Добірка наукової літератури з теми "Ramani"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ramani".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ramani"

1

Chai, Xue-Dong, and Chun-Xia Li. "The integrability of the coupled Ramani equation with binary Bell polynomials." Modern Physics Letters B 34, no. 32 (August 15, 2020): 2050371. http://dx.doi.org/10.1142/s0217984920503716.

Повний текст джерела
Анотація:
Binary Bell polynomial approach is applied to study the coupled Ramani equation, which is the generalization of the Ramani equation. Based on the concept of scale invariance, the coupled Ramani equation is written in terms of binary Bell polynomials of two dimensionless field variables, which leads to the bilinear coupled Ramani equation directly. As a consequence, the bilinear Bäcklund transformation, Lax pair and conservation laws are systematically constructed by virtue of binary Bell polynomials.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LI, JIBIN. "EXISTENCE OF EXACT FAMILIES OF TRAVELING WAVE SOLUTIONS FOR THE SIXTH-ORDER RAMANI EQUATION AND A COUPLED RAMANI EQUATION." International Journal of Bifurcation and Chaos 22, no. 01 (January 2012): 1250002. http://dx.doi.org/10.1142/s0218127412500022.

Повний текст джерела
Анотація:
By using the method of dynamical systems and the results in [Li & Zhang, 2011] to the sixth-order Ramani equation and a coupled Ramani equation, the families of exact traveling wave solutions can be obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Junchao, Bao-Feng Feng, and Yong Chen. "Bilinear Bäcklund transformation, Lax pair and multi-soliton solution for a vector Ramani equation." Modern Physics Letters B 31, no. 12 (April 27, 2017): 1750133. http://dx.doi.org/10.1142/s0217984917501330.

Повний текст джерела
Анотація:
In this paper, a vector Ramani equation is proposed by using the bilinear approach. With the help of the bilinear exchange formulae, bilinear Bäcklund transformation and the corresponding Lax pair for the vector Ramani equation are derived. Besides, multi-soliton solution expressed by pfaffian is given and proved by pfaffian techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wazwaz, Abdul-Majid, and Houria Triki. "Multiple soliton solutions for the sixth-order Ramani equation and a coupled Ramani equation." Applied Mathematics and Computation 216, no. 1 (March 2010): 332–36. http://dx.doi.org/10.1016/j.amc.2010.01.067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Saleh, R., A. S. Rashed, and Abdul-Majid Wazwaz. "Plasma-waves evolution and propagation modeled by sixth order Ramani and coupled Ramani equations using symmetry methods." Physica Scripta 96, no. 8 (May 26, 2021): 085213. http://dx.doi.org/10.1088/1402-4896/ac0075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Watts, Geoff. "Ramani Moonesinghe: anaesthetist with a perioperative vision." Lancet 393, no. 10180 (April 2019): 1495. http://dx.doi.org/10.1016/s0140-6736(19)30802-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wazwaz, Abdul-Majid. "A coupled Ramani equation: multiple soliton solutions." Journal of Mathematical Chemistry 52, no. 8 (June 8, 2014): 2133–40. http://dx.doi.org/10.1007/s10910-014-0372-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ya-Xuan, Yu. "Supersymmetric Sawada–Kotera–Ramani Equation: Bilinear Approach." Communications in Theoretical Physics 49, no. 3 (March 2008): 685–88. http://dx.doi.org/10.1088/0253-6102/49/3/35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Jun-Xiao, and Hon-Wah Tam. "Soliton solutions of a coupled Ramani equation." Applied Mathematics Letters 19, no. 4 (April 2006): 307–13. http://dx.doi.org/10.1016/j.aml.2005.01.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Nianhua, and Binfang Gao. "Hamiltonian structures of a coupled Ramani equation." Journal of Mathematical Analysis and Applications 453, no. 2 (September 2017): 908–16. http://dx.doi.org/10.1016/j.jmaa.2017.04.043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ramani"

1

Ramani, Anand [Verfasser], Jay [Akademischer Betreuer] Gopalakrishnan, and Thomas [Akademischer Betreuer] Klein. "Role of Sas-4/CPAP in building functional centrosomes and cilia / Anand Ramani ; Jay Gopalakrishnan, Thomas Klein." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2019. http://d-nb.info/1200207106/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ramani, Mohan Ramkumar [Verfasser], Jan [Gutachter] Hansmann, Franz [Gutachter] Jakob, and Heike [Gutachter] Walles. "Effect of Mechanical Stress On Stem Cells to Improve Better Bone Regeneration / Ramkumar Ramani Mohan ; Gutachter: Jan Hansmann, Franz Jakob, Heike Walles." Würzburg : Universität Würzburg, 2021. http://d-nb.info/1236503643/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Begam, Gulnahar. "Prachin bangalir ramanir besh o bhushan : adikal theke 1200 প্রাচীন বাঙালির রমণীর বেশ ও ভূষণ : আদিকাল থেকে ১২০০ খ্রীস্টাব্দ পর্যন্ত". Thesis, Rajshahi University, 1996. http://hdl.handle.net/123456789/1708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ali, Momenpour. "Raman Biosensors." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36468.

Повний текст джерела
Анотація:
This PhD thesis focuses on improving the limit of detection (LOD) of Raman biosensors by using surface enhanced Raman scattering (SERS) and/or hollow core photonic crystal fibers (HC-PCF), in conjunction with statistical methods. Raman spectroscopy is a multivariate phenomenon that requires statistical analysis to identify the relationship between recorded spectra and the property of interest. The objective of this research is to improve the performance of Raman biosensors using SERS techniques and/or HC-PCF, by applying partial least squares (PLS) regression and principal component analysis (PCA). I began my research using Raman spectroscopy, PLS analysis and two different validation methods to monitor heparin, an important blood anti-coagulant, in serum at clinical levels. I achieved lower LOD of heparin in serum using the Test Set Validation (TSV) method. The PLS analysis allowed me to distinguish between weak Raman signals of heparin in serum and background noise. I then focused on using SERS to further improve the LOD of analytes, and accomplished simultaneous detection of GLU-GABA in serum at clinical levels using the SERS and PLS models. This work demonstrated the applicability of using SERS in conjunction with PLS to measure properties of samples in blood serum. I also used SERS with HC-PCF configuration to detect leukemia cells, one of the most recurrent types of pediatric cancers. This was achieved by applying PLS regression and PCA techniques. Improving LOD was the next objective, and I was able to achieve this by improving the PLS model to decrease errors and remove outliers or unnecessary variables. The results of the final optimized models were evaluated by comparing them with the results of previous models of Heparin and Leukemia cell detection in previous sections. Finally, as a clinical application of Raman biosensors, I applied the enhanced Raman technique to detect polycystic ovary syndrome (PCOS) disease, and to determine the role of chemerin in this disease. I used SERS in conjunction with PCA to differentiate between PCOS and non-PCOS patients. I also confirmed the role of chemerin in PCOS disease, measured the level of chemerin, a chemoattractant protein, in PCOS and non-PCOS patients using PLS, and further improved LOD with the PLS regression model, as proposed in previous section.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Razmutė-Razmė, Inga. "Vibrational spectroscopic studies on the structure and interaction with solution components of bifunctional organic compounds adsorbed at metal electrodes." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20091215_091605-81688.

Повний текст джерела
Анотація:
The indole and phenole rings comprise the main part of tryptophan and tyrosine side chains in proteins and play an important role in the stabilization of tertiary structure, interaction with active centers in biomolecules, and electron transfer phenomena. To get better insight into the interactions of these functional groups, the artificial monomolecular structures have been constructed from the synthesized bifuncional compounds with thiol and indole or phenole ring functional groups able to form self-assembled monolayers on gold, silver and copper electrodes. Properties of these monolayers were studied by Raman, infrared, and sum-frequency generation spectroscopies. The main tasks of this work were to assess the adsorption peculiarities of the bifunctional thiols at the initial stage of the monolayer formation, to determine the influence of the electrode nature on the monolayer structure, and to establish the potential influence on the properties of the terminal functional groups. It was demonstrated for the first time that at the initial stage of monolayer formation the methylene groups interact with the metal surface. Evidence for the metal-induced lowering of the CH stretching mode frequency down to 2820 cm-1 was provided. It was demonstrated that indole ring interacts with the Ag electrode surface at sufficiently negative potentials and this interaction can be recognized from the downshift of the W16 mode from ~ 1010 cm-1 to ~ 1001 cm-1. Investigations of indole... [to full text]
Triptofano ir tirozino aminorūgščių funkcinės grupės – indolo ir fenolio žiedai, stabilizuoja baltymų tretinę struktūrą, sąveikauja su aktyviais centrais biomolekulėse, dalyvauja elektronų pernašos procesuose. Siekiant giliau suprasti kaip šios grupės sąveikauja, buvo sukonstruotos dirbtinės monosluoksninės struktūros, sudarytos iš susintetintų bifunkcinių junginių, turinčių galines tiolio ir indolo žiedo arba fenolio žiedo grupes ir gebančių formuoti savitvarkius monosluoksnius ant aukso, sidabro ir vario elektrodų. Jų savybės ištirtos Ramano, infraraudonosios ir suminio dažnio generacijos spektroskopijų metodais. Pagrindiniai darbo tikslai buvo nustatyti bifunkcinių alkantiolių struktūrą ir adsorbcijos ypatumus pradinėje monosluoksnio formavimosi stadijoje, elektrodo prigimties įtaką monosluoksnių struktūrai ir potencialo įtaką galinių funkcinių grupių savybėms. Paviršiaus sustiprintos Ramano spektroskopijos metodu pirmą kartą parodyta, kad pradinėse monosluoksnių formavimo stadijose metileno grupės sąveikauja su metalo paviršiumi. Darbe įrodyta, kad dėl sąveikos su metalu spektruose atsiranda žemesnio dažnio („minkšta“) CH juosta ties 2820 cm-1. Pirmą kartą parodyta, kad indolo žiedas sąveikauja su Ag paviršiumi, esant pakankamai neigiamiems potencialams ir tą sąveiką galima spektriškai atpažinti pagal W16 modos ties ~1010 cm-1 dažnio sumažėjimu iki ~ 1001 cm-1. Tiriant indolo žiedu terminuotus ir mišrius monosluoksnius su įterptomis oktadekantiolio molekulėmis nustatytas... [toliau žr. visą tekstą]
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Razmutė-Razmė, Inga. "Bifunkcinių organinių junginių adsorbuotų ant metalinių elektrodų, struktūros ir sąveikos su tirpalo komponentais tyrimas virpesių spektroskopijos metodais." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20091215_091625-86896.

