven Parallel Manipulator." In 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023. http://dx.doi.org/10.1109/icra48891.2023.10160498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hamann, Marcus. "Calibration Procedure For a Geometrically Reconfigurable 3-DoF Cable-Driven Parallel Robot." In Modelling, Simulation and Identification. Calgary,AB,Canada: ACTAPRESS, 2018. http://dx.doi.org/10.2316/p.2018.857-013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Nan, Weiwei Shang, and Shuang Cong. "Design and analysis of an under-constrained reconfigurable cable-driven parallel robot." In 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). IEEE, 2017. http://dx.doi.org/10.1109/iccis.2017.8274741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Bingyao, Bin Zi, Sen Qian, and Dan Zhang. "Collision free force closure workspace determination of reconfigurable planar cable driven parallel robot." In 2016 Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). IEEE, 2016. http://dx.doi.org/10.1109/acirs.2016.7556182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії