Добірка наукової літератури з теми "Random walks on network"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Random walks on network".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Random walks on network"
LI, KEQIN. "PERFORMANCE ANALYSIS AND EVALUATION OF RANDOM WALK ALGORITHMS ON WIRELESS NETWORKS." International Journal of Foundations of Computer Science 23, no. 04 (June 2012): 779–802. http://dx.doi.org/10.1142/s0129054112400369.
Повний текст джерелаMa, Qi, Anders Johansson, Atsushi Tero, Toshiyuki Nakagaki, and David J. T. Sumpter. "Current-reinforced random walks for constructing transport networks." Journal of The Royal Society Interface 10, no. 80 (March 6, 2013): 20120864. http://dx.doi.org/10.1098/rsif.2012.0864.
Повний текст джерелаWang, Yan, Ding Juan Wu, Fang Lv, and Meng Long Su. "Exploring activity-driven network with biased walks." International Journal of Modern Physics C 28, no. 09 (September 2017): 1750111. http://dx.doi.org/10.1142/s012918311750111x.
Повний текст джерелаKalikova, A. "Statistical analysis of random walks on network." Scientific Journal of Astana IT University, no. 5 (July 27, 2021): 77–83. http://dx.doi.org/10.37943/aitu.2021.99.34.007.
Повний текст джерелаGannon, M., E. Pechersky, Y. Suhov, and A. Yambartsev. "Random walks in a queueing network environment." Journal of Applied Probability 53, no. 2 (June 2016): 448–62. http://dx.doi.org/10.1017/jpr.2016.12.
Повний текст джерелаZheng, Zhongtuan, Hanxing Wang, Shengguo Gao, and Guoqiang Wang. "Comparison of Multiple Random Walks Strategies for Searching Networks." Mathematical Problems in Engineering 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/734630.
Повний текст джерелаAsztalos, A., and Z. Toroczkai. "Network discovery by generalized random walks." EPL (Europhysics Letters) 92, no. 5 (December 1, 2010): 50008. http://dx.doi.org/10.1209/0295-5075/92/50008.
Повний текст джерелаToth, Christian, Denis Helic, and Bernhard C. Geiger. "Synwalk: community detection via random walk modelling." Data Mining and Knowledge Discovery 36, no. 2 (January 10, 2022): 739–80. http://dx.doi.org/10.1007/s10618-021-00809-w.
Повний текст джерелаXING, CHANGMING, LIN YANG, and LEI GUO. "RANDOM WALKS WITH A TRAP IN SCALE-FREE FRACTAL HIERARCHICAL LATTICES." Fractals 25, no. 06 (November 21, 2017): 1750058. http://dx.doi.org/10.1142/s0218348x1750058x.
Повний текст джерелаIkeda, N. "Network formed by traces of random walks." Physica A: Statistical Mechanics and its Applications 379, no. 2 (June 2007): 701–13. http://dx.doi.org/10.1016/j.physa.2007.01.006.
Повний текст джерелаДисертації з теми "Random walks on network"
De, Bacco Caterina. "Decentralized network control, optimization and random walks on networks." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112164/document.
Повний текст джерелаIn the last years several problems been studied at the interface between statistical physics and computer science. The reason being that often these problems can be reinterpreted in the language of physics of disordered systems, where a big number of variables interacts through local fields dependent on the state of the surrounding neighborhood. Among the numerous applications of combinatorial optimisation the optimal routing on communication networks is the subject of the first part of the thesis. We will exploit the cavity method to formulate efficient algorithms of type message-passing and thus solve several variants of the problem through its numerical implementation. At a second stage, we will describe a model to approximate the dynamic version of the cavity method, which allows to decrease the complexity of the problem from exponential to polynomial in time. This will be obtained by using the Matrix Product State formalism of quantum mechanics. Another topic that has attracted much interest in statistical physics of dynamic processes is the random walk on networks. The theory has been developed since many years in the case the underneath topology is a d-dimensional lattice. On the contrary the case of random networks has been tackled only in the past decade, leaving many questions still open for answers. Unravelling several aspects of this topic will be the subject of the second part of the thesis. In particular we will study the average number of distinct sites visited during a random walk and characterize its behaviour as a function of the graph topology. Finally, we will address the rare events statistics associated to random walks on networks by using the large-deviations formalism. Two types of dynamic phase transitions will arise from numerical simulations, unveiling important aspects of these problems. We will conclude outlining the main results of an independent work developed in the context of out-of-equilibrium physics. A solvable system made of two Brownian particles surrounded by a thermal bath will be studied providing details about a bath-mediated interaction arising for the presence of the bath
Maddalena, Daniela. "Stationary states in random walks on networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10170/.