Повний текст джерела
Анотація:
Triptofano ir tirozino aminorūgščių funkcinės grupės – indolo ir fenolio žiedai, stabilizuoja baltymų tretinę struktūrą, sąveikauja su aktyviais centrais biomolekulėse, dalyvauja elektronų pernašos procesuose. Siekiant giliau suprasti kaip šios grupės sąveikauja, buvo sukonstruotos dirbtinės monosluoksninės struktūros, sudarytos iš susintetintų bifunkcinių junginių, turinčių galines tiolio ir indolo žiedo arba fenolio žiedo grupes ir gebančių formuoti savitvarkius monosluoksnius ant aukso, sidabro ir vario elektrodų. Jų savybės ištirtos Ramano, infraraudonosios ir suminio dažnio generacijos spektroskopijų metodais. Pagrindiniai darbo tikslai buvo nustatyti bifunkcinių alkantiolių struktūrą ir adsorbcijos ypatumus pradinėje monosluoksnio formavimosi stadijoje, elektrodo prigimties įtaką monosluoksnių struktūrai ir potencialo įtaką galinių funkcinių grupių savybėms. Paviršiaus sustiprintos Ramano spektroskopijos metodu pirmą kartą parodyta, kad pradinėse monosluoksnių formavimo stadijose metileno grupės sąveikauja su metalo paviršiumi. Darbe įrodyta, kad dėl sąveikos su metalu spektruose atsiranda žemesnio dažnio („minkšta“) CH juosta ties 2820 cm-1. Pirmą kartą parodyta, kad indolo žiedas sąveikauja su Ag paviršiumi, esant pakankamai neigiamiems potencialams ir tą sąveiką galima spektriškai atpažinti pagal W16 modos ties ~1010 cm-1 dažnio sumažėjimu iki ~ 1001 cm-1. Tiriant indolo žiedu terminuotus ir mišrius monosluoksnius su įterptomis oktadekantiolio molekulėmis nustatytas... [toliau žr. visą tekstą]
The indole and phenole rings comprise the main part of tryptophan and tyrosine side chains in proteins and play an important role in the stabilization of tertiary structure, interaction with active centers in biomolecules, and electron transfer phenomena. To get better insight into the interactions of these functional groups, the artificial monomolecular structures have been constructed from the synthesized bifuncional compounds with thiol and indole or phenole ring functional groups able to form self-assembled monolayers on gold, silver and copper electrodes. Properties of these monolayers were studied by Raman, infrared, and sum-frequency generation spectroscopies. The main tasks of this work were to assess the adsorption peculiarities of the bifunctional thiols at the initial stage of the monolayer formation, to determine the influence of the electrode nature on the monolayer structure, and to establish the potential influence on the properties of the terminal functional groups. It was demonstrated for the first time that at the initial stage of monolayer formation the methylene groups interact with the metal surface. Evidence for the metal-induced lowering of the C−H stretching mode frequency down to 2820 cm-1 was provided. It was demonstrated that indole ring interacts with the Ag electrode surface at sufficiently negative potentials and this interaction can be recognized from the downshift of the W16 mode from ~ 1010 cm-1 to ~ 1001 cm-1. Investigations of indole ring... [to full text]
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Verma, Tarishi. "The Legitimacy of Online Feminist Activism: Subversion of Shame in Sexual Assault by Reporting it on Social Media." Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1617396334881314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kunarajah, Enoch Arumaishanth. "Distributed Raman amplifiers." Thesis, University of Essex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nash, J. "Time resolved Raman scattering in liquid crystals using a Raman microprobe." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tanaka, Tomoyoshi. "Resonance raman and surface enhanced raman studies of hemeproteins and model compounds." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/27678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Ramani"

1

Debī, Āśāpūrṇā. Nijaswa ramani. Calcutta: Mitra & Ghosh, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mkabarah, Jumaa R. R. Ramani ya maiti. Dar es Salaam: Utamaduni Publishers, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bangali jibane ramani. Calcutta: Mitra and Ghosh, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Natarajan. Rakta rahasya ramani. Calcutta: Mandal, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ramani Fernando: A journey in style. Colombo]: [Ramani Fernando], 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dance, dancers and musicians: Collected writings of Nandini Ramani. Chennai: Dr. V. Raghavan Centre for Performing Arts, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Conference, on Real-Time Systems (1990 Indore India). Real-time systems: Proceedings of the Conference on Real Time Systems, Indore, India, Nov. 1-3, 1990 / editors, A. Pedar, P.K. Chande, A.K. Ramani. Indore, India: S.G.S. Institute of Technology and Science, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Si︠a︡dni︠o︡ŭ, Maseĭ. Raman Korzi︠u︡k: Raman. Nʹi︠u︡ I︠o︡rk: [publisher not identified], 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shėli︠a︡hovich, T. Ė. (Tatstsi︠a︡na Ėduardaŭna) and Hilep, U. A. (Uladzimir A.), eds. Ramans. Minsk: Belaruski fond kulʹtury, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Publisher, Madia, ed. Selebritis ramai-ramai membidik Senayan. Pasar Minggu, Jakarta: Madia Publisher, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ramani"

