Добірка наукової літератури з теми "Radiologic image"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Radiologic image".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Radiologic image"
Chen, Chin-Tu. "Radiologic Image Registration." Academic Radiology 10, no. 3 (March 2003): 239–41. http://dx.doi.org/10.1016/s1076-6332(03)80096-x.
Повний текст джерелаHuang, H. K., S. L. Lou, P. S. Cho, D. J. Valentino, A. W. Wong, K. K. Chan, and B. K. Stewart. "Radiologic image communication methods." American Journal of Roentgenology 155, no. 1 (July 1990): 183–86. http://dx.doi.org/10.2214/ajr.155.1.2112842.
Повний текст джерелаWong, S., L. Zaremba, D. Gooden, and H. K. Huang. "Radiologic image compression-a review." Proceedings of the IEEE 83, no. 2 (1995): 194–219. http://dx.doi.org/10.1109/5.364466.
Повний текст джерелаGillespy, Thurman, and Alan H. Rowberg. "Displaying radiologic images on pesonal computers: Image processing and analysis." Journal of Digital Imaging 7, no. 2 (May 1994): 51–60. http://dx.doi.org/10.1007/bf03168422.
Повний текст джерелаBoddu, Prajwal, Vamsi Parimi, Michale Taddonio, Joshua Robert Kane, and Anjana Yeldandi. "Pathologic and Radiologic Correlation of Adult Cystic Lung Disease: A Comprehensive Review." Pathology Research International 2017 (February 8, 2017): 1–17. http://dx.doi.org/10.1155/2017/3502438.
Повний текст джерелаKinnunen, J. "Image Quality in Radiography of Midfacial Trauma." Acta Radiologica 29, no. 4 (July 1988): 395–99. http://dx.doi.org/10.1177/028418518802900403.
Повний текст джерелаKatsu et al., Toshihiko. "Radiologic Findings in Spine X-ray Image." Japanese Journal of Radiological Technology 64, no. 1 (2008): 73–83. http://dx.doi.org/10.6009/jjrt.64.73.
Повний текст джерелаFleury, A., A. Ambrun, C. Ferber-Viart, S. Zaouche, C. Dubreuil, and S. Tringali. "One radiologic image may hide behind another." European Annals of Otorhinolaryngology, Head and Neck Diseases 128, no. 5 (November 2011): 259–61. http://dx.doi.org/10.1016/j.anorl.2011.05.001.
Повний текст джерелаRichardson, M. L., M. S. Frank, and E. J. Stern. "Digital image manipulation: what constitutes acceptable alteration of a radiologic image?" American Journal of Roentgenology 164, no. 1 (January 1995): 228–29. http://dx.doi.org/10.2214/ajr.164.1.7998545.
Повний текст джерелаMcEachern, James D., David A. Leswick, Grant W. Stoneham, Karen L. Mohr, and James E. Stempien. "Radiological errors in the Canadian Journal of Emergency Medicine." CJEM 16, no. 05 (September 2014): 361–69. http://dx.doi.org/10.2310/8000.2013.131183.
Повний текст джерелаДисертації з теми "Radiologic image"
Vercillo, Richard 1953. "Very high resolution video display memory and base image memory for a radiologic image analysis console." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276707.
Повний текст джерелаChun, Hee. "Auditory sensory feedback tool to supplement visual data perception in radiologic imaging a demonstration using MR mammography /." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1148594830.
Повний текст джерелаWibowo, Gatot Morti Chavalit Wongse-ek Manus Mongkolsuk. "Factors affecting image quality and entrance skin exposure when using automatic exposure control (AEC) /." Abstract, 2004. http://mulinet3.li.mahidol.ac.th/thesis/2547/cd370/4537449.pdf.
Повний текст джерелаUllman, Gustaf. "Quantifying image quality in diagnostic radiology using simulation of the imaging system and model observers." Doctoral thesis, Linköping : Department of Medicine and Health, Linköping University, 2008. http://www.bibl.liu.se/liupubl/disp/disp2008/med1050s.pdf.
Повний текст джерелаSampedro, Santaló Frederic. "Automatic image quantification strategies in clinical nuclear medicine and neuroradiology." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/402270.