Повний текст джерелаZimmermann, Jochen [Verfasser], and Andreas [Akademischer Betreuer] Buchleitner. "Random walks with nonlinear interactions on heterogeneous networks = Random Walk mit nichtlinearen Wechselwirkungen auf heterogenen Netzwerken." Freiburg : Universität, 2015. http://d-nb.info/1123482381/34.
Повний текст джерелаKolgushev, Oleg. "Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955128/.
Повний текст джерелаLinn, Hanna. "Detecting quantum speedup for random walks with artificial neural networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289347.
Повний текст джерелаSlumpvandringar på grafer är essensiella i viktiga algoritmer för att lösa olika problem, till exempel SAT, booleska uppfyllningsproblem (the satisfiability problem). Genom att göra slumpvandringar snabbare går det att förbättra dessa algoritmer. Kvantversionen av slumpvandringar, kvantvandringar, har visats vara snabbare än klassiska slumpvandringar i specifika fall, till exempel på vissa linjära grafer. Det går att analysera, analytiskt eller genom att simulera vandringarna på grafer, när kvantvandringen är snabbare än slumpvandingen. Problem uppstår dock när graferna blir större, har fler noder samt fler kanter. Det finns inga kända generella regler för vad en godtycklig graf, som inte har några explicita symmetrier, borde uppfylla för att främja kvantvandringen. Simuleringar kommer bara besvara frågan för ett enda fall. De kommer inte att ge några generella regler för vilka egenskaper grafer borde ha. Artificiella neuronnät (ANN) har tidigare används som hjälpmedel för att upptäcka när kvantvandringen är snabbare än slumpvandingen på grafer. Då jämförs tiden det tar i genomsnitt att ta sig från startnoden till slutnoden. Dock är det inte säkert att få kvantacceleration för vandringen om initialtillståndet för kvantvandringen är helt i startnoden. I det här projektet undersöker vi om det går att få en större kvantacceleration hos kvantvandringen genom att starta den i superposition med en extra nod. Vi föreslår olika sätt att lägga till den extra noden till grafen och sen väljer vi en för att använda i resen av projektet. De superpositionstillstånd som undersöks är två av stabilisatortillstånden och två magiska tillstång. Valen av dessa tillstånd är inspirerat av Gottesmann- Knill satsen. Enligt satsen så kan en algoritm som startar i ett magiskt tillstånd ha en exponetiell uppsnabbning, men att starta i någon stabilisatortillstånden inte kan ha det. Detta givet att grindarna som används i algoritmen är från Cliffordgruppen samt att alla mätningar är i Paulibasen. I projektet visar vi att det är möjligt att träna en ANN så att den kan klassificera grafer utifrån vilken kvantvandring, med olika initialtillstånd, som var snabbast. Artificiella neuronnätet kan klassificera linjära grafer och slumpmässiga grafer bättre än slumpen. Vi visar också att faltningsnätverk med en djupare arkitektur än tidigare föreslaget för uppgiften är bättre på att klassificera grafer än innan. Våra resultat banar vägen för en automatiserad forskning i nya kvantvandringsbaserade algoritmer.
Lau, Hon Wai. "Random walk in networks : first passage time and speed analysis /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202009%20LAU.
Повний текст джерелаMalmros, Jens. "Studies in respondent-driven sampling : Directed networks, epidemics, and random walks." Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129287.
Повний текст джерелаAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: Accepted. Paper 4: Manuscript.
Russo, Elena Tea. "Fluctuation properties in random walks on networks and simple integrate and fire models." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9565/.
Повний текст джерелаXu, Keyulu. "Graph structures, random walks, and all that : learning graphs with jumping knowledge networks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121660.
Повний текст джерелаThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 51-54).
