Добірка наукової літератури з теми "Rare events simulation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Rare events simulation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Rare events simulation"
Becker, M., and P. L. Douillet. "Hierarchical Simulation For Rare Events." International Journal of Modelling and Simulation 17, no. 2 (January 1997): 66–71. http://dx.doi.org/10.1080/02286203.1997.11760314.
Повний текст джерелаLagnoux, Agnès. "RARE EVENT SIMULATION." Probability in the Engineering and Informational Sciences 20, no. 1 (December 12, 2005): 45–66. http://dx.doi.org/10.1017/s0269964806060025.
Повний текст джерелаKubatur, Shruthi S., and Mary L. Comer. "Simulation of Rare Events in Images." Electronic Imaging 2018, no. 15 (January 28, 2018): 227–1. http://dx.doi.org/10.2352/issn.2470-1173.2018.15.coimg-227.
Повний текст джерелаAsmussen, Søren, Reuven Y. Rubinstein, and Chia-Li Wang. "Regenerative rare events simulation via likelihood ratios." Journal of Applied Probability 31, no. 3 (September 1994): 797–815. http://dx.doi.org/10.2307/3215157.
Повний текст джерелаAsmussen, Søren, Reuven Y. Rubinstein, and Chia-Li Wang. "Regenerative rare events simulation via likelihood ratios." Journal of Applied Probability 31, no. 03 (September 1994): 797–815. http://dx.doi.org/10.1017/s0021900200045356.
Повний текст джерелаAsmussen, Søren, Klemens Binswanger, Bjarne Højgaard, Soren Asmussen, and Bjarne Hojgaard. "Rare Events Simulation for Heavy-Tailed Distributions." Bernoulli 6, no. 2 (April 2000): 303. http://dx.doi.org/10.2307/3318578.
Повний текст джерелаKabanov, A. A., and S. A. Dubovik. "Simulation of Rare Events in Stochastic Systems." Journal of Physics: Conference Series 2096, no. 1 (November 1, 2021): 012151. http://dx.doi.org/10.1088/1742-6596/2096/1/012151.
Повний текст джерелаTownsend, J. K., Z. Haraszti, J. A. Freebersyser, and M. Devetsikiotis. "Simulation of rare events in communications networks." IEEE Communications Magazine 36, no. 8 (1998): 36–41. http://dx.doi.org/10.1109/35.707815.
Повний текст джерелаChambers, W. G. "Simulation of rare events in Gaussian processes." Electronics Letters 29, no. 15 (1993): 1384. http://dx.doi.org/10.1049/el:19930927.
Повний текст джерелаBréhier, Charles-Edouard, Maxime Gazeau, Ludovic Goudenège, and Mathias Rousset. "Analysis and simulation of rare events for SPDEs." ESAIM: Proceedings and Surveys 48 (January 2015): 364–84. http://dx.doi.org/10.1051/proc/201448017.
Повний текст джерелаДисертації з теми "Rare events simulation"
Liu, Hong. "Rare events, heavy tails, and simulation." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239435.
Повний текст джерелаBooth, Jonathan James. "New applications of boxed molecular dynamics : efficient simulation of rare events." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/13101/.
Повний текст джерелаLiu, Gang. "Rare events simulation by shaking transformations : Non-intrusive resampler for dynamic programming." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX043/document.
Повний текст джерелаThis thesis contains two parts: rare events simulation and non-intrusive stratified resampler for dynamic programming. The first part consists of quantifying statistics related to events which are unlikely to happen but which have serious consequences. We propose Markovian transformation on path spaces and combine them with the theories of interacting particle system and of Markov chain ergodicity to propose methods which apply very generally and have good performance. The second part consists of resolving dynamic programming problem numerically in a context where we only have historical observations of small size and we do not know the values of model parameters. We propose and analyze a new scheme with stratification and resampling techniques
DHAMODARAN, RAMYA. "EFFICIENT ANALYSIS OF RARE EVENTS ASSOCIATED WITH INDIVIDUAL BUFFERS IN A TANDEM JACKSON NETWORK." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1099073321.
Повний текст джерелаFreitas, Rodrigo Moura 1989. "Molecular simulation = methods and applications = Simulações moleculares : métodos e aplicações." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278440.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-23T00:50:21Z (GMT). No. of bitstreams: 1 Freitas_RodrigoMoura_M.pdf: 11496259 bytes, checksum: 41c29f22d80da01064cf7a3b9681b05f (MD5) Previous issue date: 2013
Resumo: Devido aos avanços conceptuais e técnicos feitos em física computacional e ciência dos materiais computacional nos estamos aptos a resolver problemas que eram inacessíveis a alguns anos atrás. Nessa dissertação estudamos a evolução de alguma destas técnicas, apresentando a teoria e técnicas de simulação computacional para estudar transições de fase de primeira ordem com ênfase nas técnicas mais avançadas de calculo de energia livre (Reversible Scaling) e métodos de simulação de eventos raros (Forward Flux Sampling) usando a técnica de simulação atomística da Dinâmica Molecular. A evolução e melhora da e ciência destas técnicas e apresentada junto com aplicações a sistemas simples que permitem solução exata e também ao caso mais complexo da transição de fase Martenstica. Também apresentamos a aplicação de métodos numéricos no estudo do modelo de Pauling para o gelo. Nos desenvolvemos e implementamos um novo algoritmo para a criação e ciente de estruturas de gelo desordenadas. Este algoritmo de geração de cristais de gelo nos permitiu criar células de gelo Ih de tamanhos que não eram possíveis antes. Usando este algoritmo abordamos o problema de efeitos de tamanho finito não estudados anteriormente
Abstract: Due to the conceptual and technical advances being made in computational physics and computational materials science we have been able to tackle problems that were inaccessible a few years ago. In this dissertation we study the evolution of some of these techniques, presenting the theory and simulation methods to study _rst order phase transitions with emphasis on state-of-the-art free-energy calculation (Reversible Scaling) and rare event (Forward Flux Sampling) methods using the atomistic simulation technique of Molecular Dynamics. The evolution and efficiency improvement of these techniques is presented together with applications to simple systems that allow exact solution as well as the more the complex case of Martensitic phase transitions. We also present the application of numerical methods to study Pauling\'s model of ice. We have developed and implemented a new algorithm for efficient generation of disordered ice structures. This ice generator algorithm allows us to create ice Ih cells of sizes not reported before. Using this algorithm we address finite size effects not studied before
Mestrado
Física
Mestre em Física
Hewett, Angela Dawn. "Expecting the unexpected : to what extent does simulation help healthcare professionals prepare for rare, critical events during childbearing?" Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/15431/.
Повний текст джерелаRai, Ajit. "Estimation de la disponibilité par simulation, pour des systèmes incluant des contraintes logistiques." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S105/document.
Повний текст джерелаRAM (Reliability, Availability and Maintainability) analysis forms an integral part in estimation of Life Cycle Costs (LCC) of passenger rail systems. These systems are highly reliable and include complex logistics. Standard Monte-Carlo simulations are rendered useless in efficient estimation of RAM metrics due to the issue of rare events. Systems failures of these complex passenger rail systems can include rare events and thus need efficient simulation techniques. Importance Sampling (IS) are an advanced class of variance reduction techniques that can overcome the limitations of standard simulations. IS techniques can provide acceleration of simulations, meaning, less variance in estimation of RAM metrics in same computational budget as a standard simulation. However, IS includes changing the probability laws (change of measure) that drive the mathematical models of the systems during simulations and the optimal IS change of measure is usually unknown, even though theroretically there exist a perfect one (zero-variance IS change of measure). In this thesis, we focus on the use of IS techniques and its application to estimate two RAM metrics : reliability (for static networks) and steady state availability (for dynamic systems). The thesis focuses on finding and/or approximating the optimal IS change of measure to efficiently estimate RAM metrics in rare events context. The contribution of the thesis is broadly divided into two main axis : first, we propose an adaptation of the approximate zero-variance IS method to estimate reliability of static networks and show the application on real passenger rail systems ; second, we propose a multi-level Cross-Entropy optimization scheme that can be used during pre-simulation to obtain CE optimized IS rates of Markovian Stochastic Petri Nets (SPNs) transitions and use them in main simulations to estimate steady state unavailability of highly reliably Markovian systems with complex logistics involved. Results from the methods show huge variance reduction and gain compared to MC simulations
Picciani, Massimiliano. "Rare events in many-body systems : reactive paths and reaction constants for structural transitions." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00706510.
Повний текст джерелаSilva, lopes Laura. "Méthodes numériques pour la simulation d'évènements rares en dynamique moléculaire." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1045.
Повний текст джерелаIn stochastic dynamical systems, such as those encountered in molecular dynamics, rare events naturally appear as events due to some low probability stochastic fluctuations. Examples of rare events in our everyday life includes earthquakes and major floods. In chemistry, protein folding, ligandunbinding from a protein cavity and opening or closing of channels in cell membranes are examples of rare events. Simulation of rare events has been an important field of research in biophysics over the past thirty years.The events of interest in molecular dynamics generally involve transitions between metastable states, which are regions of the phase space where the system tends to stay trapped. These transitions are rare, making the use of a naive, direct Monte Carlo method computationally impracticable. To dealwith this difficulty, sampling methods have been developed to efficiently simulate rare events. Among them are splitting methods, that consists in dividing the rare event of interest into successive nested more likely events.Adaptive Multilevel Splitting (AMS) is a splitting method in which the positions of the intermediate interfaces, used to split reactive trajectories, are adapted on the fly. The surfaces are defined suchthat the probability of transition between them is constant, which minimizes the variance of the rare event probability estimator. AMS is a robust method that requires a small quantity of user defined parameters, and is therefore easy to use.This thesis focuses on the application of the adaptive multilevel splitting method to molecular dynamics. Two kinds of systems are studied. The first one contains simple models that allowed us to improve the way AMS is used. The second one contains more realistic and challenging systems, where AMS isused to get better understanding of the molecular mechanisms. Hence, the contributions of this thesis include both methodological and numerical results.We first validate the AMS method by applying it to the paradigmatic alanine dipeptide conformational change. We then propose a new technique combining AMS and importance sampling to efficiently sample the initial conditions ensemble when using AMS to obtain the transition time. This is validatedon a simple one dimensional problem, and our results show its potential for applications in complex multidimensional systems. A new way to identify reaction mechanisms is also proposed in this thesis.It consists in performing clustering techniques over the reactive trajectories ensemble generated by the AMS method.The implementation of the AMS method for NAMD has been improved during this thesis work. In particular, this manuscript includes a tutorial on how to use AMS on NAMD. The use of the AMS method allowed us to study two complex molecular systems. The first consists in the analysis of the influence of the water model (TIP3P and TIP4P/2005) on the β -cyclodextrin and ligand unbinding process. In the second, we apply the AMS method to sample unbinding trajectories of a ligand from the N-terminal domain of the Hsp90 protein
Saggadi, Samira. "Simulation d'évènements rares par Monte Carlo dans les réseaux hautement fiables." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S055.
Повний текст джерелаNetwork reliability determination, is an NP-hard problem. For instance, in telecommunications, it is desired to evaluate the probability that a selected group of nodes communicate or not. In this case, a set of disconnected nodes can lead to critical financials security consequences. A precise estimation of the reliability is, therefore, needed. In this work, we are interested in the study and the calculation of the reliability of highly reliable networks. In this case the unreliability is very small, which makes the standard Monte Carlo approach useless, because it requires a large number of iterations. For a good estimation of system reliability with minimum cost, we have developed new simulation techniques based on variance reduction using importance sampling
Книги з теми "Rare events simulation"
Shi, Yixi. Rare Events in Stochastic Systems: Modeling, Simulation Design and Algorithm Analysis. [New York, N.Y.?]: [publisher not identified], 2013.
Знайти повний текст джерелаBucklew, James Antonio. Introduction to Rare Event Simulation. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4078-3.
Повний текст джерелаBucklew, James Antonio. Introduction to Rare Event Simulation. New York, NY: Springer New York, 2004.
Знайти повний текст джерелаRubino, Gerardo, and Bruno Tuffin, eds. Rare Event Simulation using Monte Carlo Methods. Chichester, UK: John Wiley & Sons, Ltd, 2009. http://dx.doi.org/10.1002/9780470745403.
Повний текст джерела1955-, Rubino Gerardo, and Tuffin Bruno, eds. Rare event simulation using Monte Carlo methods. Hoboken, N.J: Wiley, 2009.