Повний текст джерелаCon la revolución de la tecnología digital de obtención de imágenes radiológicas y el aumento de la potencia computacional, el campo de la cuantificación de imágenes médicas ha emergido. El hecho de poder programar un ordenador para que detecte patrones de interés en imágenes radiológicas y pueda derivar de ellos una serie de indicadores numéricos con valor clínico hace que, sin duda, este ámbito de conocimiento tenga un gran potencial en el entorno médico y de investigación. En esta tesis se presentan un conjunto de contribuciones científicas en este contexto. En particular, se describe el diseño y la implementación de una serie de estrategias computacionales de cuantificación de imágenes de medicina nuclear y neuroradiología. A continuación se detalla cómo estas técnicas han demostrado ser de utilidad en el estudio de patologias muy relevantes en la actualidad como son el cáncer de mama, el linfoma no-Hodgkin, la pielonefritis, la enfermedad de Alzheimer, la enfermedad de Parkinson i el abuso de cánnabis.
With the revolution of digital medical imaging and the increasing computational power, the field of quantitative medical image analysis emerged. By programming a computer to detect patterns of interest in medical images and derive clinically meaningful numerical indicators from them, this field shows promising potential for healthcare and medical research systems. In this thesis, the design and implementation of computer-based quantification techniques in nuclear medicine and neuroradiological images led to several contributions in this field. These image-derived indicators contributed to complement the visual diagnosis and to further understand the pathophysiology of important health issues such as breast cancer, non-Hodgkin lymphoma, pyelonephritis, Alzheimer’s disease, Parkinson’s disease and cannabis abuse.
Alejaldre, Monforte Aída. "Uutilidad de los estudios de imagen muscular en el diagnóstico de un grupo de miopatías con debilidad axial." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/399847.
Повний текст джерелаHereditary myopathies are diseases with a complex diagnosis. They may present with different phenotypes of muscle weakness. A relatively new phenotype is the axial phenotype. Adult Pompe’s disease (PD) is a glycogenosis. Glycogen accumulation in lysosomes causes muscle weakness that usually involves girdles and axial muscles associated with respiratory insufficiency. Myopathies due to mutations in EMD and LMNA genes may present with girdles weakness or with Emery-Dreifuss muscular dystrophy phenotype (EDMD). EDMD patients present a scapular-humeral-peroneal weakness associated with joint contractures at elbows, ankles and spine. In recent years computed tomography (CT) and magnetic resonance imaging (MRI) are being used for the study of some neuromuscular diseases. The hypothesis of this thesis is that muscular imaging could be a good diagnosis biomarker of Adult PD and EMD o LMNA genes related myopathy. A characteristic radiological pattern would allow an effective and early diagnosis. Aims were: 1) to describe the pattern of fatty muscle infiltration in these myopathies. 2) to study muscle infiltration in the paravertebral and abdominal area in 30 patients with PD. 3) to correlate muscle weakness with the degree of muscle infiltration in radiology in PD. 4) To describe clinical and radiological characteristics in 42 patients with mutations in EMD and LMNA genes. 5) to search radiological differences according to genotype (EMD o LMNA). PD study was performed in 30 patients with MRI or CT at the trunk level. We found that asymptomatic patients had fatty muscle infiltration in at least one muscle. There was a specific infiltration pattern in trunk area. Moreover this pattern makes evolves according to the clinical severity. There was a correlation between the degree of muscle infiltration and clinical stage. The study of myopathies due to mutations in EMD and LMNA genes was perfomed in 42 patients with MRI or CT of trunk and lower extremities area. We found EDMD patients showed no clinical differences according genotype. We described an infiltration pattern in these patients that affects paravertebral area, anterior and posterior compartment in the thigh and posterior compartment in the leg. Significative difference was found in the degree and frequency of infiltration in peroneal muscle. Peroneal Infiltration was greater in patients with mutations in EMD gene. We showed paravertebral infiltration in asymptomatic patients. We found an evolutive radiological pattern according to the clinical stage evolution. In conclusion muscular radiology is an effective biomarker for the diagnosis of adult PD and myopathies caused by mutations in the LMNA or EMD genes. In patients who share the same phenotype muscle imaging could be a useful tool to guide genetics studies.
Silva, Thiago Rodrigues da. "Dosimetria em radiologia diagnóstica digital: Uso dos indicadores de exposição de sistemas digitais como estimadores de dose absorvida." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-06112014-143320/.