Graph representation learning aims to extract high-level features from the graph structures and node features, in order to make predictions about the nodes and the graphs. Applications include predicting chemical properties of drugs, community detection in social networks, and modeling interactions in physical systems. Recent deep learning approaches for graph representation learning, namely Graph Neural Networks (GNNs), follow a neighborhood aggregation procedure, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. We analyze some important properties of these models, and propose a strategy to overcome the limitations. In particular, the range of neighboring nodes that a node's representation draws from strongly depends on the graph structure, analogous to the spread of a random walk. To adapt to local neighborhood properties and tasks, we explore an architecture - jumping knowledge (JK) networks that flexibly leverages, for each node, different neighborhood ranges to enable better structure-aware representation. In a number of experiments on social, bioinformatics and citation networks, we demonstrate that our model achieves state-of-the-art performance. Furthermore, combining the JK framework with models like Graph Convolutional Networks, GraphSAGE and Graph Attention Networks consistently improves those models' performance.
by Keyulu Xu.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Uguccioni, Marco. "Introduzione alla meccanica statistica dei random walk su network." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21027/.
Повний текст джерелаКниги з теми "Random walks on network"
Transfiniteness for graphs, electrical networks, and random walks. Boston: Birkhäuser, 1996.
Знайти повний текст джерелаPál, Révész, Tóth Bálint, Paul Erdős Summer Research Center of Mathematics., and International Workshop on Random Walks (1998 : Budapest, Hungary), eds. Random walks. Budapest, Hungary: János Bolyai Mathematical Society, 1999.
Знайти повний текст джерелаHughes, B. D. Random walks and random environments. Oxford: Clarendon Press, 1995.
Знайти повний текст джерелаGut, Allan. Stopped Random Walks. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4757-1992-5.
Повний текст джерелаGut, Allan. Stopped Random Walks. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-87835-5.
Повний текст джерелаShi, Zhan. Branching Random Walks. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25372-5.
Повний текст джерелаRandom walk in random and non-random environments. Hackensack, New Jersey: World Scientific, 2013.
Знайти повний текст джерелаRandom walk in random and non-random environments. Singapore: Teaneck, N.J., 1990.
Знайти повний текст джерелаRandom walk in random and non-random environments. 2nd ed. New Jersey: World Scientific, 2005.
Знайти повний текст джерелаIntersections of random walks. Boston: Birkhäuser, 1991.
Знайти повний текст джерелаЧастини книг з теми "Random walks on network"
Zemanian, Armen H. "Transfinite Random Walks." In Pristine Transfinite Graphs and Permissive Electrical Networks, 149–71. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0163-2_8.
Повний текст джерелаAiyer, Anand, Xiao Liang, Nilu Nalini, and Omkant Pandey. "Random Walks and Concurrent Zero-Knowledge." In Applied Cryptography and Network Security, 24–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57808-4_2.
Повний текст джерелаRasteiro, D. M. L. D. "Random Walks in Electric Networks." In Intelligent Systems, Control and Automation: Science and Engineering, 259–65. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4722-7_24.
Повний текст джерелаZemanian, A. H. "Random Walks on ω-Networks." In Harmonic Analysis and Discrete Potential Theory, 249–57. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2323-3_20.
Повний текст джерелаNachmias, Asaf. "Random Walks and Electric Networks." In Lecture Notes in Mathematics, 11–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27968-4_2.
Повний текст джерелаLawler, Gregory, and Lester Coyle. "Random walks and electrical networks." In The Student Mathematical Library, 53–62. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/stml/002/09.
Повний текст джерелаJorgensen, Palle E. T., and Erin P. J. Pearse. "Resistance Boundaries of Infinite Networks." In Random Walks, Boundaries and Spectra, 111–42. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0346-0244-0_7.
Повний текст джерелаHou, Lei, Kecheng Liu, and Jianguo Liu. "Navigated Random Walks on Amazon Book Recommendation Network." In Studies in Computational Intelligence, 935–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72150-7_75.
Повний текст джерелаSarkar, Purnamrita, and Andrew W. Moore. "Random Walks in Social Networks and their Applications: A Survey." In Social Network Data Analytics, 43–77. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-8462-3_3.
Повний текст джерелаHoffmann, Till, Mason A. Porter, and Renaud Lambiotte. "Random Walks on Stochastic Temporal Networks." In Understanding Complex Systems, 295–313. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36461-7_15.
Повний текст джерелаТези доповідей конференцій з теми "Random walks on network"
Nguyen, Giang H., John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, and Sungchul Kim. "Dynamic Network Embeddings: From Random Walks to Temporal Random Walks." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622109.
Повний текст джерелаQian, Haifeng, Sani R. Nassif, and Sachin S. Sapatnekar. "Random walks in a supply network." In the 40th conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/775832.775860.
Повний текст джерелаLu, Shan, Jieqi Kang, Weibo Gong, and Don Towsley. "Complex network comparison using random walks." In the 23rd International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2567948.2579363.
Повний текст джерелаCooper, Colin, Tomasz Radzik, and Yiannis Siantos. "Estimating network parameters using random walks." In 2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN). IEEE, 2012. http://dx.doi.org/10.1109/cason.2012.6412374.
Повний текст джерелаLiew, Seng Pei, Tsubasa Takahashi, Shun Takagi, Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. "Network Shuffling: Privacy Amplification via Random Walks." In SIGMOD/PODS '22: International Conference on Management of Data. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3514221.3526162.
Повний текст джерелаLima, Luisa, and Joao Barros. "Random Walks on Sensor Networks." In 2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). IEEE, 2007. http://dx.doi.org/10.1109/wiopt.2007.4480064.
Повний текст джерелаShao-Ping Wang, Wen-Jiang Pei, and Zhen-Ya He. "Random walks on the neural network of C.elegans." In 2008 International Conference on Neural Networks and Signal Processing (ICNNSP). IEEE, 2008. http://dx.doi.org/10.1109/icnnsp.2008.4590327.
Повний текст джерелаBoghrati, Baktash, and Sachin S. Sapatnekar. "Incremental power network analysis using backward random walks." In 2012 17th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2012. http://dx.doi.org/10.1109/aspdac.2012.6164983.
Повний текст джерелаTomassini, Marco. "Random Walks on Local Optima Networks." In 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020. http://dx.doi.org/10.1109/cec48606.2020.9185569.
Повний текст джерелаWu, Bin, Yijia Zhang, and Yuxin Wang. "Hyperbolic Attributed Network Embedding with self-adaptive Random Walks." In CIIS 2020: 2020 The 3rd International Conference on Computational Intelligence and Intelligent Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3440840.3440859.
Повний текст джерелаЗвіти організацій з теми "Random walks on network"
Reeder, Leah, Aaron Jamison Hill, James Bradley Aimone, and William Mark Severa. Exploring Applications of Random Walks on Spiking Neural Algorithms. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471656.
Повний текст джерелаBaggerly, K., D. Cox, and R. Picard. Adaptive importance sampling of random walks on continuous state spaces. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/677157.
Повний текст джерелаMetcalf, Gilbert, and Kevin Hassett. Investment Under Alternative Return Assumptions: Comparing Random Walks and Mean Reversion. Cambridge, MA: National Bureau of Economic Research, March 1995. http://dx.doi.org/10.3386/t0175.
Повний текст джерелаBrooks, Rodney A. A Robot that Walks; Emergent Behaviors from a Carefully Evolved Network. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada207958.
Повний текст джерелаLo, Andrew, and A. Craig MacKinlay. Stock Market Prices Do Not Follow Random Walks: Evidence From a Simple Specification Test. Cambridge, MA: National Bureau of Economic Research, February 1987. http://dx.doi.org/10.3386/w2168.
Повний текст джерелаCherupally, Sai Kiran. Hierarchical Random Boolean Network Reservoirs. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6238.
Повний текст джерелаCarley, Kathleen M., and Eunice J. Kim. Random Graph Standard Network Metrics Distributions in ORA. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada487516.
Повний текст джерелаGoldsmith, Andrea J., Stephen Boyd, H. V. Poor, and Yonina Eldar. Complex Network Information Exchange in Random Wireless Environments. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada576751.
Повний текст джерелаShi, Cindy. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1194724.
Повний текст джерелаJain, Anjani, and John W. Mamer. Approximations for the Random Minimal Spanning Tree with Application to Network Provisioning. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada204656.
Повний текст джерела