Знайти повний текст джерелаLamers, Eugen. Contributions to Simulation Speed-Up: Rare Event Simulation and Short-Term Dynamic Simulation for Mobile Network Planning. Wiesbaden: Vieweg+Teubner / GWV Fachverlage GmbH, Wiesbaden, 2008.
Знайти повний текст джерелаAllen, Michael P., and Dominic J. Tildesley. Rare event simulation. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803195.003.0010.
Повний текст джерела(Editor), Bruce J. Berne, Giovanni Cicotti (Editor), and David F. Coker (Editor), eds. Classical and Quantum Dynamics in Condensed Phase Simulations: Proceedings of the International School of Physics "Computer Simulation of Rare Events and ... Classical and Quantum Condensed-Phase syste. World Scientific Publishing Company, 1998.
Знайти повний текст джерелаBucklew, James A. Introduction to Rare Event Simulation. Springer, 2004.
Знайти повний текст джерелаAn introduction to rare event simulation. New York: Springer, 2003.
Знайти повний текст джерелаЧастини книг з теми "Rare events simulation"
Ciccotti, G. "Molecular Dynamics Simulations of Nonequilibrium Phenomena and Rare Dynamical Events." In Computer Simulation in Materials Science, 119–37. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3546-7_6.
Повний текст джерелаRubino, Gerardo. "Network Reliability, Performability Metrics, Rare Events and Standard Monte Carlo." In Advances in Modeling and Simulation, 401–20. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10193-9_20.
Повний текст джерелаWainrib, Gilles. "Some Numerical Methods for Rare Events Simulation and Analysis." In Lecture Notes in Mathematics, 73–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32157-3_4.
Повний текст джерелаAsmussen, Søren. "Large Deviations in Rare Events Simulation: Examples, Counterexamples and Alternatives." In Monte Carlo and Quasi-Monte Carlo Methods 2000, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56046-0_1.
Повний текст джерелаPelikan, Martin, Jiri Ocenasek, Simon Trebst, Matthias Troyer, and Fabien Alet. "Computational Complexity and Simulation of Rare Events of Ising Spin Glasses." In Genetic and Evolutionary Computation – GECCO 2004, 36–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24855-2_4.
Повний текст джерелаCarney, Meagan, Holger Kantz, and Matthew Nicol. "Analysis and Simulation of Extremes and Rare Events in Complex Systems." In Advances in Dynamics, Optimization and Computation, 151–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51264-4_7.
Повний текст джерелаD’Argenio, Pedro R., Carlos E. Budde, Matias David Lee, Raúl E. Monti, Leonardo Rodríguez, and Nicolás Wolovick. "The Road from Stochastic Automata to the Simulation of Rare Events." In ModelEd, TestEd, TrustEd, 276–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68270-9_14.
Повний текст джерелаvan Moorsel, Aad P. A., Boudewijn R. Haverkort, and Ignas G. Niemegeers. "Fault Injection Simulation: A Variance Reduction Technique for Systems with Rare Events." In Dependable Computing for Critical Applications 2, 115–34. Vienna: Springer Vienna, 1992. http://dx.doi.org/10.1007/978-3-7091-9198-9_6.
Повний текст джерелаZimmermann, Armin. "Extended Reward Measures in the Simulation of Embedded Systems With Rare Events." In Embedded Systems – Modeling, Technology, and Applications, 43–52. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4933-1_5.
Повний текст джерелаPuch, Stefan, Martin Fränzle, and Sebastian Gerwinn. "Quantitative Risk Assessment of Safety-Critical Systems via Guided Simulation for Rare Events." In Leveraging Applications of Formal Methods, Verification and Validation. Verification, 305–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03421-4_20.
Повний текст джерелаТези доповідей конференцій з теми "Rare events simulation"
Foo, Jasmine, and Kevin Leder. "Rare events in cancer recurrence timing." In 2012 Winter Simulation Conference - (WSC 2012). IEEE, 2012. http://dx.doi.org/10.1109/wsc.2012.6465239.
Повний текст джерелаKim, Youngjun, Yonatan Gur, and Mykel J. Kochenderfer. "Heuristics for planning with rare catastrophic events." In 2017 Winter Simulation Conference (WSC). IEEE, 2017. http://dx.doi.org/10.1109/wsc.2017.8248024.