1

Lee, Eunah. "Imaging Modes." In Raman Imaging, 1–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Georgi, Carsten, Miriam Böhmler, Huihong Qian, Lukas Novotny, and Achim Hartschuh. "Tip-Enhanced Near-Field Optical Microscopy of Carbon Nanotubes." In Raman Imaging, 301–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hashimoto, Mamoru, Taro Ichimura, and Katsumasa Fujita. "CARS Microscopy: Implementation of Nonlinear Vibrational Spectroscopy for Far-Field and Near-Field Imaging." In Raman Imaging, 317–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rigneault, Hervé, and David Gachet. "Background-free Coherent Raman Imaging: The CARS and SRS Contrast Mechanisms." In Raman Imaging, 347–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tiberj, Antoine, and Jean Camassel. "Raman Imaging in Semiconductor Physics: Applications to Microelectronic Materials and Devices." In Raman Imaging, 39–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gouadec, G., L. Bellot-Gurlet, D. Baron, and Ph Colomban. "Raman Mapping for the Investigation of Nano-phased Materials." In Raman Imaging, 85–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guieu, Valérie, and François Lagugné-Labarthet. "Raman Imaging of Micro- and Nano-Structured Materials." In Raman Imaging, 119–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nasdala, Lutz, Olivier Beyssac, J. William Schopf, and Bernd Bleisteiner. "Application of Raman-based images in the Earth sciences." In Raman Imaging, 145–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ropret, Polonca, Costanza Miliani, and Silvia A. Centeno. "Raman Mapping in the Scientific Investigations of Works of Art." In Raman Imaging, 189–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McGarvey, J. J., and J. Renwick Beattie. "Raman Microscopy : A Versatile Approach to Bio-Imaging." In Raman Imaging, 219–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ramani"

1

Singh, Sudhir, K. Sakkaravarthi, and K. Murugesan. "Dynamics and control of interaction waves in sixth-order nonlinear Ramani equation." In DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0080609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vandergraaf, Tjalle T., Gudrat G. Mamedov, Mahammadali A. Ramazanov, Jalal A. Naghiyev, Afat A. Mehdiyeva, and Nazim A. Huseynov. "Determination of the Radionuclide Contamination on the Absheron Peninsula in Azerbaijan." In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59177.

Повний текст джерела
Анотація:
Much of Azerbaijan’s Absheron Peninsula is contaminated by natural U-series and Th-series radionuclides, released in the production of oil and gas and, to a lesser extent, by anthropogenic radionuclides, including Sr-90 and Cs-137, from local industrial activities and trans-border transport. The region contains a large number of pipelines and artificial lagoons that have been used to retain excess groundwater and oil residues. In spite of the long history of the oil and gas industry, radioecological investigations have not been carried out until recently. The purpose of this project is to determine the extent of radionuclide contamination in the Absheron Peninsula using a combination of radiation field measurements and laboratory analyses of selected samples, focusing on ten routes in the vicinity of Baku. The routes were selected as most likely to have become contaminated over time. Soil samples, taken from surface and to a depth of 1 m, aqueous samples from surface waters and marshes, and aqueous and sediment lagoons that showed elevated dosimetry readings, were prepared for gamma spectrometric analysis. Control samples were taken from non-contaminated areas. Samples of air and surface waters were analyzed for Rn-220 and Rn-222. The data will then be used to assess the potential impact of the contamination on the local population. A total slightly 4000 dosimetric readings were taken during the course of this investigation. Of these, 1366 (34%) exceeded 5.4 μR/h. This level is two standard deviations above the mean of the least contaminated route, the 79-km Baku-Guba route. Along the routes Baku-Shemakha and Baku-Guba where no oil and gas activity had taken place, radiation levels of 5.1 ± 1.5 and 4.2 ± 0.6 μR/h, respectively, were obtained. The readings for the route Baku-Guba were then used as representing negligible contamination to which the readings of the other sites were compared. In contrast, along the routes Baku-Lokbatan and Baku-Surakhani, that have seen oil- and gas-related activity, radiation levels were sometimes two or three orders of magnitude higher. The most highly contaminated sites were those of two abandoned iodine recovery facilities along the route Baku-Surakhani, the Ramani and Surakhani sites where readings up to 1450 μR/h were obtained. The contamination is due mainly to uranium and thorium in the formation water associated with the oil and gas. Radon measurements did not exceed 20 Bq/m3.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vitukhnovsky, A. G. "Optical near-field microscopy methods in biology and medicine." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kazaryan, Airazat M. "Optical biopsy: laser autofluorescent and Raman spectroscopies in tumor diagnostics." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Man'ko, Olga V. "Photon distribution function for stimulated Raman scattering." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bilyi, Mykola U., G. I. Gaididei, and V. P. Sakun. "Raman spectroscopy of vibronic excitations in aqueous solutions." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Drampyan, Raphael K. "Vortex structure in stimulated Raman scattering beam profile." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuznetsova, Tatiana I. "Stimulated Raman scattering in waveguides of subwavelength radius." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barille, Regis, Anna D. Kudryavtseva, Genevieve Rivoire, Albina I. Sokolovskaya, and Nicolaii V. Tcherniega. "Statistical properties of SRS excited in acetone." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bukalov, Sergey S., and Larissa A. Leites. "Raman study of order-disorder phase transitions in polydialkylmetallanes of the type [R2M]n: organometallic polymers with the main chain consisting entirely of either Si, or Ge, or Sn atoms." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Ramani"