Повний текст джерелаThe digital radiology systems, among them the system based on photostimulable phosphors (CR systems as they are known in radiology) are increasingly common in radiological practice in Sao Paulo, following a worldwide trend. Using this technology, which is replacing the screen-film as detection system for production of the image, can be detrimental or beneficial in terms of the absorbed dose to the patient, because the dynamic range of these detectors is much wider than the radiographic films, and it is possible to obtain an image with overexposure or underexposure. To evaluate the contrast obtained in the image, and at the same time, obtain an estimate of the absorbed dose to the patient, all manufacturers of CR systems include the evaluation of an exposure index in the image analysis software. This index should be related to the absorbed dose to the phosphor plate (Image Plate- IP). Studies that relate the signal to noise ratio (SNR) and Entrance Skin Dose (ESD), measured with ionization chamber and TL dosimetry for chest X-rays were conducted using clinical techniques, and typical values of dose (ESD and exit dose) were compared with values of gray levels and exposure index obtained with the CR. For this we used two simulators: a homogeneous one made with PMMA walls and filled with water, and an anthropomorphic phantom without the upper and lower limbs (RANDO Phantom), in which it was also possible to measure internal doses with TL dosimetry. The results showed a logarithmic relationship between the Agfa index IgM (log of median of histogram) and the simulator exit dose, and a log relationship between the ESD and the mean gray level of a region of the image (SAL - Scan Average Level ). It was also possible to relate the IgM with ESD, but the relation is dependent on the beam quality. With the use of different filtrations, we verified the possibility of decrease the ESD keeping the same image quality. In this work we obtained ESD values in the range 0.0995(50) 1.657(51) mGy, and internal doses from 0.0074(18) to 0.90(13) mGy.
Ovando, Cortés Paloma Andrea. "Variabilidad en el diagnóstico de caries proximales con radiología convencional e imagen radiológica digitalizada estandarizadas." Tesis, Universidad de Chile, 2006. http://repositorio.uchile.cl/handle/2250/144973.
Повний текст джерелаLa detección de caries proximales incipientes es uno de los problemas a los que todavía se enfrentan los odontólogos debido principalmente a la difícil inspección de dichas superficies1. En la actualidad el diagnóstico radiológico es fundamental ya que aproximadamente la mitad de las lesiones proximales no son visibles clínicamente y sólo pueden ser detectadas mediante radiografías5,6, sin embargo, para que una lesión de caries sea detectada radiológicamente debe producirse una desmineralización del 30%4,5. Esta limitación en la detección de caries proximales incipientes ha hecho que nuevas tecnologías sean desarrolladas, sistemas digitales tienen gran aceptación en la evaluación y diagnóstico de lesión de caries oclusales por permitir durante la interpretación radiográfica, la manipulación del contraste, brillo y densidad, sin embargo no hay estudios similares para la detección de caries proximales10. En este estudio se comparó la efectividad de los métodos de diagnóstico radiográfico convencional, radiográfico digitalizado normal y radiográfico digitalizado invertido en la detección de caries proximales. Además se comparó el diagnóstico de caries realizado por alumnos egresados de Odontología, odontólogos generales y especialistas en radiología máxilo-facial. La muestra consistió en un total de 41 dientes entre premolares y molares con superficies proximales o al menos una de ellas con tinción evidente; mancha blanca o mancha café. La toma radiográfica convencional de todos los dientes fue realizada por un docente de la cátedra de Radiología de la Universidad de Chile. Con el objeto de estandarizar la toma radiográfica se creó un soporte que mantuvo siempre el tubo de rayos X en la misma posición y distancia con respecto a la película y al objeto a radiografiar Los dientes fueron montados en grupos de 3 dientes cada uno para crear las superficies de contacto y fueron fijados con cera rosa. Las imágenes digitalizadas se obtuvieron mediante el escaneo de las radiografías tomadas previamente en forma convencional. Las imágenes digitalizadas se manipularon computacionalmente en brillo y contraste y se invirtió la imagen para obtener el negativo de ésta. Las imágenes radiográficas convencional, digitalizadas normal y digitalizada invertida fueron analizadas por 9 observadores, 3 alumnos de pregrado egresados de la carrera de Odontología de la Universidad de Chile, 3 odontólogos generales y 3 radiólogos máxilo-faciales titulados en la Universidad de Chile. Cada uno de los observadores evaluó presencia o ausencia de caries proximales en las superficies dentarias y la profundidad de éstas respondiendo a una pauta de observación. Cada uno analizó las imágenes radiográficas en forma independiente, en el mismo lugar físico y bajo condiciones estándar. Para validar la comparación entre las distintas modalidades radiográficas los dientes fueron sometidos a cortes en zonas que involucraran la lesión y fueron examinados por un observador calibrado previamente, bajo condiciones estándar y evaluados en base al mismo criterio usado en el examen radiográfico. El porcentaje de acierto de todos los observadores en las distintas técnicas radiográficas fue 42% con radiología convencional, 40,2% con radiología digitalizada normal y 41,1% con radiología digitalizada invertida. El grupo de radiólogos máxilo-faciales tuvo un 44,1% de coincidencia con radiología convencional, 36% con radiología digitalizada normal y 39,2% con radiología digitalizada invertida. El grupo de odontólogos generales tuvo un 42,3% de aciertos con radiología convencional, un 39,6% con radiología digitalizada normal y un 40,5% con radiología digitalizada invertida. El grupo de estudiantes egresados tuvo un porcentaje de acierto de 39,6% con radiología convencional, 45% con radiología digitalizada normal y 43,7% con radiología digitalizada invertida. El test aplicado para el análisis estadístico fue el de Anova, no hubo diferencia significativa entre los resultados obtenidos. En este estudio se concluye que la efectividad de la radiografía digitalizada normal y digitalizada invertida en el diagnóstico de caries proximales es similar al de la radiografía convencional y que al comparar la precisión diagnóstica entre estudiantes egresados, odontólogos generales y radiólogos máxilo-faciales no hay evidencias de mejorías significativas en la interpretación diagnóstica en detección de caries proximales con la experiencia del examinador.
Cros, Olivier. "Image Analysis and Visualization of the Human Mastoid Air Cell System." Licentiate thesis, Linköpings universitet, Medicinsk informatik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122179.
Повний текст джерелаAndersson, Kristina. "Evaluation of uncertainties in sub-volume based image registration : master of science thesis in medical radiation physics." Thesis, Umeå universitet, Institutionen för fysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-38638.
Повний текст джерелаКниги з теми "Radiologic image"
Radiographic image analysis. 3rd ed. Maryland Heights, Mo: Saunders/Elsevier, 2011.
Знайти повний текст джерелаRadiographic image analysis. 2nd ed. St. Louis, Missouri: Elsevier Saunders, 2006.
Знайти повний текст джерелаImage reconstruction in radiology. Boca Raton, Fla: CRC Press, 1990.
Знайти повний текст джерела1938-, James A. Everette, Anderson James H, and Higgins Charles B, eds. Digital image processing in radiology. Baltimore: Williams & Wilkins, 1985.
Знайти повний текст джерелаBiomedical image analysis. Boca Raton, Fla: CRC Press, 2005.
Знайти повний текст джерелаM, Moores B., British Institute of Radiology, Commission of the European Communities., Great Britain. National Radiological Protection Board., and Workshop on "Optimization of Image Quality and Patient Exposure in Diagnostic Radiology" (1988 : Oxford, England), eds. Optimization of image quality and patient exposure in diagnostic radiology. London: British Institute of Radiology, 1989.
Знайти повний текст джерелаHaidekker, Mark A. Advanced biomedical image analysis. Hoboken, N.J: John Wiley & Sons, 2010.
Знайти повний текст джерелаHiss, Stephen S. Understanding radiography. 3rd ed. Springfield, Ill: C.C. Thomas, 1993.
Знайти повний текст джерелаF, Czervionke Leo, and Mayo Foundation for Medical Education and Research., eds. Image-guided spine intervention. Philadelphia, Pa: Saunders, 2003.
Знайти повний текст джерелаRadiographic imaging: A guide for producing quality radiographs. Philadelphia: Saunders, 1992.
Знайти повний текст джерелаЧастини книг з теми "Radiologic image"
Dunlap, Melinda, and Jordan Berlin. "Combination Therapy for Liver Metastases: Chemotherapy and Radiologic Interventions." In Image-Guided Cancer Therapy, 469–80. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-0751-6_33.
Повний текст джерелаSivewright, Gordon J., John M. Knapman, Will Dickson, and Peter J. Elliott. "Interactive Image Segmentation Applied to CT and MR Images." In Computer Assisted Radiology / Computergestützte Radiologie, 328–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49351-5_55.
Повний текст джерелаStraughan, K., S. L. Free, R. I. Kitney, A. W. Goode, M. J. Turner, and C. Panahy. "Digital Image Processing of X-Ray and MR Breast Images." In Computer Assisted Radiology / Computergestützte Radiologie, 624–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-00807-2_100.
Повний текст джерелаOrphanoudakis, S. C., E. G. Petrakis, and P. Kofakis. "A Medical Image Data Base System for Tomographic Images." In CAR’89 Computer Assisted Radiology / Computergestützte Radiologie, 618–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52311-3_110.
Повний текст джерелаAubry, F., V. Chameroy, F. Lavaire, J. P. Ramond, I. E. Saidane, A. Giron, Y. Bizais, A. Todd-Pokropek, and R. Di Paola. "Medical Image Management Using a Semantic Approach: Image Description." In Computer Assisted Radiology / Computergestützte Radiologie, 265–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49351-5_45.
Повний текст джерелаBlum, Christof, and Eva-Maria Stephan. "Using ISO/IEC’s Image Interchange Facility (IIF) for Medical Image Data Communication." In Computer Assisted Radiology / Computergestützte Radiologie, 241–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49351-5_41.
Повний текст джерелаLinderer, T., W. Wunderlich, F. Fischer, J. Nöring, and R. Schröder. "Image Zoom Falsifies Vessel Diameters." In Computer Assisted Radiology / Computergestützte Radiologie, 763. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49351-5_139.
Повний текст джерелаWicks, D. A. G., G. J. Barker, and D. L. Plummer. "A General Image File Format." In Computer Assisted Radiology / Computergestützte Radiologie, 471–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-00807-2_76.
Повний текст джерелаNoz, Marilyn E., Gerald Q. Maguire, Evan M. Lee, and James H. Schimpf. "Graphical Aids for Tomographic Image Correlation." In Computer Assisted Radiology / Computergestützte Radiologie, 608–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-52247-5_96.
Повний текст джерелаWilliamson, Byrn, and Richard L. Morin. "A Large Clinical Image Archive System." In Computer Assisted Radiology / Computergestützte Radiologie, 746. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49351-5_124.
Повний текст джерелаТези доповідей конференцій з теми "Radiologic image"
Badano, Aldo, and Michael J. Flynn. "Image degradation by glare in radiologic display devices." In Medical Imaging 1997, edited by Yongmin Kim. SPIE, 1997. http://dx.doi.org/10.1117/12.273900.
Повний текст джерелаFellingham, Linda L., and Jagdish C. Kohli. "Radiologic image communication and archive service: a secure, scalable, shared approach." In Photonics East '95, edited by C. C. Jay Kuo. SPIE, 1995. http://dx.doi.org/10.1117/12.227240.
Повний текст джерелаDequidt, Paul, Pascal Bourdon, Benoit Tremblais, Carole Guillevin, Benoit Gianelli, Claire Boutet, Jean-Philippe Cottier, Jean-Noel Vallee, Christine Fernandez-Maloigne, and Remy Guillevin. "Assigning a new glioma grade label ground-truth for the BraTS dataset using radiologic criteria." In 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2020. http://dx.doi.org/10.1109/ipta50016.2020.9286707.
Повний текст джерелаHillis, Stephen L. "Identical-test Roe and Metz simulation model for validating multi-reader methods of analysis for comparing different radiologic imaging modalities." In Image Perception, Observer Performance, and Technology Assessment, edited by Claudia R. Mello-Thoms and Sian Taylor-Phillips. SPIE, 2022. http://dx.doi.org/10.1117/12.2612691.
Повний текст джерелаJudy, Philip F., Richard Nawfel, and Richard G. Swensson. "Visual classification of degree of vessel stenosis." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tuoo2.
Повний текст джерела"Automatic Detection and Classification of Dental Restorations in Panoramic Radiographs." In InSITE 2019: Informing Science + IT Education Conferences: Jerusalem. Informing Science Institute, 2019. http://dx.doi.org/10.28945/4307.
Повний текст джерелаGhanbarzadeh Dagheyan, Ashkan, Ali Molaei, Richard Obermeier, Chang Liu, Aida Kuri Martinez, and Jose Martinez Lorenzo. "Initial Results of a Bimodal, Ultrasound-Microwave, Imaging System for Early Detection of Breast Cancer." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72174.
Повний текст джерелаDwyer III, Samuel J., Louis H. Wetzel, John M. Bramble, Glendon G. Cox, and Kirkman G. Baxter. "Radiology Image Management Networks." In OE/LASE '89, edited by John C. Urbach. SPIE, 1989. http://dx.doi.org/10.1117/12.952854.
Повний текст джерелаLevin, Ronald L., Mary A. Douglas, Joseph A. Frank, and R. Gladish. "Multimodality radiological image processing system." In Visualization in Biomedical Computing, edited by Richard A. Robb. SPIE, 1992. http://dx.doi.org/10.1117/12.131102.
Повний текст джерелаKrupinski, Elizabeth A. "Radiologist and automated image analysis." In Research Workshop on Automated Medical Image Analysis, edited by Binh Pham, Michael Braun, Anthony J. Maeder, and Michael P. Eckert. SPIE, 1999. http://dx.doi.org/10.1117/12.351625.
Повний текст джерела