Повний текст джерелаGordon, Steven, and David Garbin. "Of dual-core networks during rare events." In 2011 Winter Simulation Conference - (WSC 2011). IEEE, 2011. http://dx.doi.org/10.1109/wsc.2011.6148017.
Повний текст джерелаFresnedo, R. D. "Quick simulation of rare events in networks." In the 21st conference. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/76738.76805.
Повний текст джерелаWang, Xingyu, and Chang-Han Rhee. "Rare-Event Simulation for Multiple Jump Events in Heavy-Tailed Lévy Processes with Infinite Activities." In 2020 Winter Simulation Conference (WSC). IEEE, 2020. http://dx.doi.org/10.1109/wsc48552.2020.9383865.
Повний текст джерелаEstecahandy, Maider, Laurent Bordes, Stephane Collas, and Christian Paroissin. "Acceleration methods for Monte Carlo simulation of rare events." In 2015 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2015. http://dx.doi.org/10.1109/rams.2015.7105098.
Повний текст джерелаNavarro, Jose M., G. Hugo A. Parada, and Juan C. Duenas. "System Failure Prediction through Rare-Events Elastic-Net Logistic Regression." In 2014 2nd International Conference on Artificial Intelligence, Modelling & Simulation (AIMS). IEEE, 2014. http://dx.doi.org/10.1109/aims.2014.19.
Повний текст джерелаGuo, Yabing, Wenbing Chang, and Shenghan Zhou. "The research and simulation about rare events based on MCMC." In 2015 27th Chinese Control and Decision Conference (CCDC). IEEE, 2015. http://dx.doi.org/10.1109/ccdc.2015.7162009.
Повний текст джерела"Resampling techniques for rare events prediction using data-driven and hydrological models." In 25th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2023. http://dx.doi.org/10.36334/modsim.2023.zeinolabedini.
Повний текст джерелаPang, Yanbo, Kota Tsubouchi, Takahiro Yabe, and Yoshihide Sekimoto. "Intercity Simulation of Human Mobility at Rare Events via Reinforcement Learning." In SIGSPATIAL '20: 28th International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3397536.3422244.
Повний текст джерелаЗвіти організацій з теми "Rare events simulation"
Washio, Takashi. Model Learning for Probabilistic Simulation on Rare Events and Scenarios. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616937.
Повний текст джерелаKollman, Craig. Rare event simulation in radiation transport. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10172053.
Повний текст джерелаSarupria, Sapna, Steven Hall, and Ryan DeFever. Sampling Rare Events In Aqueous Systems Using Molecular Simulations. Office of Scientific and Technical Information (OSTI), June 2024. http://dx.doi.org/10.2172/2376138.
Повний текст джерелаShortle, John F. New Approaches for Rare-Event Simulation and Decision Making. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1128906.
Повний текст джерелаMartin, S., Larry Daggett, Morgan Johnston, Chris Hewlett, Kiara Pazan, Mario Sanchez, Dennis Webb, Mary Allison, and George Burkley. Houston Ship Channel Expansion Improvement Project – Navigation Channel Improvement Study : ship simulation results. Coastal and Hydraulics Laboratory (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42342.
Повний текст джерелаDean, Thomas, and aul Dupuis. Splitting for Rare Event Simulation: A Large Deviations Approach to Design and Analysis. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada476257.
Повний текст джерелаWallace, Adam. Towards The Development of Rare Event Simulation Methods For Improved Mechanistic Understanding of Mineral Surface Reactivity. Office of Scientific and Technical Information (OSTI), September 2024. http://dx.doi.org/10.2172/2447356.
Повний текст джерелаKushner, Harold, and Paul Dupuis. Stochastic Control and Numerical Methods with Applications to Communications. Game Theoretic/Subsolution to Importance Sampling for Rare Event Simulation. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada499989.
Повний текст джерелаChazel, Simon, Sophie Bernard, and Hassan Benchekroun. Energy transition under mineral constraints and recycling: A low-carbon supply peak. CIRANO, May 2023. http://dx.doi.org/10.54932/ezhr6690.
Повний текст джерелаKotlikoff, Laurence J., Guillermo Lagarda, and Gabriel Marin. A Personalized VAT with Capital Transfers: A Reform to Protect Low-Income Households in Mexico. Inter-American Development Bank, July 2023. http://dx.doi.org/10.18235/0005028.
Повний текст джерела