1

SEDLACEK, III, A. J. FINFROCK,C. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/15006636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Author, Not Given. (Hadamard Raman imaging). Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5090154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carter, J. Chance, David H. Chambers, Paul T. Steele, Peter Haugen, and Don Heller. UV Excited Photoacoustic Raman. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1113407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Polk, Donald. Raman Spectra of Glasses. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada203343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Newsom, RK. Raman Lidar (RL) Handbook. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/1020561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Edwards, D. F. Raman scattering in crystals. Office of Scientific and Technical Information (OSTI), September 1988. http://dx.doi.org/10.2172/7032252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guenther, B. D. Snapshot Raman Spectral Imager. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada522778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Azuma, Y., T. LeBrun, M. MacDonald, and S. H. Southworth. Auger resonant Raman spectroscopy. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/166503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sharma, Shiv K., Anupam K. Misra, Ava C. Dykes, and Lori E. Kamemoto. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada581577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Clausen, Jay, Richard Hark, Russ Harmon, John Plumer, Samuel Beal, and Meghan Bishop. A comparison of handheld field chemical sensors for soil characterization with a focus on LIBS. Engineer Research and Development Center (U.S.), February 2022. http://dx.doi.org/10.21079/11681/43282.

Повний текст джерела
Анотація:
Commercially available handheld chemical analyzers for forensic applications have been available for over a decade. Portable systems from multiple vendors can perform X-ray fluorescence (XRF) spectroscopy, Raman spectroscopy, Fourier transform infrared(FTIR) spectroscopy, and recently laser-induced breakdown spectroscopy (LIBS). Together, we have been exploring the development and potential applications of a multisensor system consisting of XRF, Raman, and LIBS for environmental characterization with a focus on soils from military ranges. Handheld sensors offer the potential to substantially increase sample throughput through the elimination of transport of samples back to the laboratory and labor-intensive sample preparation procedures. Further, these technologies have the capability for extremely rapid analysis, on the order of tens of seconds or less. We have compared and evaluated results from the analysis of several hundred soil samples using conventional laboratory bench top inductively coupled plasma atomic emission spectroscopy (ICP-AES) for metals evaluation and high-performance liquid chromatography (HPLC) and Raman spectroscopy for detection and characterization of energetic materials against handheld XRF, LIBS, and Raman analyzers. The soil samples contained antimony, copper, lead, tungsten, and zinc as well as energetic compounds such as 2,4,6-trinitrotoluene(TNT), hexahydro-1,3,5-triazine (RDX), nitroglycerine (NG), and dinitrotoluene isomers (DNT). Precision, accuracy, and sensitivity of the handheld field sensor technologies were compared against conventional laboratory instrumentation to determine their suitability for field characterization leading to decisional outcomes.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії